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Extensions of groups

All the groups in this talk will be abelian.

Suppose that C ,A are countable groups.

An extension of C by A is an exact sequence

0 A X C 0f p



Isomorphism of extensions

Consider two extensions of C by A:

0 A X C 0

0 A X ′ C 0



Sum of extensions

Consider two extensions of C by A:

0 A X C 0f p

0 A X ′ C 0f ′ p′



The group Ext

Ext(C ,A) is the set of isomorphism classes of extensions

Ext(C ,A) is an abelian group

The operation on Ext is induced by sum of extension



Split extensions

The trivial element of Ext(C ,A) is the class of split extensions

0 A X C 0f p



Extensions and cocycles

Consider an extension

0 A X C 0f p

t

where p ◦ t = idC

Define then

ξ : C × C −→ A, (x , y) 7→ t (x + y)− t (x)− t (y)

This is a cocycle on C with values in A, i.e. it satisfies

ξ (x , y) = ξ (y , x)

ξ (x + y , z) + ξ (x , y) = ξ (y , z) + ξ (x , y + z)

Sum of extensions corresponds to pointwise sum of cocycles



Split extensions and coboundaries

We have that the extension is split if and only ξ is a coboundary

This means that there exists

r : C −→ A

such that
ξ (x , y) = r (x + y)− r (x)− r (y)



Another description of Ext

Z(C ,A) is the group of cocycles on C with values in A

B(C ,A) ⊆ Z(C ,A) is the subgroup of coboundaries

Then we have that

Ext(C ,A) ∼= Z(C ,A)/B(C ,A)

The problem of classifying extensions up to isomorphism corresponds to
the coset equivalence relation of B(C ,A) in Z(C ,A)



The complexity of coboundaries

We have that B(C ,A) is in general not a closed subgroup of Z(C ,A)

However B(C ,A) is Borel, as it is the image of the continuous group
homomorphism between Polish groups

AC −→ Z(C ,A)

r 7→ ((x , y) 7→ r (x + y)− r (x)− r (y))



Definability of coboundaries

This does not gives us an explicit way to express B (C ,A) in terms of open
sets by taking intersections and unions

In fact, it is not possible to give such a description (uniformly):

Theorem (L., 2021)

The subgroup B(C ,A) is Borel in Z (C ,A) but not uniformly in C ,A



The Borel rank of coboundaries

To prove this, one can consider the Borel rank of B (C ,A) in Z(C ,A)

This is the least α < ω1 such that B (C ,A) ∈ Π0
α (Z (C ,A))

Theorem (L., 2021)

The Borel rank of B(C ,A) in Z (C ,A) can be arbitrarily high for countable
torsion groups C ,A



Borel classes

One can refine the analysis by studying the complexity class of B(C ,A)

Definition

Π0
α is the complexity class of B in X if:

B is Π0
α in X

the complement of B is not Π0
α in X

Same definition for Σ0
α and and for D

(
Π0
α

)
(differences of Π0

α sets)



Possible complexity classes

Theorem (Hjorth–Kechris–Louveau, 1998)

A general result imposing restrictions on the possible complexity classes of
B(C ,A) in Z(C ,A). It must be one of the following:

Π0
1+λ+n where λ is either zero or limit and n = 0 or 2 ≤ n < ω;

Σ0
1+λ+1 where λ is either zero or limit;

D
(
Π0

1+λ+n

)
where λ is either zero or limit and 2 ≤ n < ω.



Complexity classes of cocycles

Theorem

Complete characterization of the complexity class of B(C ,A) in Z (C ,A)
in terms of the Ulm invariants of A,C, where A,C are torsion groups.

All possible complexity classes are realized by suitable choices of C ,A.

Example

Fix a prime p. Suppose that:

C = Z (p∞) is the divisible p-group of p-rank 1;

A is a countable unbounded reduced p-group.

The complexity class of B(C ,A) in Z (C ,A) is Π0
α+2, where α is the

least countable ordinal such that the α-th Ulm subgroup of A is bounded.
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Groups with a Polish cover

The group
Ext(C ,A) = Z(C ,A)/B(C ,A)

is an example of group with a Polish cover

In general a group with a Polish cover is an exact sequence

0 −→ K
ϕ−→ Ĝ −→ G −→ 0

where:

K and Ĝ are Polish groups

ϕ is a continuous group homomorphism



Morphisms

A morphism between groups with a Polish cover G = Ĝ/N and H = Ĥ/M
is a group homomorphism ϕ : G → H that is Borel-definable



Borel-definable homological algebra

Theorem (L., 2021)

Groups with a Polish cover form an abelian category, which is
an abelian subcategory of the category of groups



Polishable subgroups

Definition

If G = Ĝ/N is a group with a Polish cover, then a subgroup of G is
Polishable if it is of the form

H = Ĥ/N

where Ĥ is a Polishable subgroup of Ĝ containing N

The complexity class and Borel rank of H in G are by definition the
complexity class and Borel rank of Ĥ in Ĝ

Example

The complexity class of {0} in Ext (C ,A) is the complexity class of
B(C ,A) in Z(C ,A)



The first Solecki subgroup

Evidently, N/N = {0} is the smallest closed subgroup of G = Ĝ/N

Theorem (Solecki, 1999)

Let G be a group with a Polish cover.
There exists a smallest Π0

3 Polishable subgroup of G, denoted by s1(G )



The Solecki subgroups

Let G be a group with a Polish cover.
One define recursively for α < ω1, the Polishable subgroups:

s0(G ) = {0};
sα+1(G ) = s1 (sα (G ));

sλ(G ) =
⋂
β<λ sβ(G ) for λ limit.

The Solecki rank ρ(G ) of G is the least α < ω1 such that sα (G ) = {0}.



The complexity of Solecki subgroups

Theorem (L., 2021)

Let G be a group with a Polish cover.
For α ≤ ρ(G ), sα(G ) is the smallest Π0

1+α+1 Polishable subgroup of G.

If α is limit, then the Borel rank of sα(G ) is α;

α is a successor, then the Borel rank of sα(G ) is 1 + α + 1.

Moreover, one can express the complexity class of sα(G ) in G in terms of
α and the complexity class of sα(G ) inside sα−1(G ) (if α is a successor).

Corollary

If ρ(G ) is limit, then the Borel rank of {0} in G is ρ(G ).

If ρ(G ) is a successor, then the Borel rank of {0} in G is 1 + ρ(G ) + 1.
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A particular case

We consider the case when

C = Z (p∞) is the divisible p-group of p-rank 1

A is a reduced p-group



Some notation

For α < ω1 we let:

pαA be the subgroup of elements of p-height α

Aα = pωαA be the α-th Ulm subgroup of A

Lα(A) be the Polish group lim←−β<ωαA/p
βA

Eα(A) be the group with a Polish cover such that

0 A/pωαA Lα(A) Eα(A) 0

is a Borel-definable exact sequence

Say that A is bounded if, for some n < ω,

pnA = {0}

or, equivalently,
L1(A) = A.



A particular case of the main theorem

Theorem

Define α to be the least countable ordinal such that Aα is bounded.

If α = 0, then {0} is closed in Ext(C ,A).

If α ≥ 1, then the Borel rank of {0} in Ext(C ,A) is α + 2.



Solecki subgroups and Ulm subgroups

Lemma

For α < ω1, Ext(C ,A)1+α = sα (Ext(C ,A))

In particular, we have that

Ext(C ,A)1 = s0(Ext(C ,A))

is the closure of {0} in Ext(C ,A).



The bounded case

Lemma (Mac Lane, 1960)

We have a Borel-definable exact sequence

0 Ext
(
C ,A1

)
Ext(C ,A)1 Hom(C ,E1 (A)) 0

If A is bounded, then L1(A) = A and E1(A) = 0 and A1 = 0 and hence

0 0 = Ext
(
C ,A1

)
Ext(C ,A)1 Hom(C ,E1 (A)) = 0 0

This shows that s0(Ext(C ,A)) = Ext(C ,A)1 = 0.

Hence {0} is closed in Ext(C ,A).



The unbounded case

Suppose that A is unbounded.

Define β to be the least ordinal such that A1+β = pω(1+β)A is bounded

We need to show that 1 + β + 2 is the Borel rank of {0} in Ext(C ,A).

Corollary

If ρ(G ) is a successor, then the Borel rank of {0} in G is 1 + ρ(G ) + 1.

It suffices to prove that β + 1 is the Solecki rank of Ext(C ,A).

This means that sβ+1(Ext(C ,A)) = {0} and sβ(Ext(C ,A)) 6= {0}.



A Borel-definable exact sequence

Lemma (Nunke, 1967)

For every countable ordinal α, we have a Borel-definable exact sequence

0 Ext
(
C ,A1+α

)
Ext(C ,A)1+α Hom(C ,E1+α(A)) 0



The (β + 1)-st Solecki subgroup

Since A1+β is bounded, we have that pn(pω(1+β)A) for some n < ω.
Thus

L1+β+1(A) = lim←−n<ω
A

pn(pω(1+β)A)
= A

and hence
A1+β+1 = 0 and E1+β+1(A) = 0

Thus

0 = Ext(C ,A1+β+1) Ext(C ,A)1+β+1 Hom(C ,E1+β+1(A)) = 0

and hence

sβ+1(Ext(C ,A)) = Ext(C ,A)1+β+1 = 0



The β-th Solecki subgroup

At the same time we have pγA is nonzero for γ < ω(1 + β) and hence

E1+β(A) is nonzero and divisible

and
Hom (C ,E1+β(A)) 6= 0

From the Borel-definable exact sequence

0 Ext(C ,A1+β) Ext(C ,A)1+β Hom(C ,E1+β(A)) 0

we obtain

sβ (Ext(C ,A)) = Ext (C ,A)1+β 6= 0

This concludes the proof that ρ(Ext(C ,A)) = β + 1.




