
Algorithmic Learning of Structures

Ekaterina Fokina

TU Wien

Midwest Computability Seminar/
Computability Theory and Applications

February 21, 2022

Learning structures

• Suppose we have a class of (countable) structures.

• Suppose we are stage by stage seeing one of the structures
from the class: at each step a larger and larger finite piece of
the structure.

Question

Can we, after finitely many steps, identify the structure (up to an

isomorphism or other equivalence relations)?

2

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pAqS

Graphics by Luca San Mauro
3

Example 1

Let A = (!,E) and B = (!,F) be equivalence structures.

A B

M(S) = pBqS

Graphics by Luca San Mauro
3

Example 2

A B

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= B M(S) = pAq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= B M(S) = pAq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= B M(S) = pBq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= B M(S) = pBq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= A M(S) = pBq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= A M(S) = pBq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= A M(S) = pBq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= A M(S) = pAq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= A M(S) = pAq

Graphics by Luca San Mauro
4

Example 2

A B

S ⇠= B M(S) = pAq

Graphics by Luca San Mauro
4

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !⇤

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !⇤

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !⇤

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Examples 3 and 4

Structures (!,) and (!⇤,)

A BC D EF G HI J · · ·

Hypothesis: !

Structures (!,) and (⇣,)

Hypothesis: alternating between ! and ⇣.

5

Conclusion and overview

• How is the structure “revealed”?

• First part: both the positive and the negative information
about the structure (motivated by computable structures).

• Second part: only the positive information about the structure
is revealed (motivated by c.e. structures).

• What does it mean “to classify”, or “to identify” the
structure?

• To formalize these and other issues, we use the ideas from
computable structure theory and computational learning
theory.

6

Computational Learning Theory

Computational Learning Theory (CLT): deals with the question of
how a learner, provided with more and more data about some
environment, is eventually able to achieve systematic knowledge
about it.

• (Gold, 1967): language identification.

Most work in CLT concerns

• either learning of total functions (where the order in which the
data is received matters)

• or learning of formal languages (where the order does not
matter)

These paradigms model the data to be learned as an unstructured
flow — but what if one deals with data having some structural
content?

7

CLT and Structures

More recently researchers applied the machinery of CLT to
algebraic structures:

• Glymour, 1985

• Martin, Osherson, 1998

• Stephan, Ventsov, 2001: learning ring ideals of commutative
rings.

• Merkle, Stephan, 2004 learning isolated branches on uniformly
computable sequences of trees.

• Harizanov, Stephan, 2007: learning subspaces of V1.

• Gao, Stephan, Wu, Yamamoto, 2012: learning closed sets in
matroids.

• F., Kötzing, San Mauro, 2018: learning equivalence structures.

Our goal is: to combine the technology of CLT with notions
coming from computable structure theory to develop a general
framework for learning the isomorphism type of algebraic
structures. 8

Computable Structures

To learn the isomorphism type of a given structure, one should be
able to name such an isomorphism type. This is why we focus on
the learning of (copies of) computable or c.e. structures.

Learning should be independent from the way in which data is
presented. So, a successful learning procedure should work for all
isomorphic copies of a given structure.

9

Formal Example

Consider a family D: for each i � 1, the graph Gi contains
infinitely many (i + 1)-cycles.

• The learning domain: is the family D⇤ of all presentations of
the graphs in D;

• The information source: an informant I for a graph H in C⇤

is an infinite list of pairs containing: all pairs (x , y) of natural
numbers, as the first component; and either 0 or 1, as the
second component.

• The hypothesis space: every conjecture is an element of the
set ! [{?};

• The learner: a function (or an algorithm) that learns, up to
isomorphism, any graph in D⇤;

• The prior knowledge: the target graph is isomorphic to
some graph from the family D.

• The criterion of success: a learner that, receiving larger and
larger pieces of any graph G in C⇤, eventually stabilizes to a
correct guess about whether G is isomorphic to G1 or G2. 10

Enumerations I

How does one formally define the set of possible conjectures?

First Solution:

For m 2 !, the conjecture “m” means “H ⇠= Gm+1.”
• This solution is similar to the so-called exact learning,
considered in the setting of c.e. languages, where one assumes
that the hypothesis space of the problem is precisely the class
being learned with the corresponding indexing.

General framework: Fix a Friedberg enumeration of the class
D and interpret the output hypotheses with respect to this
enumeration.

• Drawback: it can be computationally very hard to enumerate
certain familiar families of computable structures, up to
isomorphism.

• Goncharov and Knight: for the classes of computable Boolean
algebras, linear orders, and abelian p-groups one cannot even
hyperarithmetically enumerate their isomorphism types. 11

Enumerations II

Second Solution:

Fix a uniformly computable sequence (Me)e2! of all computable
undirected graphs. The conjecture “m” means “H ⇠= Mm.”
This solution is similar to the so-called class-comprising learning,
where one assumes that the hypothesis space of the problem
should only contain the class being learned.

General framework: consider an arbitrary superclass K0 ◆ D which
is uniformly enumerable, i.e. there is a uniformly computable
sequence of structures (Ne)e2! such that:

1 Any structure from K0 is isomorphic to some Ne .

2 For every e, Ne belongs to K0.

Then for a number e 2 !, the conjecture “e” is interpreted as “the
input structure is isomorphic to Ne .”

12

Our framework

Let L be a relational signature.
Let K0 be a class of L-structures, and let ⌫ be an e↵ective
enumeration of K0. Suppose that K is a subclass of K0.

Definition

We say that K is InfEx⇠=[⌫]-learnable if there is a learner M with
the following property:
If I is an informant for a structure A 2 K, then there are e and s0

such that ⌫(e) ⇠= A and M(I [s]) = e for all s � s0. In other words,
in the limit, the learner M learns all isomorphism types from K.

13

Infinitary formulas

Together with Bazhenov and San Mauro we are able to
characterize learnable families of structures. To do so, we use the
logic L!1!.
The class of infinitary ⌃↵ L-formulas:
(a) ⌃inf

0 and ⇧inf
0 formulas are quantifier-free first-order

L-formulas.
(b) A ⌃inf

↵ formula (x0, . . . , xm) is an countable disjunction
__

i2I
9ȳi⇠i (x̄ , ȳi),

where each ⇠i is a ⇧inf
�i

formula, for some �i < ↵.

(c) A ⇧inf
↵ formula (x̄) is a countable conjunction

^̂

i2I
8ȳi⇠i (x̄ , ȳi),

where each ⇠i is a ⌃inf
�i

formula, for some �i < ↵.

Today we will only need ⌃inf
↵ formulas for ↵ 2. 14

Infinitary formulas

Together with Bazhenov and San Mauro we are able to
characterize learnable families of structures. To do so, we use the
logic L!1!.
The class of X -computable infinitary ⌃↵ L-formulas:
(a) ⌃c

0(X) and ⇧c
0(X) formulas are quantifier-free first-order

L-formulas.
(b) A ⌃c

↵(X) formula (x0, . . . , xm) is an X -computably
enumerable (X -c.e.) disjunction

__

i2I
9ȳi⇠i (x̄ , ȳi),

where each ⇠i is a ⇧c
�i
(X) formula, for some �i < ↵.

(c) A ⇧c
↵(X) formula (x̄) is an X -c.e. conjunction

^̂

i2I
8ȳi⇠i (x̄ , ȳi),

where each ⇠i is a ⌃c
�i
(X) formula, for some �i < ↵.

Today we will only need ⌃c
↵(X) formulas for ↵ 2. 15

Main Theorem

Suppose that K0 is a class of L-structures, and ⌫ is an e↵ective
enumeration of the class K0.

Theorem (Bazhenov, F., San Mauro)

Let K = {Bi : i 2 !} be a family of structures such that K ✓ K0,

and the structures Bi are infinite and pairwise non-isomorphic.

Then the following conditions are equivalent:

1 The class K is InfEx⇠=[⌫]-learnable;

2 There is a sequence of ⌃inf
2 sentences { i : i 2 !} such that

for all i and j , we have Bj |= i if and only if i = j .

The statement is similar to a result due to Martin and Osherson.
Yet, our proof is novel and based on Pullback Theorem in the
context of Turing computable embeddings introduced by Knight,
S. Miller, and Vanden Boom. This provides us with an upper
bound for the Turing complexity of the learners which we apply
later. 16

Bounding the complexity

Corollary (Bazhenov, F., San Mauro)

Let X ✓ ! be an oracle. Let K0 be a class of countably infinite

L-structures, and ⌫ be an e↵ective enumeration of K0. Assume

that either I = !, or I is a finite initial segment of !. Consider a
subclass K = {Bi : i 2 I} inside K0. Suppose that:

(i) There is uniformly X -computable sequence of ⌃c
2(X)

sentences (i)i2I such that:

Bj |= i , i = j .

(ii) There is an X -computable sequence (ei)i2I such that

⌫(ei) ⇠= Bi for all i . Note that if the set I is finite, then one

can always choose this sequence in a computable way.

Then the class K is InfEx⇠=[⌫]-learnable via an X -computable

learner. 17

Applications

Corollary (BFS)

• There exist learnable classes of:

• lattices,

• abelian groups,

• linear orders (only finite classes)

• There are no learnable classes for

• Boolean algebras,

• Infinite classes of linear orders.

18

Bazhenov, Cipriani, San Mauro: Learning and Borel ER’s

Theorem (Bazhenov, Cipriani, San Mauro)

A family of structures K is learnable if and only if there is a

continuous function � : 2! ! 2! such that

A ⇠= B () �(A)E0�(B),

for all A,B 2 LD(K).

Definition

A family of structures K is E -learnable if there is function
� : 2! ! 2! which continuously reduce LD(K) to E .

Theorem (BCS)

A family K is E2-learnable if and only if K is E1-learnable if and

only if K is E0-learnable.
19

Bazhenov, Cipriani, San Mauro: Learning and Borel ER’s

Theorem (BCS)

• A finite family K is E3-learnable if and only if K is E0-learnable.

• There exists an infinite family K which is E3- learnable, but not
E0-learnable.

Theorem (BCS)

Let K = {Ai : i 2 !} be a countable family. The family K is E3-learnable if and
only if there exists a countable family of ⌃inf

2 sentences ⇥with the following
properties:

1 if ✓ is a formula from ⇥, then there is a formula 2 ⇥such that for every
A 2 K,

A |= ✓ , A 6|= ;

2 if A 6⇠= B are structures from K , then there is a sentence theta 2 ⇥ such
that

A |= ✓ and B 6|= ✓.

The notion of E -learnability opens the possibility to define and study

uncountable learnable classes of structures.
20

Other learnability classes, I

We obtain di↵erent learnability classes by replacing the main
ingredients of InfEx⇠= with natural alternatives:

1 Inf 7! Txt: in Txt-learning (short for text) the learner
receives only positive information of the structure to be learnt.

2 ⇠= 7! E , where E is some nice equivalence relations relation
between elements of K, such as bi-embeddability (⇡),
computable isomorphism (⇠=0), computable bi-embeddability
(⇡0) – and so forth.

3 Ex 7! BC: in BC-learning (short for behaviourally correct)
the learner is allowed to change its mind infinitely many times
as far as almost all its conjectures lie in the same E -class
(with E defined as in 2.).

4 Yet another dimension to consider is the complexity of the
learner.

21

Learning from Text

K = {Ai : i 2 !} be a family of infinite computable L-structures.
• The learning domain:

LD(K) =
[

A2K
{S : S ⇠= A, and dom(S) = !}.

• The hypothesis space (HS):

HS(K) = ! [{?}.

• A learner M sees, stage by stage, only positive data about a
given structure from LD(K). The learner M is required to
output conjectures from HS(K).

• The learning is successful if for any structure S 2 LD(K), the
learner eventually stabilizes to a correct conjecture about the
isomorphism type of S.

We say that the family K is TxtEx-learnable if there exists a
learner M which succesfully learns K. 22

Positive infinite formulas

Let {=, 6=} ✓ L. Define a hierarchy of formulas, the Lp! formulas:

Definition (Soskov)

1 ' 2 ⌃p
1 i↵

' ⌘ __i2!9x i i (x i)

where every i is a finite conjunction of atomic L-formulas,
2 ' 2 ⇧p

1 i↵
' ⌘ ^̂ i2!8x i i (x i)

where every i is a finite disjunction of negations of atomic L-formulas,
3 ' 2 ⌃p

↵+1 i↵
' ⌘ __i2!9x i (i (x i) ^ ✓i (x i))

where i is ⌃
p
↵ and ✓i is ⇧

p
↵ for all i .

4 ' 2 ⇧p
↵+1 i↵

' ⌘ ^̂ i2!8x i (i (x) _ ✓i (x))
where i is ⌃

p
↵ and ✓i is ⇧

p
↵ for all i .

5 ' 2 ⌃p
� for � a limit ordinal i↵ ' ⌘ __i2! i , where each i is ⌃

p
�i

with
�i < �,

6 ' 2 ⇧p
� for � a limit ordinal i↵ ' ⌘ ^̂ i2! i , where each i is ⌃

p
�i

with
�i < �. 23

Syntactic characterization for TxtEx-learning

Work in progress:

Theorem (Bazhenov, F., Rosseger, A. Soskova, M. Soskova,

Vatev)

Let K = {Ai : i 2 !} be a class of computable infinite L-structures

(here we assume that Ai 6⇠= Aj for i 6= j). The following are

equivalent.

1 The class K is TxtEx-learnable.

2 For every Ai 2 K there is a ⌃p
2 sentence 'i such that for all

Ak 2 K, Ak |= 'i if and only if k = i .

Corollary

Let X be an oracle. Suppose that there exists a uniformly

X -computable sequence of ⌃p,c
2 sentence 'i such that for all

Ak 2 K, Ak |= 'i if and only if k = i . Then the family K is

TxtEx-learnable by an X -computable learner.
24

References

[1] C. Glymour. Inductive inference in the limit. Erkenntnis, 22:23–31, 1985.

[2] E. Martin and D. Osherson. Elements of scientific inquiry. MIT Press,
1998.

[3] F. Stephan and Yu. Ventsov. Learning algebraic structures from text.
Theoret. Comput. Sci., 268(2):221–273, 2001.

[4] W. Merkle and F. Stephan. Trees and learning. J. Comput. System Sci.,
68(1):134–156, 2004.

[5] V. Harizanov and F. Stephan. On the learnability of vector spaces. J.
Comput. System Sci., 73(1):109–122, 2007.

[6] Z. Gao, F. Stephan, G. Wu, and A. Yamamoto. Learning Families of
Closed Sets in Matroids. Computation, Physics and Beyond. WTCS
2012. LNCS, 7160: 120–139, 2012.

[7] E. Fokina, T. Kötzing, and L. San Mauro. Limit learning equivalence
structures. Proceedings of the 30th International Conference on
Algorithmic Learning Theory, volume 98 of PMLR, 383–403, Chicago,
Illinois, 22–24 Mar 2019.

[8] N. Bazhenov, E. Fokina, and L. San Mauro. Learning families of algebraic
structures from informant, Information and Computation, 275, 2020.

	Results

