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Topogy and Classification

In topology one tries to classify spaces up to homeomorphism

In homotopy theory the relation of homotopy equivalence is considered
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In topology one tries to classify spaces up to homeomorphism
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Invariants in Algebraic Topology

One attaches to topological spaces algebraic invariants such as groups

(All the groups will be abelian.)



From chain complexes to groups

The final invariant (group) is obtained by passing via chain complexes.



Why Polish groups?

Polish: second countable, topology induced by a complete metric

The class of Polish groups:

contains locally compact groups

contains spaces from analysis (Banach spaces, operator algebras)

is closed under countable products and inverse limits

is closed under closed subgroups and quotients by closed subgroups

the algebra of Borel sets of a Polish group is standard
(isomorphic to the algebra of Borel sets of R)



Why Polish groups?

Polish: second countable, topology induced by a complete metric

The class of Polish groups:

contains locally compact groups

contains spaces from analysis (Banach spaces, operator algebras)

is closed under countable products and inverse limits

is closed under closed subgroups and quotients by closed subgroups

the algebra of Borel sets of a Polish group is standard
(isomorphic to the algebra of Borel sets of R)



The homology of a Polish chain complex

Consider a chain complex of Polish groups A∗:

· · · A0 A1 A2 · · ·ϕ0 ϕ1

In A History of Algebraic and Differential Topology, Dieudonné writes of

a trend that was very popular until around 1950 (although later
all but abandoned), namely, to consider homology groups as topo-
logical groups for suitably chosen topologies.
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The problem with cokernels

Polish group form an abelian category, but. . .

Polish groups are not an abelian subcategory of the category of groups



Table of Contents

1 Motivation

2 Borel-definable homological algebra

3 Borel-definable algebraic topology
Finer invariants
Richer invariants
Rigid invariants



Solution: add cokernels

Consider a category having as objects exact sequences of the form

0 K Ĝ G 0
η

where:

K and Ĝ are Polish groups

η is a continuous group homomorphism

We call such an exact sequence a group with a Polish cover

If N := η(K ), then we can identify it with

G = Ĝ/N
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The category of groups with a Polish cover

The morphisms are the group homomorphisms that are Borel-definable,
namely induced by a Borel function “upstairs”



The category of groups with a Polish cover

Theorem (L., 2021)

The category of groups with Polish cover is an abelian category,
which is an abelian subcategory of the category of groups.

The category of groups with a Polish cover is the natural context to
develop Borel-definable homological algebra.
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Definable homological algebra

For example, the homological invariants

Ext(A,B)

Hom(A,B)

for countable groups A and B, are groups with a Polish cover.



Definable homological algebra

Theorem (Bergfalk, L., Panagiotopouos, 2019)

The definable homological invariant Ext (−,Z) is a complete invariant for
countable torsion-free groups.

In fact, Ext (−,Z) is a fully faithful functor from countable torsion-free
groups to groups with a Polish cover

This does not hold for the purely algebraic Ext.
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More definable homological algebra

Project

Show that the category of groups with Polish cover is the
Adelman abelianization of the category of Polish groups

Project

Determine injective and projective objects.

Are there enough injectives/projectives?

Project

Generalize to R-modules.
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Definable refinements of algebraic invariants

Virtually all group invariants from algebraic topology can be refined and
seen as invariants taking values in the category of groups with Polish cover

Advantages of the definable versions:

1 finer invariants (distinguish more spaces, more powerful invariants)

2 richer invariants (e.g., one can study their Borel class and Borel rank)

3 rigid invariants (fewer automorphisms, better grasp on the dynamics)
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Finer invariants

Theorem (Bergfalk, L., Panagiotopoulos, 2018–2020)

The following invariants admit definable refinements:

Steenrod homology of compact spaces

K-homology of compact spaces and of C*-algebras

Čech cohomology of locally compact spaces

Furthermore:

1 definable Steenrod homology H∗(−) is a complete invariant for
solenoids (inverse limits of tori)

2 definable K-homology is a complete invariant for solenoids

3 definable Čech cohomology H∗(−) is a complete invariant for
mapping telescopes of tori or spheres
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Solenoids

A solenoid is simply an inverse limit of copies of T

A concrete geometric realization in R3 of a solenoid can be obtained as
intersection of a sequence of nested solid tori
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The Borel Hierarchy

Let X be a Polish space and A ⊆ X :

1 A is Σ1 iff A is open in X

A is Π1 iff A is closed in X

2 A is Σ2 iff A is union of Π1 sets

A is Π2 iff A is intersection of Σ1 sets

3 A is Σ3 iff A is union of Π2 sets

A is Π3 iff A is intersection of Σ2 sets

. . .

The Borel rank of Borel set A ⊆ X is the least α such that A is Πα
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Subobjects

Let G = Ĝ/N be a group with a Polish cover.

A subgroup H of G is Polishable if it is of the form

H = Ĥ/N

for some Polishable subgroup Ĥ of Ĝ containing N.

Such a subgroup H of G has a Borel class and a Borel rank.

These are by definition the Borel class and the Borel rank of Ĥ in Ĝ .
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Solecki subgroups

Theorem (L., 2021, building on Solecki 1999 and Farah–Solecki 2006)

Let G be a group with a Polish cover, and let α be a countable ordinal.

There exists a smallest Π1+α+1 Polishable subgroup sα(G ) of G.

Remark

We have that s0(G ) is the closure of {0}.
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Solecki subgroups and Ulm subgroups

Theorem (L., 2021)

For every countable ordinal α, and torsion groups A and B,

sα (Ext(A,B))

is equal to the (1 + α)-th Ulm subgroup

u1+α(Ext(A,B))

Corollary (Eilenberg–MacLane, 1942)

The closure of {0} in Ext (A,B) is equal to the first Ulm subgroup.
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Borel class and Borel rank

Theorem (L., 2021)

Computation of the Borel rank of {0} in Ext (A,B) when A and B are
either torsion or torsion-free.

In the torsion case, the Borel rank can be arbitrarily large

In the torsion-free case, the Borel rank is at most 3

Project

Extend the previous result to arbitrary countable groups (or R-modules)
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Rigidity

Groups with a Polish cover are more rigid than discrete groups:
they have fewer automorphisms

The reason is that not all group automorphisms are Borel-definable



p-adic numbers

Let Qp be the p-adic numbers (seen as additive locally profinite group)

We have a canonical action Q× y Qp by multiplication

This induces an action Q× y Qp/Q



Ulam stability of p-adics

Theorem (Bergfalk, L., Panagiotopoulos, 2019)

All the Borel-definable automorphisms of Qp/Q are given by the action

Q× y Qp/Q

This shows that there exist ℵ0 Borel-definable automorphisms of Qp/Q

In contrast, there exist 22
ℵ0 automorphisms of Qp/Q



Solenoid complements

We denote by Sd the one-point compactification of Rd

Let Xp ⊆ S3 be a geometric realization of the p-adic solenoid

Let [S3 \ Xp,S
2] be the space of homotopy classes of maps S3 \ Xp → S2



Some history

1936: Borsuk and Eilenberg raise the problem of understanding the space

[S3 \ Xp,S
2]

1940: Eilenberg develops obstruction theory and establishes the
(Borel-definable) bijection

[S3 \ Xp,S
2] ∼= H2(S3 \ Xp)
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Some history

1940: Steenrod introduces Steenrod homology theory and proves Steenrod
Duality, and in particular the (Borel-definable) isomorphism

H2(S3 \ Xp) ∼= H0(Xp)

1942: Eilenberg and MacLane prove the Universal Coefficient Theorem
and the (Borel-definable) isomorphisms

H0(Xp) ∼= Ext
(
H1(Xp),Z

) ∼= Ext (Z[1/p],Z) ∼= Qp/Q

Putting it all together, there is a Borel-definable bijection
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Equivariant classification

Let E(S3 \ Xp) be the space of homotopy automorphisms of S3 \ Xp

There is a canonical Borel-definable action

[S3 \ Xp,S
2] x E(S3 \ Xp)

Using the rigidity of Qp/Q we can conclude that the action

[S3 \ Xp,S
2] x E(S3 \ Xp)

corresponds to the canonical action

Q× y Qp/Q
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So the problem of classifying the orbits of

[S3 \ Xp,S
2] x E(S3 \ Xp)

is the same as the problem of classifying the orbits of

Q× y Qp/Q

which in turn is the same as the problem of classifying the orbits of

Q× nQ y Qp

In particular, there exist 2ℵ0 such orbits
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Higher dimensions

There are higher-dimensional analogues, where

X d
p ⊆ Sd+2

is the product of d copies of the p-adic solenoid.

In this case we have that the Borel-definable action

[Sd+2 \ X d
p ,S

d+1] x E(Sd+2 \ X d
p )

corresponds to the action

GLd(Q) y Qd
p/Qd
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Measuring the complexity

Using tools from

ergodic theory (superrigidity for profinite actions), and

algebraic geometry (superrigidity for p-adic Lie groups)

one can compare the Borel complexity of such actions.

Theorem (Bergfalk, L., Panagiotopoulos, 2019)

The Borel complexity of classifying the orbits of

[Sd+2 \ X d
p , S

d+1] x E(Sd+2 \ X d
p )

or equivalently
GLd(Q) nQd y Qd

p

strictly increases with d.

For d ≥ 3, these problems for different primes are incomparable from the
perspective of Borel complexity.
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