Cohesive Powers of Linear Orders

Alexandra Soskova¹

Sofia University

UW Logic Seminar February 14, 2022

Joint work with:

R. Dimitrov, V. Harizanov, A. Morozov, P. Shafer, and S. Vatev

¹Supported by BNSF, KP-06-Austria-04/19, FNI-SU 80-10-136/26.03.2021

Cohesive sets Let

$$\vec{\mathbf{A}} = (\mathbf{A}_0, \mathbf{A}_1, \mathbf{A}_2, \dots)$$

be a countable sequence of subsets of \mathbb{N} .

Then there is an infinite set $C \subseteq \mathbb{N}$ such that, for every i:

either $C \subseteq^* A_i$ or $C \subseteq^* \overline{A_i}$.

C is called cohesive for \vec{A} , or simply \vec{A} -cohesive.

Definition

If \vec{A} is the sequence of computable sets, then C is called r-cohesive.

If \vec{A} is the sequence of c.e. sets, then C is called cohesive.

Skolem's countable non-standard model of true arithmetic Skolem (1934):

Let C be cohesive for the sequence of arithmetical sets. (Such a C is also called arithmetically indecomposable.)

Consider arithmetical functions $f, g: \mathbb{N} \to \mathbb{N}$. Define:

$f =_C g$	if	$C \subseteq^* \{n : f(n) = g(n)\}$
f < g	if	$C \subseteq^* \{n : f(n) < g(n)\}$
(f + g)(n)	=	f(n) + g(n)
$(f \times g)(n)$	=	$f(n) \times g(n)$

Let $[f] = \{g : g =_C f\}$ denote the $=_C$ -equivalence class of f.

Form a structure \mathcal{M} with domain {[f] : f arithmetical} and [f] < [g] if f < g; [f] + [g] = [f + g]; [f] × [g] = [f × g].

Then \mathcal{M} models true arithmetic!

Effectivizing Skolem's construction

Tennenbaum wanted to know:

What if we did Skolem's construction, but

- used computable functions $f\colon \mathbb{N}\to \mathbb{N}$ in place of arithmetical functions;
- only assumed that C is r-cohesive?

Do we still get models of true arithmetic?

Feferman-Scott-Tennenbaum (1959):

It is not even possible to get models of Peano arithmetic in this way.

Lerman (1970) has further results in this direction:

If you only consider co-maximal sets C, then the structure you get depends only on the many-one degree of C.

(Co-maximal means co-c.e. and cohesive.)

Cohesive products

Let L be a computable language, $(\mathcal{A}_n \mid n \in \mathbb{N})$ be a uniformly computable sequence of L-structures, $|\mathcal{A}_i| \subseteq \mathbb{N}$ and $C \subseteq \mathbb{N}$ be cohesive. The cohesive product of $(\mathcal{A}_n \mid n \in \mathbb{N})$ over C is the L-structure $\Pi_C \mathcal{A}_n$ defined as follows.

Let D be the set of partial computable functions φ such that $\forall n(\varphi(n) \downarrow \rightarrow \varphi(n) \in |\mathcal{A}_n|)$ and $C \subseteq^* \mathsf{dom}(\varphi)$.

$$\begin{array}{lll} \varphi =_{\mathcal{C}} \psi & \text{if} & \mathcal{C} \subseteq^* \{ \mathbf{n} : \varphi(\mathbf{n}) = \psi(\mathbf{n}) \} \\ \mathbf{R}(\psi_0, \dots, \psi_{k-1}) & \text{if} & \mathcal{C} \subseteq^* \{ \mathbf{n} : \mathbf{R}^{\mathcal{A}_n}(\psi_0(\mathbf{n}), \dots, \psi_{k-1}(\mathbf{n})) \} \\ \mathbf{F}(\psi_0, \dots, \psi_{k-1})(\mathbf{n}) & = & \mathbf{f}^{\mathcal{A}_n}(\psi_0(\mathbf{n}), \dots, \psi_{k-1}(\mathbf{n})) \end{array}$$

Let $[\varphi]$ denote the =_C-equivalence class of φ .

Let $\Pi_{C}\mathcal{A}_{n}$ be the structure with domain $\{[\varphi] : \varphi \in D\}$ and

$$R([\psi_0], \dots, [\psi_{k-1}]) \text{ if } R(\psi_0, \dots, \psi_{k-1})$$

$$F([\psi_0], \dots, [\psi_{k-1}]) = [F(\psi_0, \dots, \psi_{k-1})].$$

Cohesive powers Dimitrov (2009):

If $\mathcal{A}_n = \mathcal{A}$ is the same fixed computable structure \mathcal{A} for every n, the cohesive product $\Pi_C \mathcal{A}_n$ is called the cohesive power of \mathcal{A} over C and is denoted $\Pi_C \mathcal{A}$.

Cohesive products by co-c.e. cohesive sets also have the helpful property that every member of the cohesive product has a total computable representative.

A computable structure \mathcal{A} always naturally embeds into its cohesive powers.

 $\kappa:\mathbf{x}\mapsto \mbox{ the constant function } \mathbf{x}.$

- If \mathcal{A} is finite and C is cohesive, then every partial computable function $\varphi : \mathbb{N} \to |\mathcal{A}|$ with $C \subseteq^* \mathsf{dom}(\varphi)$ is eventually constant on C, and hence $\mathcal{A} \cong \prod_C \mathcal{A}$.
- If \mathcal{A} is an infinite computable structure, then every cohesive power $\Pi_{C}\mathcal{A}$ is countably infinite.

Uniformly n-decidable structures

- A computable structure is a structure having a computable atomic diagram (0-decidable).
- A decidable structure is a structure having a computable elementary diagram.
- An n-decidable structure is a structure having a computable Σ_n -elementary diagram.
- A sequence $(\mathcal{A}_i \mid i \in \mathbb{N})$ of L-structures is uniformly computable, uniformly decidable, or uniformly n-decidable if the respective sequence of atomic, elementary, or Σ_n -elementary diagrams is uniformly computable.

${\color{black} {{\color{black} \mathsf{L}}}}{\operatorname{os}}$ theorem for n-decidable structures

Theorem

Let L be a computable language, let $(\mathcal{A}_i \mid i \in \mathbb{N})$ be a sequence of uniformly n-decidable L-structures, $|\mathcal{A}_i| \subseteq \mathbb{N}$, and let C be cohesive. Then for any $[\varphi_0], \ldots, [\varphi_{m-1}] \in |\Pi_C \mathcal{A}_i|$ 1) if $\Phi(v_0, \ldots, v_{m-1})$ is a Σ_{n+2} formula, then $\Pi_{\mathcal{C}}\mathcal{A}_{i} \models \Phi([\varphi_{0}], \dots, [\varphi_{m-1}]) \rightarrow \mathcal{C} \subseteq^{*} \{i \mid \mathcal{A}_{i} \models \Phi(\varphi_{0}(i), \dots, \varphi_{m-1}(i))\}$ **2** if $\Phi(v_0, \ldots, v_{m-1})$ is a \prod_{n+2} formula, then $C \subseteq^* \{i \mid \mathcal{A}_i \models \Phi(\varphi_0(i), \dots, \varphi_{m-1}(i))\} \rightarrow \prod_C \mathcal{A}_i \models \Phi([\varphi_0], \dots, [\varphi_{m-1}])$ **3** if $\Phi(v_0, \ldots, v_{m-1})$ is a Δ_{n+2} formula, then $C \subseteq^* \{i \mid \mathcal{A}_i \models \Phi(\varphi_0(i), \dots, \varphi_{m-1}(i))\} \leftrightarrow \prod_C \mathcal{A}_i \models \Phi([\varphi_0], \dots, [\varphi_{m-1}])$ Łoś theorem for n-decidable structures Dimitrov : For cohesive powers of a computable structure the fundamental theorem of cohesive powers holds.

- **1** Łoś's theorem holds for Σ_2 sentences and Π_2 sentences.
- **2** One-way Łoś's theorem holds for Σ_3 sentences.

Theorem (Łoś's theorem for cohesive powers)

Let L be a computable language, \mathcal{A} be an n-decidable structure, and let C be cohesive. Then

1 If Φ is a Δ_{n+3} sentence then

$$\Pi_{\mathrm{C}}\mathcal{A} \models \Phi \quad \text{if and only if} \quad \mathcal{A} \models \Phi$$

2 If Φ is a Σ_{n+3} sentence, then

$$\mathcal{A} \models \Phi$$
 implies $\Pi_{\mathrm{C}} \mathcal{A} \models \Phi$

If \mathcal{A} is decidable structure then $\Pi_{\rm C} \mathcal{A} \equiv \mathcal{A}$.

An observation

Example

Consider \mathbb{Q} as a linear order (i.e., as a structure in the language $\{<\}$.)

 \mathbb{Q} is a countable dense linear order without endpoints. If \mathcal{L} is a countable dense linear order without endpoints, then $\mathcal{L} \cong \mathbb{Q}$. "Dense linear order w/o endpoints" is axiomatized by a Π_2 sentence θ .

If C is any cohesive set, then $\Pi_{C}\mathbb{Q} \models \theta$ by \pounds oś for cohesive powers.

So $\Pi_{\mathrm{C}}\mathbb{Q}$ is a countable dense linear order without endpoints.

Thus $\Pi_{\mathcal{C}}\mathbb{Q}\cong\mathbb{Q}$.

(Not an accident: $\Pi_{\mathbf{C}}\mathcal{A} \cong \mathcal{A}$ whenever \mathcal{A} is uniformly locally finite ultrahomogeneous, i.e. every isomorphism between two finitely-generated substructures in a sufficiently effective way extends to an automorphism on \mathcal{A} . Examples are the computable presentations of the Rado graph and the countable atomless Boolean algebra.)

Reducts and substructures

Let $L \subseteq L^+$ be two languages, and let \mathcal{A} be an L^+ -structure. Then the reduct $\mathcal{A} \upharpoonright L$ of \mathcal{A} is the L-structure obtained from \mathcal{A} by forgetting about the symbols of $L^+ \setminus L$.

Proposition

Let $L \subseteq L^+$ be computable languages, $(\mathcal{A}_n \mid n \in \mathbb{N})$ be a uniformly computable sequence of L^+ -structures and $C \subseteq \mathbb{N}$ be cohesive. Then

 $\mathsf{\Pi}_{\mathrm{C}}(\mathcal{A}_{\mathrm{n}}\upharpoonright \mathrm{L})\cong(\mathsf{\Pi}_{\mathrm{C}}\mathcal{A}_{\mathrm{n}})\upharpoonright \mathrm{L}$

Proposition

Let L be a computable language with a unary relation symbol U. Let \mathcal{A} be a computable L-structure, and suppose that $\{a \in |\mathcal{A}| \mid \mathcal{A} \models U(a)\}$ forms the domain of a computable substructure \mathcal{B} of \mathcal{A} . Let C be a cohesive set. Then $\{[\varphi] \in |\Pi_{C}(\mathcal{A}| : \Pi_{C}\mathcal{A} \models U([\varphi])\}$ forms the domain of a substructure \mathcal{D} of $\Pi_{C}\mathcal{A}$ and $\Pi_{C}\mathcal{B} \cong \mathcal{D}$.

Disjoint unions

Let L be a relational language, and let $\mathcal{A}_0, \ldots, \mathcal{A}_{k-1}$ be L-structures. Then the disjoint union of $\mathcal{A}_0, \ldots, \mathcal{A}_{k-1}$ is the L-structure $\bigsqcup_{i < k} \mathcal{A}_i$ with domain $\bigcup_{i < k} \{i\} \times |\mathcal{A}_i|$ and $R^{\bigsqcup_{i < k} \mathcal{A}_i}((i_0, x_0), \ldots, (i_{m-1}, x_{m-1}))$ if $i_0 = \cdots = i_{m-1} = i$ for some i < k and $R^{\mathcal{A}_i}(x_0, \ldots, x_{m-1})$.

Proposition

Let L be a computable language and let $\mathcal{A}_0, \ldots, \mathcal{A}_{k-1}$ be L-structures, and $C \subseteq \mathbb{N}$ be cohesive. Then

$$\Pi_{C} \bigsqcup_{i < k} \mathcal{A}_{i} \cong \bigsqcup_{i < k} \Pi_{C} \mathcal{A}_{i}.$$

Saturation

Fact: for a countable language, ultraproducts over countably incomplete ultrafilters (i.e., ultrafilters that are not closed under countable intersections) are always \aleph_1 -saturated.

A structure \mathcal{A} is recursively saturated if it realizes every computable type over \mathcal{A} .

 \mathcal{A} is Σ_n -recursively saturated if it realizes every computable Σ_n -type over \mathcal{A} .

Theorem

Let L be a computable language, and C $\subseteq \mathbb{N}$ be cohesive.

- Let $(\mathcal{A}_n \mid n \in \mathbb{N})$ be a sequence of uniformly decidable L-structures. Then $\Pi_C \mathcal{A}_n$ is recursively saturated.
- 2 Let $(A_n | n \in \mathbb{N})$ be a sequence of uniformly n-decidable L-structures. Then $\Pi_C A_n$ is recursively Σ_n-saturated.
- **3** For a decidable L-structure \mathcal{A} , $\Pi_{\rm C}\mathcal{A}$ is recursively saturated.
- () For an n-decidable L-structure \mathcal{A} , $\Pi_{\rm C}\mathcal{A}$ is recursively $\Sigma_{\rm n}$ -saturated.

Saturation and isomorphism

Theorem

Let L be a computable language, and C $\subseteq \mathbb{N}$ be co-c.e. cohesive.

- $\begin{array}{l} \bullet \quad \mbox{Let } (\mathcal{A}_n \mid n \in \mathbb{N}) \mbox{ be a sequence of uniformly n-decidable} \\ \mbox{L-structures. Then } \Pi_C \mathcal{A}_n \mbox{ is recursively } \Sigma_{n+1}\mbox{-saturated.} \end{array}$
- **2** For an n-decidable L-structure \mathcal{A} , $\Pi_{\rm C}\mathcal{A}$ is recursively $\Sigma_{\rm n+1}$ -saturated.

Theorem

Let L be a computable language, let \mathcal{A}_0 and \mathcal{A}_1 be computable L-structures that are computably isomorphic, and let C be cohesive. Then $\Pi_C \mathcal{A}_0 \cong \Pi_C \mathcal{A}_1$.

Corollary

If \mathcal{A} is a computable L-structures which is computably categorical, then for every structure $\mathcal{B} \cong \mathcal{A}$ we have $\Pi_{\mathrm{C}} \mathcal{A} \cong \Pi_{\mathrm{C}} \mathcal{B}$.

Linear orders

Theorem

Let $\mathcal{L} = (L, \prec_{\mathcal{L}})$ and $\mathcal{M} = (M, \prec_{\mathcal{M}})$ be computable linear orders, and let C be a cohesive.

- 1 Sum $\Pi_{\rm C}(\mathcal{L} + \mathcal{M}) \cong \Pi_{\rm C}\mathcal{L} + \Pi_{\rm C}\mathcal{M},$
- **2** Product $\Pi_{\mathrm{C}}(\mathcal{LM}) \cong (\Pi_{\mathrm{C}}\mathcal{L})(\Pi_{\mathrm{C}}\mathcal{M})$, and

3 Reverse $\Pi_{\mathrm{C}}(\mathcal{L}^*) \cong (\Pi_{\mathrm{C}}\mathcal{L})^*$.

The product \mathcal{LM} is a linear order $\mathcal{P} = (P, \prec_{\mathcal{P}})$, where $P = M \times L$ and

 $(x,a)\prec_{\mathcal{P}}(y,b), \quad \text{ if and only if } \quad (x\prec_{\mathcal{M}} y) \text{ or } (x=y \ \text{and} \ a\prec_{\mathcal{L}} b).$

- ω the order type of (N; <).
- ζ the order type of (\mathbb{Z} ; <).
- η the order type of (\mathbb{Q} ; <).

Linear orders: condensation Let $\mathcal{L} = (L, \prec_{\mathcal{L}})$ be a linear order.

Definition

A condensation of \mathcal{L} is any linear order $\mathcal{M} = (M, \prec_{\mathcal{M}})$ obtained by partitioning L into a collection of non-empty intervals M and, for $I, J \in M, I \prec_{\mathcal{M}} J$ if and only if $(\forall a \in I)(\forall b \in J)(a \prec_{\mathcal{L}} b)$.

Definition

For $x \in L$, let $c_F(x)$ denote the set of $y \in L$ for which there are only finitely many elements between x and y:

 $c_F(x) = \{ y \in L : \text{the interval } [\mathsf{min}_{\prec_{\mathcal{L}}} \{ x, y \}, \mathsf{max}_{\prec_{\mathcal{L}}} \{ x, y \}]_{\mathcal{L}} \text{ in } \mathcal{L} \text{ is finite} \}.$

The set $c_F(x) \neq \emptyset$, as $x \in c_F(x)$. The finite condensation $c_F(\mathcal{L})$ of \mathcal{L} is the condensation obtained from the partition $\{c_F(x) : x \in L\}$.

For example, $c_F(\omega) \cong 1$, $c_F(\zeta) \cong 1$, $c_F(\eta) \cong \eta$, and $c_F(\omega + \zeta \eta) \cong 1 + \eta$. Notice that the order-type of $c_F(x)$ is always either finite, ω , ω^* , or ζ .

Linear orders

Let $(\mathcal{L}_n \mid n \in \mathbb{N})$ be a uniformly computable sequence of linear orders, let C be cohesive.

Lemma

Let $[\psi]$ and $[\varphi]$ be elements of $\prod_{C} \mathcal{L}_n$. Then the following are equivalent.

- (1) $[\varphi]$ is the $\prec_{\prod_{C} \mathcal{L}_n}$ -immediate successor of $[\psi]$.
- (2) $(\forall^{\infty}n \in C)(\varphi(n) \text{ is the } \prec_{\mathcal{L}_n}\text{-immediate successor of } \psi(n)).$
- (3) $(\exists^{\infty}n \in C)(\varphi(n) \text{ is the } \prec_{\mathcal{L}_n}\text{-immediate successor of } \psi(n)).$

Moreover $[\psi] \preccurlyeq_{\Pi_{C}\mathcal{L}_{n}} [\varphi]$ iff $\lim_{n \in C} |(\psi(n), \varphi(n))_{\mathcal{L}_{n}}| = \infty$.

Theorem

Let $(\mathcal{L}_n \mid n \in \mathbb{N})$ be a uniformly computable sequence of linear orders, let C be cohesive. If either $(\mathcal{L}_n \mid n \in \mathbb{N})$ is uniformly 1-decidable or C is co-c.e. then $c_F(\Pi_C \mathcal{L}_n)$ is dense. Cohesive powers of computable copies of ω

Let \mathcal{L} be a computable copy of ω , and let C be cohesive.

Lemma

- The image of the canonical embedding of \mathcal{L} into $\Pi_{C}\mathcal{L}$ is an initial segment of $\Pi_{C}\mathcal{L}$ of order-type ω .
- So, $\Pi_{\mathcal{C}}(\mathcal{L}) \cong \omega + \mathcal{M}$, for some linear order \mathcal{M} . ω -standard part and \mathcal{M} -nonstandard.
- If $[\varphi]$ is an element of $\prod_{C} \mathcal{L}$ then $[\varphi]$ is non-standard if and only if $\lim_{n \in C} \varphi(n) = \infty$.
- If $[\varphi]$ is nonstandard element of $\Pi_{C}\mathcal{L}$ then there are nonstandard elements $[\psi^{-}]$ and $[\psi^{+}]$ of $\Pi_{C}\mathcal{L}$, in other blocks of $[\varphi]$, such that $[\psi^{-}] \preccurlyeq_{\Pi_{C}\mathcal{L}} [\varphi] \preccurlyeq_{\Pi_{C}\mathcal{L}} [\psi^{+}]$. $(\lim_{n \in C} |(\psi^{-}(n), \varphi(n))_{\mathcal{L}}| = \infty)$.

Cohesive powers of computable copies of ω

Let \mathcal{L} be a computable copy of ω , and let C be cohesive.

Theorem

- If either \mathcal{L} is 1-decidable or C is co-c.e. then $c_F(\Pi_C \mathcal{L}) = 1 + \eta$.
- If \mathcal{L} is computably isomorphic to the standard presentation of ω then $\Pi_{\rm C}\mathcal{L}$ has order type $\omega + \zeta \eta$.

Examples

Example

Let C be a cohesive set. Let \mathbb{N}, \mathbb{Z} , and \mathbb{Q} denote the standard presentations of ω, ζ , and η .

•
$$\Pi_{\mathcal{C}}\mathbb{N}^* \cong (\Pi_{\mathcal{C}}\mathbb{N})^* \cong (\omega + \zeta\eta)^* \cong \zeta\eta + \omega^*.$$

•
$$\Pi_{\mathcal{C}}\mathbb{Z} \cong \Pi_{\mathcal{C}}(\mathbb{N}^* + \mathbb{N}) \cong \zeta \eta + \omega^* + \omega + \zeta \eta \cong \zeta \eta + \zeta + \zeta \eta \cong \zeta \eta.$$

•
$$\Pi_{\mathrm{C}}\mathbb{Z}\mathbb{Q}\cong(\Pi_{\mathrm{C}}\mathbb{Z})(\Pi_{\mathrm{C}}\mathbb{Q})\cong\zeta\eta\eta\cong\zeta\eta.$$

• $\Pi_{\mathcal{C}}(\mathbb{N} + \mathbb{Z}\mathbb{Q}) \cong (\Pi_{\mathcal{C}}\mathbb{N}) + (\Pi_{\mathcal{C}}\mathbb{Z}\mathbb{Q}) \cong (\omega + \zeta\eta) + (\zeta\eta) \cong \omega + \zeta\eta.$

Are there other cohesive powers of \mathbb{N} ? More properly:

Is there a computable copy \mathcal{L} of \mathbb{N} with $\prod_{C} \mathcal{L} \ncong \omega + \zeta \eta$?

Such an \mathcal{L} cannot be isomorphic to \mathbb{N} via a computable isomorphism.

Classic computable copy $\mathcal{L} = (\mathbb{N}, \prec)$ of \mathbb{N} with non-computable isomorphism (the successor is not computable).

- Let $f: \mathbb{N} \to \mathbb{N}$ be computable injection with $ran(f) = K = \{e: \Phi_e(e)\downarrow\}.$
- Put the evens in their usual order: $2a \prec 2b$ if 2a < 2b.
- For each s, put 2s + 1 between 2f(s) and 2f(s) + 2: $2f(s) \prec 2s + 1 \prec 2f(s) + 2$.

However:

We still get $\Pi_{C}\mathcal{L} \cong \omega + \zeta \eta$ for every cohesive C.

So, it is not enough just to ensure that the isomorphism $\mathcal{L} \cong \mathbb{N}$ is non-computable!

A different cohesive power of $\mathbb N$

Theorem

For every co-c.e. cohesive set C, there is a computable copy $\mathcal L$ of $\mathbb N$ such that

 $\Pi_{\rm C} \mathcal{L} \not\equiv \omega + \zeta \eta.$

Idea:

Build $\mathcal{L} = (\mathbb{N}, \prec)$ so that [id] does not have an immediate successor in the cohesive power $\Pi_{\mathrm{C}}\mathcal{L}$.

To do this, ensure that

 $\forall^{\infty}n \in C \ (\varphi_e(n) \downarrow \Rightarrow \varphi_e(n) \text{ is not the } \prec\text{-immediate successor of } n)$

Then $[\varphi_e]$ is not the immediate successor of [id] in $\Pi_C \mathcal{L}$.

Corollary

There is a computable linear order \mathcal{L} , a cohesive set C, and a Π_3 -sentence Φ such that $\mathcal{L} \models \Phi$, but $\Pi_C \mathcal{L} \not\models \Phi$.

Coloured linear orders

Definition

A coloured linear order is a structure $\mathcal{O} = (L, \mathbb{N}, \prec_{\mathcal{L}}, F)$, where $\mathcal{L} = (L, \prec_{\mathcal{L}})$ is a linear order and F is (the graph of) a function $F : L \to \mathbb{N}$, thought of as a colouring of L.

If \mathcal{O} is a computable coloured linear order and C is a cohesive set, then the cohesive power $\Pi_{\rm C}\mathcal{O}$ consists of a linear order $\Pi_{\rm C}\mathcal{L}$, a set $\Pi_{\rm C}\mathbb{N}$ thought of as a collection of colours, and a (graph of a) function F thought of as a colouring of $\Pi_{\rm C}\mathcal{L}$.

Call a colour $\| \delta \| \in \Pi_{\mathbb{C}} \mathbb{N}$ a solid colour if δ is eventually constant on C (i.e., if $\| \delta \|$ is in the range of the canonical embedding of \mathbb{N} into $\Pi_{\mathbb{C}} \mathbb{N}$). Otherwise, call $\| \delta \|$ a striped colour.

Colourful linear orders

Definition

Call the cohesive power $\Pi_{\rm C}\mathcal{L}$ colourful if the following items hold: For every pair of non-standard elements $[\phi], [\psi] \in \Pi_{\rm C}\mathcal{L}$ with $[\psi] \prec_{\Pi_{\rm C}\mathcal{L}} [\varphi]$

- and every solid colour $\| \delta \| \in \Pi_{C} \mathbb{N}$, there is a $[\theta] \in \Pi_{C} \mathcal{L}$ with $[\psi] \prec_{\Pi_{C} \mathcal{L}} [\theta] \prec_{\Pi_{C} \mathcal{L}} [\varphi]$ and $F([\theta]) = \| \delta \|$.
- there is a $[\theta] \in \Pi_{\mathcal{C}}\mathcal{L}$ with $[\psi] \prec_{\Pi_{\mathcal{C}}\mathcal{L}} [\theta] \prec_{\Pi_{\mathcal{C}}\mathcal{L}} [\varphi]$ where $\mathcal{F}([\theta])$ is a striped colour.

Theorem

Let C be a co-c.e. cohesive set. Then there is a computable coloured copy \mathcal{O} of ω such that $\Pi_{\rm C}\mathcal{O}$ is colourful.

Colourful linear orders

We construct a linear order $\mathcal{O} = (L, \mathbb{N}, \prec_{\mathcal{L}}, F)$, with $\mathcal{L} \cong \omega$.

- C co-c.e. cohesive set, then $[\phi] \in \prod_{\mathcal{C}} \mathcal{L}$ has a total computable el.
- $[\phi]$ is non-standard if and only if $\lim_{n \in C} \varphi(n) = \infty$.
- for every pair of total computable functions φ and ψ with $\lim_{n \in C} \varphi(n) = \lim_{n \in C} \psi(n) = \infty$:

$$\begin{aligned} (\forall^{\infty} n \in C)(\psi(n) \downarrow \prec_{\mathcal{L}} \varphi(n) \downarrow \Rightarrow \\ (\forall d \leq \max_{<}(\varphi(n), \psi(n))(\exists k)(\psi(n) \prec_{\mathcal{L}} k \prec_{\mathcal{L}} \varphi(n) \& (F(k) = d)) \end{aligned}$$

• Thus between $[\psi]$ and $[\varphi]$ there are elements of $\Pi_{\rm C} \mathcal{L}$ of every solid colour and also at least one element of a striped colour.

A computable copy of ω with a cohesive power of order-type $\omega + \eta$

Theorem

For every co-c.e. cohesive set C, there is a computable copy $\mathcal L$ of $\mathbb N$ such that

$$\Pi_{\mathcal{C}}\mathcal{L} \cong \omega + \eta.$$

Proof.

Let C be co-c.e. and cohesive. Let $\mathcal{O} = (L, \mathbb{N}, \prec_{\mathcal{L}}, F)$ be the computable coloured copy of ω . Let $\mathcal{L} = (L, \prec_{\mathcal{L}})$ denote the computable copy of ω . The cohesive power $\Pi_{C}\mathcal{L}$ has an initial segment of order-type ω . There is neither a least nor greatest non-standard element of $\Pi_{C}\mathcal{L}$. By the previous theorem the non-standard elements of $\Pi_{C}\mathcal{L}$ are dense. So $\Pi_{C}\mathcal{L}$ consists of a standard part of order-type ω and a non-standard part that forms a countable dense linear order without endpoints. So, $\Pi_{C}\mathcal{L} \cong \omega + \eta$.

Non-elementary equivalent

Example

Let C be a co-c.e. cohesive set, and let \mathcal{L} is a computable copy of ω with $\Pi_{C}\mathcal{L} \cong \omega + \eta$.

• Let $k \ge 1$, and \overline{k} denote a linear order with k elements $0 < 1 < \cdots < k - 1$. Then $\overline{k}\mathcal{L} \cong \omega$

$$\Pi_{\mathrm{C}}(\overline{\mathrm{k}}\mathcal{L}) \;\cong\; \big(\Pi_{\mathrm{C}}\overline{\mathrm{k}}\big)\big(\Pi_{\mathrm{C}}\mathcal{L}\big) \;\cong\; \overline{\mathrm{k}}(\omega+\eta) \;\cong\; \omega+\overline{\mathrm{k}}\eta.$$

The linear orders $\omega + \overline{k}\eta$ for $k \ge 1$ are pairwise non-elementarily equivalent.

2 Consider the computable linear orders \mathcal{L} and $\mathcal{L} + \mathbb{Q}$. They are not elementarily equivalent because the sentence "every element has an immediate successor" is true of \mathcal{L} but not of $\mathcal{L} + \mathbb{Q}$. However, using the last theorem and the fact that $\Pi_{\mathrm{C}}\mathbb{Q} \cong \eta$, we calculate

$$\Pi_{\mathrm{C}}(\mathcal{L}+\mathbb{Q}) \cong \Pi_{\mathrm{C}}\mathcal{L}+\Pi_{\mathrm{C}}\mathbb{Q} \cong (\omega+\eta)+\eta \cong \omega+\eta \cong \Pi_{\mathrm{C}}\mathcal{L}.$$

A generalized sum

Definition

Let \mathcal{L} be a linear order, and let $(\mathcal{M}_{l} \mid l \in |\mathcal{L}|)$ be a sequence of linear orders indexed by $|\mathcal{L}|$. The generalized sum $\sum_{l \in |\mathcal{L}|} \mathcal{M}_{l}$ of $(\mathcal{M}_{l} \mid l \in |\mathcal{L}|)$ over \mathcal{L} is the linear order $\mathcal{S} = (S, \prec_{\mathcal{S}})$ defined as follows: S = {(l, m) | l \in L \& m \in \mathcal{M}_{l}}, and (l_{0}, m_{0}) \prec_{\mathcal{S}} (l_{1}, m_{1}) if and only if $(l_{0} \prec_{\mathcal{L}} l_{1}) \lor (l_{0} = l_{1} \& m_{0} \prec_{\mathcal{M}_{l_{0}}} m_{1})$.

Example

$$\mathcal{L}_1 + \mathcal{L}_2 = \Sigma_{i \in \overline{2}} \mathcal{L}_i \text{ and } \mathcal{L}_1 \mathcal{L}_2 = \Sigma_{l \in |\mathcal{L}_2|} \mathcal{L}_1$$

Theorem

Let \mathcal{L} be a computable linear order, and let $(\mathcal{M}_l \mid l \in |\mathcal{L}|)$ be a uniformly computable sequence of linear orders indexed by $|\mathcal{L}|$. Let C be a cohesive set. Then

$$\mathsf{T}_{\mathrm{C}} \mathsf{\Sigma}_{\mathrm{l} \in |\mathcal{L}|} \mathcal{M}_{\mathrm{l}} \cong \mathsf{\Sigma}_{[\theta] \in \mathsf{T}_{\mathrm{c}} \mathcal{L}} \mathsf{T}_{\mathrm{c}} \mathcal{M}_{\theta(\mathrm{n})}$$

A shuffle sum

Definition

Let X be a non-empty collection of linear orders with $|X| \leq \aleph_0$. Let $f : \mathbb{Q} \to X$ be a function such that $f^{-1}(\mathcal{M})$ is dense in \mathbb{Q} for each linear order $\mathcal{M} \in X$. Let $\mathcal{S} = \Sigma_{q \in \mathbb{Q}} f(q)$ be the generalized sum of the sequence $(f(q) \mid q \in \mathbb{Q})$ over \mathbb{Q} . By density, the order-type of \mathcal{S} does not depend on the particular choice of f. Therefore \mathcal{S} is called the shuffle of X and is denoted $\sigma(X)$.

Example

We want $\mathcal{M} \cong \omega$: $\Pi_{\mathcal{C}} \mathcal{M} \cong \omega + \sigma(\{\overline{2}, \overline{3}\}).$

- Start with \mathcal{L} with $\Pi_{C}\mathcal{L} \cong \omega + \eta$ and $\mathcal{O} = (L, \mathbb{N}, \prec_{\mathcal{L}}, F)$.
- Collapse F into a colouring $G: L \to \{0, 1\}$. (G(n) = sg(F(n))).
- The colours ||0|| and ||1|| are dense in the non-standard p. of $\Pi_{\rm C}\mathcal{L}$.
- Replace the elements of *L* with colour 0 with a copy of 2, and with colour 1 with a copy of 3.

Then $\Pi_{\mathcal{C}}\mathcal{M} \cong \omega + \sigma(\{\overline{2},\overline{3}\}).$

Shuffle of finite orders

Proposition

Let k_0, \ldots, k_N be nonzero natural numbers and let \mathcal{O} be a computable coloured copy of ω . There is a computable copy \mathcal{L} of ω (constructed from \mathcal{O}) such that for every cohesive set C, if $\Pi_C \mathcal{L}$ is colourful, then $\Pi_C \mathcal{L}$ has order type $\omega + \sigma(\{\overline{k}_0, \ldots, \overline{k}_N\})$.

Proposition

Let $(\mathcal{M}_n \mid n \in I)$ be a uniformly computable sequence of \mathcal{O} -structures that are arbitrary large finite linear orders, indexed by a computable $I \subseteq \mathbb{N}$. Let C be a cohesive set. Let $\theta : \mathbb{N} \to I$ be a partial computable function with $C \subseteq^* \operatorname{dom}(\theta)$. Suppose that $\lim n \in C|M_{\theta(n)}| = \infty$. Then, as a linear order, $\prod_C \mathcal{M}_{\theta(n)}$ has order-type $\omega + \zeta \eta + \omega^*$.

The main result

Theorem

Let $X \subseteq \mathbb{N} \setminus \{0\}$ be a Boolean combination of Σ_2 sets thought of as a set of finite order types. Let C be a co-c.e. cohesive set. There is a computable copy \mathcal{L} of ω such that $\prod_C \mathcal{L}$ has order type $\omega + \sigma(X \cup \{\omega + \zeta \eta + \omega^*\})$. Moreover if X is finite and non-empty, then there is also a computable

copy \mathcal{L} of ω where the cohesive power $\Pi_{C}\mathcal{L}$ has order-type $\omega + \sigma(X)$.

THANK YOU!