A topological approach to undefinability in algebraic extensions of the rationals

Linda Westrick

Penn State University

UW-Madison Logic Seminar

Joint with Kirsten Eisenträger, Russell Miller & Caleb Springer

December 15, 2021

Outline

1. Preliminaries

- 2. Bird's eye view
- 3. Normal form theorem
- 4. Things happen for a reason

In pursuit of a definition of $\ensuremath{\mathbb{Z}}$

Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} .

For fields $L \subseteq \overline{\mathbb{Q}}$, we are interested in what subsets of L are first-order definable in the structure $(L; 0, 1, +, \cdot)$.

Example. If \mathbb{Z} were existentially definable in \mathbb{Q} , Hilbert's Tenth Problem over \mathbb{Q} would be resolved, but this problem is too hard.

Question 1: In which fields $L \subseteq \overline{\mathbb{Q}}$ is \mathbb{Z} existentially definable?

Definition: The algebraic integers \mathcal{O}_L of L are exactly those $z \in L$ which are a root of a *monic* polynomial in $\mathbb{Z}[X]$.

(But for this talk we only need the fact that $\mathcal{O}_L \cap \mathbb{Q} = \mathbb{Z}$)

Question 2: In which fields $L \subseteq \overline{\mathbb{Q}}$ is \mathcal{O}_L existentially definable?

A topology on subfields of $\overline{\mathbb{Q}}$

Define $Sub(\overline{\mathbb{Q}}) = \{L \subseteq \overline{\mathbb{Q}} : L \text{ is a field}\}.$

Topology: declare that for each $a \in \overline{\mathbb{Q}}$, $\{L : a \in L\}$ is clopen.

(Equivalently, identifying $L \in Sub(\overline{\mathbb{Q}})$ with its characteristic function, Sub $(\overline{\mathbb{Q}}) \subseteq \{0, 1\}^{\overline{\mathbb{Q}}}$ inherits the product topology.)

A basis: for every pair of finite sets $A, B \subseteq \overline{\mathbb{Q}}$, define

$$U_{A,B} = \{L \in \mathsf{Sub}(\overline{\mathbb{Q}}) : A \subseteq L \text{ and } L \cap B = \emptyset\}$$

Fact: Sub $(\overline{\mathbb{Q}})$ is homeomorphic to Cantor space $\{0,1\}^{\mathbb{N}}$.

A subset S of a topological space X is *nowhere dense* if for every non-empty open U, there is a non-empty open $V \subseteq U$ such that $V \cap S = \emptyset$.

A *meager* set is a countable union of nowhere dense sets.

Meager sets are closed under countable unions.

By the Baire Category Theorem, Cantor space is not meager. Thus, neither is ${\rm Sub}(\overline{\mathbb{Q}}).$

A simple normal form for existential formulas

Given any existential formula $\alpha(X)$ in the language of rings:

Express in disjunctive normal form

$$\alpha(X) \equiv \exists \vec{Y} [\alpha_1(X, \vec{Y}) \lor \cdots \lor \alpha_r(X, \vec{Y})]$$

where each α_i is a conjunction of equations and inequations,

$$\alpha_i \equiv (f_1 = 0) \land \dots \land (f_n = 0) \land (g_1 \neq 0) \land \dots \land (g_k \neq 0)$$

• Distribute
$$\exists$$
 over \lor :

$$\alpha \equiv (\exists \vec{Y} \alpha_1) \lor \cdots \lor (\exists \vec{Y} \alpha_r)$$

• Combine inequations, so that each α_i takes the form

$$\alpha_i \equiv f_1 = \cdots = f_k = \mathbf{0} \neq \mathbf{g}$$

A simple normal form for existential formulas, cont'd

- ► Remove unused variables (so different clauses may have different lengths of *Y*.)
- Thus α can always be rewritten as a finite disjunction

$$\alpha \equiv \bigvee_{i < r} \beta_i$$

where each β_i takes the form

$$\beta_i \equiv \exists \vec{Y}(f_1 = \cdots = f_k = 0 \neq g)$$

(or, with all variables shown,

$$\beta_i(X) = \exists \vec{Y}[f_1(X, \vec{Y}) = \cdots = f_k(X, \vec{Y}) = 0 \neq g(X, \vec{Y})])$$

Outline

- 1. Preliminaries
- 2. Bird's eye view
- 3. Normal form theorem
- 4. Things happen for a reason

Main theorem

Let $S = \{L \in \mathsf{Sub}(\overline{\mathbb{Q}}) : \text{ for some } A \subseteq L, A \text{ is one-quantifier definable in } L \text{ and } A \cap \mathbb{Q} = \mathbb{Z}\}$

Main Theorem: *S* is meager.

This includes any L for which:

- \mathcal{O}_L is existentially or universally definable in L
- \mathbb{Z} is existentially or universally definable in L

Normal form for existential definitions

A polynomal $p \in \overline{\mathbb{Q}}[X, \vec{Y}]$ is called *absolutely irreducible* if it is irreducible over $\overline{\mathbb{Q}}$.

Theorem: (Normal Form Theorem for existential definitions) Let $L \in \text{Sub}(\overline{\mathbb{Q}})$ and suppose that $A \subseteq L$ is existentially definable in L. Then A has an existential definition in L of the form

$$\alpha(X) = \bigvee_{i < r} \beta_i(X)$$

where each $\beta_i(X)$ has one of the following forms:

- (i) The quantifier-free formula $X = z_0$ for a fixed $z_0 \in L$.
- (ii) $\exists \vec{Y}[f = 0 \neq g]$, where $f, g \in L[X, \vec{Y}]$ and f is absolutely irreducible.

Hilbert's Irreducibility Theorem

A number field is any field of the form $\mathbb{Q}(A)$ where $A \subseteq \overline{\mathbb{Q}}$ is finite.

If K is a number field, there is a notion of smallness for subsets $T \subseteq K^n$ called *thinness* which is due to Serre.

Facts: For any number field K,

- Neither \mathbb{Z} nor $\mathbb{Q} \setminus \mathbb{Z}$ is thin in *K*.
- Neither $\mathbb{Z} \times \mathbb{Q}^{n-1}$ nor $(\mathbb{Q} \setminus \mathbb{Z}) \times \mathbb{Q}^{n-1}$ is thin in K^n .

Theorem. (Hilbert's Irreducibility Theorem) Suppose K is a number field and $f \in K[Y_0, \ldots, Y_m]$ is irreducible over K. Then there is a thin set $T \subseteq K^m$ such that for all $y_0, \ldots, y_{m-1} \notin T$, $f(y_0, \ldots, y_{m-1}, Y_m)$ remains irreducible over K.

Proof of a special case of the main theorem

Claim: $\{L \in Sub(\overline{\mathbb{Q}}) : \mathbb{Z} \text{ is existentially definable in } L\}$ is meager.

For each formula $\alpha(X)$ in normal form, let

$$S_{\alpha} = \{L : \alpha \text{ defines } \mathbb{Z} \text{ in } L\}$$

Suffices to show: Each S_{α} is nowhere dense.

Given nonempty $U_{A,B}$, we seek $z\in\overline{\mathbb{Q}}$ such that

$$U_{A\cup\{z\},B} \neq \emptyset$$
 and $U_{A\cup\{z\},B} \cap S_{\alpha} = \emptyset$.

(Easy if all disjuncts are $X = z_0$, ignore that case)

Fix a disjunct $\beta(X) = \exists Y_1, \ldots, Y_m[f(X, \vec{Y}) = 0 \neq g(X, \vec{Y})].$ We will add z to "mess up" β by making sure $\beta(x)$ holds for some $x \in \mathbb{Q} \setminus \mathbb{Z}.$

What could go wrong?

Work in $U_{\emptyset,\{\sqrt{2}\}}$ (fields that do not contain $\sqrt{2}$). Consider

$$\beta(X) = \exists Y [2X^2 - Y^2 = 0]$$

Task: Find $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $y \in \overline{\mathbb{Q}}$ which satisfy β and with $\sqrt{2} \notin \mathbb{Q}(y)$.

Impossible, because $\left(\frac{Y}{X}\right)^2 = 2$. (Things failed for a reason.)

Note: $f = 2X^2 - Y^2$ is irreducible in all fields which avoid $\sqrt{2}$. But f is not absolutely irreducible: $(\sqrt{2}X - Y)(\sqrt{2}X + Y)$.

Proof of a special case of the main theorem, II

Working inside $U_{A,B}$, given $\beta(X) = \exists Y_1, \ldots, Y_m[f(X, \vec{Y}) = 0]$ (Ignoring g now for simplicity.)

- Let K = Q(A ∪ B). Then f remains irreducible over K (because f was absolutely irreducible).
- ► By Hilbert Irreducibility Thm, for all x, y₁,..., y_{m-1} outside a thin set, f(x, y₁,..., y_{m-1}, Y_m) remains irreducible over K.
- ▶ But $\mathbb{Q} \setminus \mathbb{Z} \times \mathbb{Q}^{m-1}$ is not thin, so fix x, y_1, \ldots, y_{m-1} from it.
- Lemma: since f(x, y₁,..., y_{m-1}, Y_m) has coefficients from Q(A) but is irreducible over Q(A∪B), for any root z of f, Q(A∪{z}) is disjoint from B.

Thus we have $x \in \mathbb{Q} \setminus \mathbb{Z}$, but $\beta(x)$ holds for all *L* containing $A \cup \{z\}$. So α does not define \mathbb{Z} in any $L \in U_{A \cup \{z\},B}$.

Computable fields with one-quantifier undefinable integers

Theorem: Computable fields in which \mathbb{Z} is not existentially definable are dense in Sub($\overline{\mathbb{Q}}$).

The following operations are computable:

- ► Is a polynomial *f* absolutely irreducible?
- Is a given $U_{A,B}$ empty?

The first point allows us to list all formulas β we need to defeat. Every β is defeatable.

The second point allows us to know when we have defeated a given β : Search $x, y_1, \ldots, y_{m-1}, z$ until finding a root with $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $U_{A \cup \{z\}, B} \neq \emptyset$.

Perhaps some nicer field which has "enough" roots could defeat all β naturally, but we do not have a specific example.

Outline

- 1. Preliminaries
- 2. Bird's eye view
- 3. Normal form theorem
- 4. Things happen for a reason

Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let $L \in \text{Sub}(\overline{\mathbb{Q}})$ and suppose that $A \subseteq L$ is existentially definable in L. Let $\alpha(X) = \bigvee_{i < r} \beta_i(X)$ be "simplest" among all existential

L-formulas which define *A* in *L*.

Then each $\beta_i(X)$ has one of the following forms:

- (i) The quantifier-free formula $X = z_0$ for a fixed $z_0 \in L$.
- (ii) $\exists \vec{Y}[f = 0 \neq g]$, where $f, g \in L[X, \vec{Y}]$ and f is absolutely irreducible.

Well-orderings

A linear order (L, <) is a well-order if it has no infinite descending sequence $x_1 > x_2 > ...$

Example: Define the *multidegree* of a term $X^{d_0}Y_1^{d_1} \dots Y_m^{d_m}$ to be the tuple (d_0, \dots, d_m) . Order the multidegrees in reverse lexicographical order. This is a well-order.

Definition: The *multidegree* of a polynomial $f \in \overline{\mathbb{Q}}[X, \vec{Y}]$ is the maximum of the multidegrees of its terms.

Well-ordering multisets

Definition: Given a linear order (L, <), define its *multiset order* $(L^*, <^*)$ as follows.

- L^* is the set of finite multisets with elements from L.
- If $C, D \in L^*$, we define $C <^* D$ if
 - C is empty and D is not, or
 - $\max C < \max D$, or
 - ► max C = max D and C' <* D', where C' and D' are obtained by removing one maximum element from each.

Lemma: If (L, <) is well-ordered, so is its multiset order.

Definition: Define the *multidegree* of a set of polynomials $\{f_1, \ldots, f_k\}$ to be the multiset of multidegrees of these polynomials, ordered by the multiset order. This is a well-order.

Dimension of a variety

To any system of equations and inequations

$$f_1(X, Y_1, \dots, Y_m) = \dots = f_k(X, \vec{Y}) = 0$$
$$g_1(X, \vec{Y})g_2(X, \vec{Y}) \cdots g_r(X, \vec{Y}) \neq 0$$

we may associate a notion of *dimension* which is a natural number related to the size of the solution set.

(Take Spec($\overline{\mathbb{Q}}[X, \vec{Y}]$) with the Zariski topology. The *Krull dimension* of $W \subseteq$ Spec($\overline{\mathbb{Q}}[X, \vec{Y}]$) is the supremal length r of a chain of irreducible closed subsets $Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_r \subseteq W$. Use $W = V((f_1, \ldots, f_k)) \cap D(g)$.)

Example: The dimension of the sphere $X^2 + Y_1^2 + Y_2^2 = 1$ is 2.

Facts: Starting from a system as above,

- Additional equations/inequations don't increase the dimension
- Additional *non-redundant equations* strictly decrease the dimension

Rank of a basic existential formula

Definition A *basic rankable formula* $\beta(X)$ is a formula of the form

$$eta=\existsec{Y}[f_1=\cdots=f_k=0
eq g], ext{ where } f_1,\ldots,f_k,g\in\overline{\mathbb{Q}}[X,ec{Y}].$$

Definition The *rank* of a basic rankable formula as above is a triple (m, d, M), where

- *m* is the number of *Y*-variables
- *d* is the dimension of $f_1 = \cdots = f_k = 0 \neq g$
- *M* is the multidegree of $\{f_1, \ldots, f_k\}$

and we order the ranks in lexicographic order. This is a well-order.

Thus β_1 has smaller rank than β_2 if either

- β_1 uses fewer *Y*'s, or
- $m_1 = m_2$ and β_1 has the smaller dimension, or
- ▶ m₁ = m₂ and d₁ = d₂, but β₁ uses smaller equations, as measured by the multidegree of the set of equations.

Recall: Every existential formula $\alpha(X)$ can be expressed as a finite disjunction of basic rankable formulas $\alpha(X) = \bigvee_{i < r} \beta_i(X)$.

Definition: The *rank* of an existential formula α as above is the multiset of ranks of its β_i , and we order the ranks using the multiset order. This is a well-order.

Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let $L \in \text{Sub}(\overline{\mathbb{Q}})$ and suppose that $A \subseteq L$ is existentially definable in L. Let $\alpha(X) = \bigvee_{i < r} \beta_i(X)$ have minimal rank among all existential L-formulas which define A in L.

Then each $\beta_i(X)$ has one of the following forms:

- (i) The quantifier-free formula $X = z_0$ for a fixed $z_0 \in L$.
- (ii) $\exists \vec{Y}[f = 0 \neq g]$, where $f, g \in L[X, \vec{Y}]$ and f is absolutely irreducible.

Idea: If some β_i does not take one of these forms, we can find a disjunction of basic rankable formulas which define the same subset of *L* as β_i , but all have lower rank than β_i . Replacing β_i by this disjunction produces a formula of lower rank than α .

Example: Why should β_i contain only irreducible f? Let $L \in Sub(\overline{\mathbb{Q}})$.

Suppose an existential formula α contains a disjunct β

$$\beta(X) = \exists \vec{Y}[f = 0 \neq g]$$

and f is reducible in L. Say f = pq.

Then in L, $\beta(X)$ defines the same set as:

$$\exists \vec{Y}[p=0\neq g] \lor \exists \vec{Y}[q=0\neq g]$$

But both disjuncts above have a lower rank than β :

- ▶ same number of Y's
- dimension did not increase
- multidegree of polynomials reduced

Thus the overall multirank is reduced.

Outline

- 1. Preliminaries
- 2. Bird's eye view
- 3. Normal form theorem
- 4. Things happen for a reason

An example which fails

Work in $U_{\emptyset,\{\sqrt{2}\}}$ (fields that do not contain $\sqrt{2}$). Consider

$$\beta(X) = \exists Y [2X^2 - Y^2 = 0]$$

Task: Find $x \in \mathbb{Q} \setminus \mathbb{Z}$ and $y \in \overline{\mathbb{Q}}$ which satisfy β and with $\sqrt{2} \notin \mathbb{Q}(y)$.

Impossible, because $\left(\frac{Y}{X}\right)^2 = 2$. (Things failed for a reason.)

Note: $f = 2X^2 - Y^2$ is irreducible in all fields which avoid $\sqrt{2}$. But f is not absolutely irreducible: $(\sqrt{2}X - Y)(\sqrt{2}X + Y)$.

Things happen for a reason

Lemma. Suppose $f \in F[X, \vec{Y}]$ and f is irreducible over F.

Let
$$E = \operatorname{Frac}\left(rac{F[X, \vec{Y}]}{(f)}
ight) := \left\{rac{p+(f)}{q+(f)} : p, q \in F[X, \vec{Y}]
ight\}.$$

If K is a finite Galois extension of F and f is reducible over K, then there is $z \in E$ which is "in" $K \setminus F$

- (Experts: there is an F-linear field embedding $\phi : F(z) \to K$ with $\phi(z) \in K \setminus F$)
- ► There is a rational formula $\frac{p}{q}$ such that for any $x, \bar{y} \in \overline{\mathbb{Q}}$, if $f(x, \bar{y}) = 0$ and $q(x, \bar{y}) \neq 0$, then

$$\frac{p(x,\bar{y})}{q(x,\bar{y})}\in K\setminus F.$$

Absolute irreducibility in the normal form

Fix *L*. Suppose $\beta(X) = \exists \vec{Y}[f=0]$ and *f* is irreducible over *L* but not absolutely irreducible. We will replace β with finitely many lower-ranked formulas.

Let *K* be a finite normal extension of \mathbb{Q} which contains all coefficients of all absolutely irreducible factors of *f* over $\overline{\mathbb{Q}}$. Let $F = L \cap K$. By Lemma, there is $z = \frac{p+(f)}{q+(f)}$ "in" $K \setminus F$. For all $x, \bar{y} \in L$, $f(x, \bar{y}) = 0 \implies q(x, \bar{y}) = 0$. (and we can assume *q* has smaller Y_m -degree than *f*)

Apply the Euclidean algorithm: cf = dq + r

Then in L, $\beta(X)$ is equivalent to

$$\exists \vec{Y}[q=r=0\neq c] \lor \exists \vec{Y}[f=c=0]$$

References

- Eisenträger, Miller, Springer & Westrick. A topological approach to undefinability in algebraic extensions of the rationals. Preprint available arXiv: 2010.09551.
- Miller 2019. Isomorphism and classification for countable structures. Computability.