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Suppose that σ is a string of length n, which is “one-quarter
random”. Can I produce a string τ , possibly shorter than σ, which
is “half-random”?

We need to add some reasonable rules:

1. The procedure which produces τ from σ should be effective
and work on all strings σ which are “one-quarter random”.

2. The strings τ should not all be small; for each length m, there
should be an n = f (m) such that the procedure turns strings σ
of length n into strings τ of length m.

The answer is NO.



Suppose that σ is a string of length n, which is “one-quarter
random”. Can I produce a k strings τ1, . . . , τk , possibly shorter
than σ, at least one of which is “half-random”?

The answer is YES (for the right k).



In this talk, we’ll learn a littly bit about why, and how big k has to
be to get a particular increase in randomness.

Other goals:

1. Learn something about Kolmogorov complexity.

2. A cool connection with graph theory.

This is joint work with Bienvenu and Csima.
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Kolmogorov Complexity
Formalizing Randomness



Informal Definition
The Kolmogorov complexity of a string σ is the length shortest
description of σ.

Definition
Let M be a (Turing) machine which takes finite strings as input
and output. The (plain) Kolmogorov complexity of a string σ
relative to M is

CM(σ) = min{∣τ ∣ ∶M(τ) = σ}.

Call a string τ such that M(τ) = σ an M-description of σ.



Example

Let U be the machine which, on input 0n1τ , finds the nth machine
Mn and computes and outputs Mn(τ).

For any given machine Mn, U gives descriptions which are of
length only n + 1 (a constant) worse than Mn.

Definition
A machine U is called universal or optimal if, for every machine M,
there is a constant cM such that:

(∀σ ∈ {0,1}∗) U(σ) ≤M(σ) + cM .



Fix, forever, a universal machine U.

Definition
For σ ∈ {0,1}∗, the (plain) Kolmogorov complexity of σ is

C(σ) = CU(σ) = min{∣τ ∣ ∶ U(τ) = σ}.

We could have chosen a different universal machine, but this would
be the same up to a constant.

Warning: Asking about the Kolmogorov complexity of a particular
string σ does not really make sense, because the value depends on
the universal machine. It only makes sense to ask questions which
do not depend on the constant.



▸ A string like

100100100100100100100100100100100100

would have low Kolmogorov complexity.

▸ The strings of binary digits of π would have low Kolmogorov
complexity.

▸ A string like

110101101010001011101011101000011010

would have high Kolmogorov complexity.



Theorem
There is a constant c such that, for all σ ∈ {0,1}∗,

C(σ) < ∣σ∣ + c .

Proof.
There is a machine M which is just the identity:

M(σ) = σ.

Then
CM(σ) = ∣σ∣.

But the universal machine U is as good as M up to a constant
cM ,so

C(σ) = CU(σ) ≤ CM(σ) + cM ≤ ∣σ∣ + cM .



Fact
There are at most 2r+1 − 1 strings σ with C(σ) ≤ r .
(Incompressible strings must exist.)

Proof.
For each string σ with C(σ) ≤ r , there is a τ of length ≤ r such
that U(τ) = σ.

There are only so many strings τ of length at most r to go around;
exactly

20 + 21 + 22 +⋯ + 2r = 2r+1 − 1

of them.



Theorem
C is not a computable function.

U is partial computable, so U(τ) may take a long time to
compute, or may not halt at all.

Think of C(σ) as being dynamically approximable as a decreasing
sequence:

▸ Let Cs(σ) be the length of the shortest U-description of σ we
have found by time s.

Then Cs(σ) is decreasing as s increases, and eventually stabilizes
at C(σ).



We can think of C(σ) as the information content of σ, but we can
also think of it as measuring the randomness of σ.

Definition
C(σ)/∣σ∣ is the rate of randomness or information densitity of σ.

Consider creating a binary string of length 3n by flipping n coins,
and making every heads into 000 and every tails into 111:

HTHHTH . . .↦ 000111000000111000 . . . .

We expect this sequence to have rate of randomness ≈ 1/3, and
this is what happens with high probability.



Kolmogorov Extractors



Theorem (Fortnow, Hitchcock, Pavan, Vinodchandran, Wang)

Let 0 < α < β < 1.

There exist

▸ polynomial-time functions Γ1, . . . ,Γk ∶ {0,1}∗ → {0,1}∗ and

▸ a linear function f ∶ N→ N
such that for every n and for every σ of length f (n), if C(σ) ≥ α∣σ∣
then for some i, τ = Γi(σ) has length n and C(τ) ≥ β∣τ ∣.

Zimand called this a (single-source) Kolmogorov Extractor.



σ

uu {{ �� ((

∈ {0,1}f (n)

Γ1(σ) Γ2(σ) Γ3(σ) ⋯ Γk(σ) ∈ {0,1}n

If σ has rate of randomness ≥ α, then one of the Γi(σ) should have
rate of randomness ≥ β.



Theorem (Zimand, based on Vereshchagin and Vyugin)

Let 0 < α < β < 1.
Suppose there are

▸ partial computable functions Γ1, . . . ,Γk ∶ {0,1}∗ → {0,1}∗ and

▸ a linear function f ∶ N→ N
as in the previous theorem.

Then

β ≤ 1 −
1 − α

2k − 1
+ o(1).



Definition
For k ≥ 1, let EXT(k) be the set of pairs of reals (α,β) such that
α,β ∈ [0,1] and for which there exist

▸ a total one-to-one computable function f ∶ N→ N,

▸ k total computable functions Γ1, . . . ,Γk ∶ {0,1}∗ → {0,1}∗,
and

▸ a constant d ∈ N,

such that

▸ for all n, and every string σ, if ∣σ∣ = f (n), then ∣Γi(σ)∣ = n for
all i ≤ k, and

▸ if C(σ) ≥ α∣σ∣ + d , then for some i , C(Γi(σ)) ≥ β∣Γi(σ)∣ − d .



What can we say about f ?

Suppose that d , f , and (Γi) witness that (α,β) ∈ EXT(k):

▸ C(Γi(σ)) ≤ C(σ) +O(1) for all i .

▸ If σ is such that ∣σ∣ = f (n) and

C(σ) = αf (n) +O(1),

then for some i ,

C(Γi(σ)) ≥ βn −O(1).

Putting this all together,

αf (n) ≥ βn −O(1).

f (n) ≥ (β/α)n −O(1).



Theorem (Bienvenu, Csima, HT)

(α,β) ∈ EXT(k) if and only if one of the following holds:

▸ k = 1 and β ≤ α, or

▸ k ≥ 2 and either α = β = 0, α = β = 1, or

β <
kα

1 + (k − 1)α
.

Moreover, these are witnessed by f (n) = (β/α)n +O(1).
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Definition
For k ≥ 1, let EXTp(k) be the set of pairs of reals (α,β) such that
α,β ∈ [0,1] and for which there exist

▸ a total one-to-one computable function f ∶ N→ N,

▸ k partial computable functions Γ1, . . . ,Γk ∶ {0,1}∗ → {0,1}∗,
and

▸ a constant d ∈ N,

such that

▸ for all n, and every string σ, if ∣σ∣ = f (n), then ∣Γi(σ)∣ = n for
all i ≤ k for which Γi(σ) is defined, and

▸ if C(σ) ≥ α∣σ∣ + d , then for some i , Γi(σ) is defined and
C(Γi(σ)) ≥ β∣Γi(σ)∣ − d .



Theorem (Bienvenu, Csima, HT)

(α,β) ∈ EXTp(k) if and only if one of the following holds:

▸ k = 1 and α ≤ β,

▸ k ≥ 2 and β < kα
1+(k−1)α , or

▸ k ≥ 2, β = kα
1+(k−1)α , and α and β are computable.



Connections with Graphs



Suppose that d , f , and (Γi) witness that (α,β) ∈ EXT(k).

We can build out of these, for each n, a k-hypergraph
Gn = (Vn,En) with f (n) edges.

▸ The vertices Vn are {0,1}n.

▸ The edges En are {0,1}f (n).
▸ An edge σ is incident on Γ1(σ), . . . ,Γn(σ).



We can also go the other way.

Given, for each n, a k-hypergraph Gn = (Vn,En) with 2n vertices
and 2f (n) edges:

▸ Fix a bijection between the vertices Vn and {0,1}n.

▸ Fix a bijection between the edges En and {0,1}f (n).
▸ Given σ ∈ {0,1}f (n), thinking of σ as an edge, set

Γ1(σ), . . . ,Γk(σ) to be the k vertices on which σ is incident.



Suppose that d , f , and (Γi) witness that (α,β) ∈ EXT(k). Then:

▸ for each σ ∈ {0,1}f (n) with C(σ) ≥ αf (n) + d , there is i such
that C(Γi(σ)) ≥ βn + d .

Think of the corresponding hypergraphs Gn:

▸ for each edge σ of Gn with C(σ) ≥ αf (n) + d , there is vertex
τ incident on σ such that C(τ) ≥ βn + d .

Or equivalently:

▸ for each edge σ of Gn, if every vertex τ incident on σ has
C(τ) < βn + d , then C(σ) < αf (n) + d .



Think dynamically. We will play the part of a machine M assigning
descriptions ρ to strings τ by setting M(ρ) = τ .

There is a constant c such that

C(τ) = CU(τ) ≤ CM(τ) + c .

So when we assign a short M-description to τ , this makes CM(τ)
small, which guarantees that C(τ) is small.

Our restriction is that we cannot assign the same description to
two different strings σ. We have a restricted number of
descriptions of each size: 1 description of size 0, 2 descriptions of
size 1, 4 descriptions of size 2, and so on.



We think of ourselves as giving short descriptions to vertices
τ ∈ {0,1}∗ (the outputs of the Γi ).

Recall:

▸ for each edge σ of Gn, if every vertex τ incident on σ has
C(τ) < βn + d , then C(σ) < αf (n) + d .

So whenever we give a short description (size < αf (n)) of every
vertex of an edge σ, the universal machine must give a short
description (length < βn to σ).



k = 2, n = 8.



Given a set U of vertices, let E(U) be the number of hyperedges
contained entirely inside U.

If we assign short descriptions to all the vertices in a set U, the
universal machine must assign short descriptions to all of the edges
in E(U).

We are limited in the number of short descriptions we have to
assign to edges, and the universal machine is limited in the number
of short descriptions it can assign to vertices.

▸ The bigger α is, the more short descriptions we have available.

▸ The bigger β is, the more short descriptions the universal
machine has available.

The more edges in E(U), the harder it is for the universal
machine; if there are too many edges, then the universal machine
runs out of short descriptions.



After counting precisely, we get:

Theorem
Fix k ≥ 2 and let (α,β) be a pair of computable reals in [0,1].
The following are equivalent

(a) (α,β) ∈ EXT(k)

(b) There is a constant d and computable function f with

f (n) ≥ (β/α)n −O(1)

and such that for all n there is a k-hypergraph Gn with:
▸ 2n vertices,
▸ 2f (n) hyperedges, and
▸ for every U ⊆ Gn with ∣U ∣ ≤ 2βn−d , ∣E(U)∣ < 2αf (n)+d .



Edge Distribution in Graphs



We have reduced the question to asking which (α,β) have a
constant d and computable function f with

f (n) ≥ (β/α)n −O(1)

and such that for all n there is a k-hypergraph Gn with:

▸ 2n vertices,

▸ 2f (n) hyperedges, and

▸ for every U ⊆ Gn with ∣U ∣ ≤ 2βn−d , ∣E(U)∣ < 2αf (n)+d .



In a graph, the edge density is the ratio of edges to potential edges.

Definition
Let G = (V ,E) be a k-hypergraph. The edge density p of G is

p =
∣E ∣

(
∣V ∣
k
)
.

If the edges were completely evenly distributed, we would expect a
set of vertices U to contain about p(∣U ∣k ) edges.

But this is not always the case! Any graph will have some sets U
which have slightly more vertices.



Ramsey’s theorem says that if U is very small, then U could
contain every possible edge, or no edges at all.

Erös, Goldberg, Pach, and Spencer study the case when U is about
half the vertices of the graph.

Our case is when ∣U ∣ = ∣V ∣α.



In our case, we can get them to be very evenly-distributed.

1. It is always possible to find a set U with slightly more than
the expected number of edges.

2. There are graphs where this is not too much more.

The main tool for solving these problems is the probabilistic
method.



Theorem (Bienvenu, Csima, HT)

(α,β) ∈ EXT(k) if and only if one of the following holds:

▸ k = 1 and β ≤ α, or

▸ k ≥ 2 and either α = β = 0, α = β = 1, or

β <
kα

1 + (k − 1)α
.

Theorem (Bienvenu, Csima, HT)

(α,β) ∈ EXTp(k) if and only if one of the following holds:

▸ k = 1 and α ≤ β,

▸ k ≥ 2 and β < kα
1+(k−1)α , or

▸ k ≥ 2, β = kα
1+(k−1)α , and α and β are computable.




