The Dimension Spectrum Conjecture for Lines

Don Stull

Northwestern University
Department of Computer Science

Kolmogorov Complexity

Definition

Fix a universal Turing machine U. Let u be a finite binary string. The Kolmogorov complexity of u is

$$K(u) = \min\{|\pi| \mid \pi \in \{0,1\}^*, \text{ and } U(\pi) = u\}.$$

Definition

Let $n, r \in \mathbb{N}$, and $x \in \mathbb{R}^n$. The Kolmogorov complexity of x at precision r is

$$K_r(x) = K(u),$$

where $u = x \upharpoonright r$ is the first nr bits in the binary representation of x.

Effective Dimension

Definition (J. Lutz, Mayordomo)

Let $x \in \mathbb{R}^n$. The effective dimension of x is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$$

- $0 \le \dim(x) \le n$.
- x is ML-random \implies dim(x) = n
- x is computable \implies dim(x) = 0.
- ullet quantitative, fine-grained measure of the algorithmic randomness of x.

Dimension of Points on a Line

What are the (effective) dimensions of points on a line $L_{a,b}$ with slope a and intercept b?

The dimension spectrum of a line is

$$sp(L_{a,b}) = \{ dim(x, ax + b) \, | \, x \in [0,1] \}.$$

Why Lines?

- Algorithmic randomness perspective:
 - Lines in \mathbb{R}^2 are the simplest non-trivial sets.
 - Cannot claim to understand effective dimension without understanding the dimension spectrum of planar lines.
- Deep connections with (classical) geometric measure theory:
 - Proof of the DSC in higher dimensions would solve the Kakeya conjecture.
 - The principle obstruction for the DSC is present in many of the important unsolved problems in geometric measure theory
 - Kakeya conjecture, Furstenberg set conjecture, dimension of sum-product sets, Kauffman's projection bounds,...

Geometric Measure Theory (Detour)

- Hausdorff dimension gives quantitative notion of the size of sets.
 - Fine grained notion, allowing us to distinguish Lebesgue measure 0 sets.

Theorem (J. Lutz and N. Lutz)

Let $E \subseteq \mathbb{R}^n$. Then

$$\dim_H(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x).$$

- We can attack problems in classical geometric measure theory using algorithmic techniques.
- Any non-trivial lower bounds on the **effective** dimension of points on a line in \mathbb{R}^3 would improve the best-known bounds of the notorious Kakeya conjecture.

Dimension of Points on a Line

The dimension spectrum of a line L with slope a and intercept b is the set

$$\operatorname{sp}(L) = \{\dim(x, ax + b) \mid x \in \mathbb{R}\}.$$

Conjecture

For every a, b, $sp(L_{a,b})$ contains an interval of length 1.

Previous Results

Theorem (Turetsky '11)

The set of points in \mathbb{R}^n of (effective) dimension 1 is connected.

As a consequence, for every line L, $1 \in \operatorname{sp} L$.

Previous Results

Theorem (N. Lutz and Stull)

Let $(a, b) \in \mathbb{R}^2$. Then for every $x \in \mathbb{R}$,

 $\dim(x, ax + b) \ge \dim^{a,b}(x) + \min\{\dim(a, b), \dim^{a,b}(x)\}.$

Corollary (N. Lutz and Stull)

If dim(a, b) < 1, then

$$\operatorname{sp}(L_{a,b}) \supseteq [2\dim(a,b), 1+\dim(a,b)].$$

If $dim(a, b) \ge 1$, then

$$2 \in \operatorname{sp}(L_{a,b}).$$

This theorem gives improved bounds on Furstenberg sets for certain values of α and β .

Fix a line $L_{a,b}$. Assume that $\dim(a,b)=d<1$. Let $x\in[0,1]$ be random relative to (a,b).

Fix a precision r. Assume that $K_r(a,b) = dr$. We want to prove that

$$K_r(x, ax + b) \ge K_r(x, a, b) = (1 + d)r.$$

It suffices to show that, given a 2^{-r} approximation of (x, ax + b), we can compute a 2^{-r} approximation of (x, a, b).

- How can we compute (an approximation of) a line only given a point?
- The line $L_{a,b}$ is special it is of low complexity.
- Want to show that it is essentially the *only* low complexity line intersecting (x, ax + b).

Want to show that (a, b) is essentially the *only* low complexity line intersecting (x, ax + b).

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.

Want to show that (a, b) is essentially the *only* low complexity line intersecting (x, ax + b).

- If it weren't, then x would not be random relative to (a, b).
- Makes use of the simple geometric fact that any two lines intersect at a unique point.

Suppose that (u, v) intersects (x, ax + b). Let $t = -\log ||(a, b) - (u, v)||$. Then

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

Suppose that (u, v) intersects (x, ax + b), and $K_r(u, v) \le dr$. Let $t = -\log ||(a, b) - (u, v)||$. Then

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

Since x is random relative to (a, b),

$$r-t \leq K_r^{a,b}(u,v).$$

Since (u, v) shares the first t bits with (a, b), and $K_r(u, v) \leq dr$,

$$r - t \le dr - dt$$
.

This cannot happen if d < 1, and therefore (a, b) is the unique line such that

- (a, b) intersects (x, ax + b), and
- $K_r(a, b) \leq dr$.

• The general intersection lemma shows that

$$s(r-t) \leq K_r^{a,b}(u,v) \leq d(r-t),$$
 where $s=\dim^{a,b}(x).$

- This proof makes essential use of the assumption that s was greater than d.
- The obstacle when s is smaller than d seems very deep.
 - Heart of the difficulty of the Kakeya conjecture, Furstenberg set conjecture,...

Goal: Given a line (a, b), for every $s \in (0, 1]$, construct a point x such that

- $\dim^{a,b}(x) = s$.
- $\bullet \ \dim(x, ax + b) = s + \min\{\dim(a, b), 1\}.$

For simplicity, let $\dim(a,b) = d < 1$ and let r be a precision such that $K_r(a,b) = dr$. Want to construct a point x (finite binary string) such that

- $K_r^{a,b}(x) = sr.$
- $K_r(x, ax + b) = (s + d)r$.

Let dim(a, b) = d < 1 and let r be a precision such that $K_r(a, b) = dr$. Want to construct a point x (finite binary string) such that

• $K_r^{a,b}(x) = sr$.

Two immediate ideas:

- Take random, relative to (a, b), string and every change every $\frac{1}{s}$ th bit to 0.
 - Constructions of Furstenberg sets from geometric measure theory seem to rule this out.
- Take random, relative to (a, b), string and set all bits after index sr to 0.
 - Runs into the main obstacle.

We use the structure of the problem to remove the main obstacle:

• Take random, relative to (a, b), string of length sr and concatenate the first r - sr bits of a.

Thus, our string x satisfies

$$K_r^{a,b}(x) = sr.$$

Moreover, for all r' < sr,

$$K_{r'}^{a,b}(x)=r'.$$

Key point: For precisions less than *sr*, we are essentially in the high complexity case we know how to solve.

Suppose that (u, v) intersects (x, ax + b), and $K_r(u, v) \le dr$. Let $t = -\log ||(a, b) - (u, v)||$, and suppose that $t \ge r - sr$.

$$K_{r-t}^{a,b}(x) \leq K_r^{a,b}(u,v).$$

Since x is random relative to (a, b) at precisions less than sr,

$$r-t \leq K_r^{a,b}(u,v) \leq dr-dt.$$

Therefore (a, b) is the unique line such that

- (u, v) intersects (x, ax + b),
- $K_r(u,v) \leq dr$, and
- $t = -\log ||(a, b) (u, v)|| \ge r sr$

We would be done if we could restrict our search to lines such that

$$t = -\log \|(a,b) - (u,v)\| \ge r - sr$$

Given a 2^{-r} approximation of (x, ax + b):

- We have access to the first r bits of x.
- 2 Thus, we know the first r sr bits of a.
- **3** Combining these with our approximation of (x, ax + b) we can compute the first r sr bits of b.
- 4 Hence, we know the first r sr bits of (a, b), and can restrict our search for lines (u, v) such that
 - (u, v) intersects (x, ax + b)
 - $K_r(u,v) \leq dr$, and
 - $t = -\log ||(a, b) (u, v)|| \ge r sr$
- (a,b) is the only such line, and so $K_r(x,ax+b) \geq K_r(x,a,b) = s+d$.

Full proof of low dimensional lines $(dim(a, b) \le 1)$

- Choose very sparse set of precisions r such that $K_r(a,b)=dr$, and modify the bits of x.
 - At these precisions, the previous argument works.
 - For other precisions, need a slightly different approach.

High dimensional lines (dim(a, b) > 1)

- This argument doesn't immediately work.
 - It will only prove that $K_r(x, ax + b) \ge (s + 1)r$, but we need this to be an **equality**.
- In this case, we use a non-constructive argument.
 - Consider strings x_0, \ldots, x_{r-sr} . The point x_m encodes first m bits of a.
 - We can upper bound the point corresponding to x_0 , and we have a good lower bound for x_{r-sr} .
 - Using a discrete version of MVT, we show that *some* point has dimension (s + 1).

The End

Thank you!

The Kakeya Conjecture

Question

Let $E \subseteq \mathbb{R}^n$ be a set containing a line in every direction (a Kakeya set). How big must E be?.

- Besicovitch: Can have measure 0.
- Davies: In \mathbb{R}^2 , Kakeya sets must have Hausdorff dimension 2.
- For n > 2 this is still an open question.

Conjecture (Kakeya Conjecture)

Every Kakeya set in \mathbb{R}^n has Hausdorff dimension n.

Furstenberg Sets

Definition

Let $\alpha, \beta \in (0,1]$. A set of Furstenberg type with parameters α and β is a subset $F \subseteq \mathbb{R}^2$ such there is a set $J \subseteq S^1$ (set of directions) satisfying the following.

- $\dim_H(J) \geq \beta$.
- For every $e \in J$, there is a line l_e in the direction of e such that $\dim_H(F \cap l_e) \ge \alpha$.

Open question: For α, β , how big must a set of Furstenberg type with parameters α and β be?

Theorem (Molter and Rela)

For all $\alpha, \beta \in (0,1]$ and every set $E \in \mathcal{F}_{\alpha,\beta}$,

$$\dim_H(E) \ge \alpha + \max\{\frac{\beta}{2}, \alpha + \beta - 2\}.$$