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In pursuit of a definition of Z

Let Q be the algebraic closure of Q.

For fields L ⊆ Q, we are interested in what subsets of L are
first-order definable in the structure (L; 0, 1,+, ·).

Example. If Z were existentially definable in Q, Hilbert’s Tenth
Problem over Q would be resolved, but this problem is too hard.

Question 1: In which fields L ⊆ Q is Z existentially definable?

Definition: The algebraic integers OL of L are exactly those z ∈ L
which are a root of a monic polynomial in Z[X ].

(But for this talk we only need the fact that OL ∩Q = Z)

Question 2: In which fields L ⊆ Q is OL existentially definable?



A topology on subfields of Q

Define Sub(Q) = {L ⊆ Q : L is a field}.

Topology: declare that for each a ∈ Q, {L : a ∈ L} is clopen.

(Equivalently, identifying L ∈ Sub(Q) with its characteristic function,

Sub(Q) ⊆ {0, 1}Q inherits the product topology.)

A basis: for every pair of finite sets A,B ⊆ Q, define

UA,B = {L ∈ Sub(Q) : A ⊆ L and L ∩ B = ∅}

Fact: Sub(Q) is homeomorphic to Cantor space {0, 1}N.



Baire Category

A subset S of a topological space X is nowhere dense if for every
non-empty open U, there is a non-empty open V ⊆ U such that
V ∩ S = ∅.

A meager set is a countable union of nowhere dense sets.

Meager sets are closed under countable unions.

By the Baire Category Theorem, Cantor space is not meager.
Thus, neither is Sub(Q).



A simple normal form for existential formulas

Given any existential formula α(X ) in the language of rings:

I Express in disjunctive normal form

α(X ) ≡ ∃ ~Y [α1(X , ~Y ) ∨ · · · ∨ αr (X , ~Y )]

where each αi is a conjunction of equations and inequations,

αi ≡ (f1 = 0) ∧ · · · ∧ (fn = 0) ∧ (g1 6= 0) ∧ · · · ∧ (gk 6= 0)

I Distribute ∃ over ∨:

α ≡ (∃ ~Yα1) ∨ · · · ∨ (∃ ~Yαr )

I Combine inequations, so that each αi takes the form

αi ≡ f1 = · · · = fk = 0 6= g



A simple normal form for existential formulas, cont’d

I Remove unused variables (so different clauses may have
different lengths of ~Y .)

I Thus α can always be rewritten as a finite disjunction

α ≡
∨
i<r

βi

where each βi takes the form

βi ≡ ∃ ~Y (f1 = · · · = fk = 0 6= g)

(or, with all variables shown,

βi (X ) = ∃ ~Y [f1(X , ~Y ) = · · · = fk(X , ~Y ) = 0 6= g(X , ~Y )])
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Main theorem

Let S = {L ∈ Sub(Q) : for some A ⊆ L,
A is one-quantifier definable in L and A ∩Q = Z}

Main Theorem: S is meager.

This includes any L for which:

I OL is existentially or universally definable in L

I Z is existentially or universally definable in L



Normal form for existential definitions

A polynomal p ∈ Q[X , ~Y ] is called absolutely irreducible if it is
irreducible over Q.

Theorem: (Normal Form Theorem for existential definitions) Let
L ∈ Sub(Q) and suppose that A ⊆ L is existentially definable in L.
Then A has an existential definition in L of the form

α(X ) =
∨
i<r

βi (X )

where each βi (X ) has one of the following forms:

(i) The quantifier-free formula X = z0 for a fixed z0 ∈ L.

(ii) ∃ ~Y [f = 0 6= g ], where f , g ∈ L[X , ~Y ] and f is absolutely
irreducible.



Hilbert’s Irreducibility Theorem

A number field is any field of the form Q(A) where A ⊆ Q is finite.

If K is a number field, there is a notion of smallness for subsets
T ⊆ Kn called thinness which is due to Serre.

Facts: For any number field K ,

I Neither Z nor Q \ Z is thin in K .

I Neither Z×Qn−1 nor (Q \ Z)×Qn−1 is thin in Kn.

Theorem. (Hilbert’s Irreducibility Theorem) Suppose K is a
number field and f ∈ K [Y0, . . . ,Ym] is irreducible over K .
Then there is a thin set T ⊆ Km such that for all
y0, . . . , ym−1 6∈ T , f (y0, . . . , ym−1,Ym) remains irreducible over K .



Proof of a special case of the main theorem

Claim: {L ∈ Sub(Q) : Z is existentially definable in L} is meager.

For each formula α(X ) in normal form, let

Sα = {L : α defines Z in L}

Suffices to show: Each Sα is nowhere dense.

Given nonempty UA,B , we seek z ∈ Q such that

UA∪{z},B 6= ∅ and UA∪{z},B ∩ Sα = ∅.

(Easy if all disjuncts are X = z0, ignore that case)

Fix a disjunct β(X ) = ∃Y1, . . . ,Ym[f (X , ~Y ) = 0 6= g(X , ~Y )].
We will add z to “mess up” β by making sure β(x) holds for some
x ∈ Q \ Z.



What could go wrong?

Work in U∅,{
√

2} (fields that do not contain
√

2). Consider

β(X ) = ∃Y [2X 2 − Y 2 = 0]

Task: Find x ∈ Q \ Z and y ∈ Q which satisfy β and with√
2 6∈ Q(y).

Impossible, because

(
Y

X

)2

= 2. (Things failed for a reason.)

Note: f = 2X 2 − Y 2 is irreducible in all fields which avoid
√

2.

But f is not absolutely irreducible: (
√

2X − Y )(
√

2X + Y ).



Proof of a special case of the main theorem, II

Working inside UA,B , given β(X ) = ∃Y1, . . . ,Ym[f (X , ~Y ) = 0]
(Ignoring g now for simplicity.)

I Let K = Q(A ∪ B). Then f remains irreducible over K
(because f was absolutely irreducible).

I By Hilbert Irreducibility Thm, for all x , y1, . . . , ym−1 outside a
thin set, f (x , y1, . . . , ym−1,Ym) remains irreducible over K .

I But Q \ Z×Qm−1 is not thin, so fix x , y1, . . . , ym−1 from it.

I Lemma: since f (x , y1, . . . , ym−1,Ym) has coefficients from
Q(A) but is irreducible over Q(A ∪ B), for any root z of f ,
Q(A ∪ {z}) is disjoint from B.

Thus we have x ∈ Q \ Z, but β(x) holds for all L containing
A ∪ {z}. So α does not define Z in any L ∈ UA∪{z},B .



Computable fields with one-quantifier undefinable integers

Theorem: Computable fields in which Z is not existentially
definable are dense in Sub(Q).

The following operations are computable:

I Is a polynomial f absolutely irreducible?

I Is a given UA,B empty?

The first point allows us to list all formulas β we need to defeat.
Every β is defeatable.

The second point allows us to know when we have defeated a
given β: Search x , y1, . . . , ym−1, z until finding a root with
x ∈ Q \ Z and UA∪{z},B 6= ∅.

Perhaps some nicer field which has “enough” roots could defeat all
β naturally, but we do not have a specific example.
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Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let
L ∈ Sub(Q) and suppose that A ⊆ L is existentially definable in L.

Let α(X ) =
∨

i<r βi (X ) be “simplest” among all existential
L-formulas which define A in L.

Then each βi (X ) has one of the following forms:

(i) The quantifier-free formula X = z0 for a fixed z0 ∈ L.

(ii) ∃ ~Y [f = 0 6= g ], where f , g ∈ L[X , ~Y ] and f is absolutely
irreducible.



Well-orderings

A linear order (L, <) is a well-order if it has no infinite descending
sequence x1 > x2 > . . .

Example: Define the multidegree of a term X d0Y d1
1 . . .Y dm

m to be
the tuple (d0, . . . , dm). Order the multidegrees in reverse
lexicographical order. This is a well-order.

Definition: The multidegree of a polynomial f ∈ Q[X , ~Y ] is the
maximum of the multidegrees of its terms.



Well-ordering multisets

Definition: Given a linear order (L, <), define its multiset order
(L∗, <∗) as follows.

I L∗ is the set of finite multisets with elements from L.
I If C ,D ∈ L∗, we define C <∗ D if

I C is empty and D is not, or
I maxC < maxD, or
I maxC = maxD and C ′ <∗ D ′, where C ′ and D ′ are obtained

by removing one maximum element from each.

Lemma: If (L, <) is well-ordered, so is its multiset order.

Definition: Define the multidegree of a set of polynomials
{f1, . . . , fk} to be the multiset of multidegrees of these
polynomials, ordered by the multiset order. This is a well-order.



Dimension of a variety

To any system of equations and inequations

f1(X ,Y1, . . . ,Ym) = · · · = fk(X , ~Y ) = 0

g1(X , ~Y )g2(X , ~Y ) · · · gr (X , ~Y ) 6= 0

we may associate a notion of dimension which is a natural number
related to the size of the solution set.

(Take Spec(Q[X , ~Y ]) with the Zariski topology. The Krull dimension of W ⊆ Spec(Q[X , ~Y ]) is the supremal

length r of a chain of irreducible closed subsets Z0 ( Z1 ( · · · ( Zr ⊆ W . Use W = V ((f1, . . . , fk )) ∩ D(g).)

Example: The dimension of the sphere X 2 + Y 2
1 + Y 2

2 = 1 is 2.

Facts: Starting from a system as above,

I Additional equations/inequations don’t increase the dimension

I Additional non-redundant equations strictly decrease the
dimension



Rank of a basic existential formula

Definition A basic rankable formula β(X ) is a formula of the form

β = ∃ ~Y [f1 = · · · = fk = 0 6= g ], where f1, . . . , fk , g ∈ Q[X , ~Y ].

Definition The rank of a basic rankable formula as above is a
triple (m, d ,M), where

I m is the number of Y -variables

I d is the dimension of f1 = · · · = fk = 0 6= g

I M is the multidegree of {f1, . . . , fk}
and we order the ranks in lexicographic order. This is a well-order.

Thus β1 has smaller rank than β2 if either

I β1 uses fewer Y ’s, or

I m1 = m2 and β1 has the smaller dimension, or

I m1 = m2 and d1 = d2, but β1 uses smaller equations, as
measured by the multidegree of the set of equations.



Rank of an existential formula

Recall: Every existential formula α(X ) can be expressed as a finite
disjunction of basic rankable formulas α(X ) =

∨
i<r βi (X ).

Definition: The rank of an existential formula α as above is the
multiset of ranks of its βi , and we order the ranks using the
multiset order. This is a well-order.



Normal form for existential definitions

Theorem: (Normal Form Theorem for existential definitions) Let
L ∈ Sub(Q) and suppose that A ⊆ L is existentially definable in L.

Let α(X ) =
∨

i<r βi (X ) have minimal rank among all existential
L-formulas which define A in L.

Then each βi (X ) has one of the following forms:

(i) The quantifier-free formula X = z0 for a fixed z0 ∈ L.

(ii) ∃ ~Y [f = 0 6= g ], where f , g ∈ L[X , ~Y ] and f is absolutely
irreducible.

Idea: If some βi does not take one of these forms, we can find a
disjunction of basic rankable formulas which define the same
subset of L as βi , but all have lower rank than βi . Replacing βi by
this disjunction produces a formula of lower rank than α.



Example: Why should βi contain only irreducible f ?

Let L ∈ Sub(Q).

Suppose an existential formula α contains a disjunct β

β(X ) = ∃ ~Y [f = 0 6= g ]

and f is reducible in L. Say f = pq.

Then in L, β(X ) defines the same set as:

∃ ~Y [p = 0 6= g ] ∨ ∃ ~Y [q = 0 6= g ]

But both disjuncts above have a lower rank than β:

I same number of Y ’s

I dimension did not increase

I multidegree of polynomials reduced

Thus the overall multirank is reduced.
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An example which fails

Work in U∅,{
√

2} (fields that do not contain
√

2). Consider

β(X ) = ∃Y [2X 2 − Y 2 = 0]

Task: Find x ∈ Q \ Z and y ∈ Q which satisfy β and with√
2 6∈ Q(y).

Impossible, because

(
Y

X

)2

= 2. (Things failed for a reason.)

Note: f = 2X 2 − Y 2 is irreducible in all fields which avoid
√

2.

But f is not absolutely irreducible: (
√

2X − Y )(
√

2X + Y ).



Things happen for a reason

Lemma. Suppose f ∈ F [X , ~Y ] and f is irreducible over F .

Let E = Frac

(
F [X , ~Y ]

(f )

)
:=

{
p + (f )

q + (f )
: p, q ∈ F [X , ~Y ]

}
.

If K is a finite Galois extension of F and f is reducible over K ,
then there is z ∈ E which is “in” K \ F

I (Experts: there is an F -linear field embedding φ : F (z)→ K with φ(z) ∈ K \ F )

I There is a rational formula
p

q
such that for any x , ȳ ∈ Q, if

f (x , ȳ) = 0 and q(x , ȳ) 6= 0, then

p(x , ȳ)

q(x , ȳ)
∈ K \ F .



Absolute irreducibility in the normal form

Fix L. Suppose β(X ) = ∃ ~Y [f = 0] and f is irreducible over L but
not absolutely irreducible. We will replace β with finitely many
lower-ranked formulas.

Let K be a finite normal extension of Q which contains all
coefficients of all absolutely irreducible factors of f over Q.

Let F = L ∩ K . By Lemma, there is z = p+(f )
q+(f ) “in” K \ F .

For all x , ȳ ∈ L, f (x , ȳ) = 0 =⇒ q(x , ȳ) = 0.
(and we can assume q has smaller Ym-degree than f )

Apply the Euclidean algorithm: cf = dq + r

Then in L, β(X ) is equivalent to

∃ ~Y [q = r = 0 6= c] ∨ ∃ ~Y [f = c = 0]
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I Eisenträger, Miller, Springer & Westrick. A topological
approach to undefinability in algebraic extensions of the
rationals. Preprint available arXiv: 2010.09551.

I Miller 2019. Isomorphism and classification for countable
structures. Computability.


