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Beyond the Turing degrees: The enumeration degrees

Definition (various authors, 1950s)

For A, B C N, we say that A is enumeration reducible to B
(A <. B) if

every enumeration of B computes an enumeration of A.

Example
Let B be a maximal independent set of vertices in a computable
graph. Then B¢ <, B (but B £. B€ in general.)

The enumeration degrees (e-degrees) are defined from <. in the
same way that the Turing degrees are defined from <.

They form an upper-semilattice under <, and the usual effective
join.
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Beyond the Turing degrees: The enumeration degrees

The Turing degrees embed into the e-degrees in a natural way:
A<t B ifandonlyif A®A° <. B® B

so the map A — A @ A€ induces an embedding.
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Questions we can ask about a partial order

Is it linear?
Which finite partial orders embed into it?

Is it dense?

e

Given finite partial orders P C Q, can every embedding of P
into it be extended to an embedding of Q7

5. (1) Given a first-order sentence in the language of {<}, can
we algorithmically decide if it is true?

For many degree structures, the answer to 5 is very much no
(Slaman, Woodin 1997).
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A central question

On the other hand, every finite partial order embeds into the
e-degrees (corollary of Sacks 1963), so we can compute if a
sentence of the form

Jdapda; - - - Ja, (Boolean combination of a; < a;)

holds by checking whether the Boolean combination is consistent
with the axioms of partial orders.

At what point does computability break down?
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A countable substructure: The ¥ e-degrees

We are working on this question for the ¥3 e-degrees.

Reasons to study the ¥9 e-degrees:
1. They are analogous to the c.e. Turing degrees

2. Any nontrivial automorphism of the e-degrees must move
some Y3 e-degree (Slaman, Soskova 2017)

3. They exhibit unusual order-theoretic phenomenon (next slide)
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The X9 e-degrees: Ahmad pairs
The X9 e-degrees are dense (Cooper).

Compare: The c.e. Turing degrees are dense (Sacks density).

Question (Cooper)

Does the ¥3 e-degrees satisfy the same first-order sentences as the
c.e. Turing degrees?

Theorem (Ahmad 1989)

a
In the £ e-degrees, there are

incomparable a and b such that X
if x < a, then x <, b. d

Notice that a cannot be the join of two degrees below it.

On the other hand, in the c.e. Turing degrees, every degree is the
join of two degrees below it (Sacks splitting).

7/18



There are no Ahmad triples

b
Theorem (Ahmad 1989) a
There are incomparable a and b
such that if x <. a, then x <. b. X
c
b

Theorem (G., Lempp, Ng,
Soskova 2021) a

For every incomparable a, b, c,
there is some x such that:

> x <,a but x £, b, OR

> x <., b but x £, c.

(Actually we just need a € b, so
a and c could be comparable or
even equal.)
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Reformulating as extensions of embeddings

Theorem (Ahmad 1989)

There are incomparable a and b such that if x <, a, then x <. b.

Reformulation:

Not every embedding of the antichain {a, b} (into the ¥3
e-degrees) can be extended to an embedding of {a, b, x}
where x < a and x £ b.

Our result can be reformulated similarly:
Every embedding of the antichain {a,b,c} can be ex-
tended to one of the following:
» an embedding of {a, b, c,x} where x < a and x £ b
» an embedding of {a, b, c,x} where x < b and x £ c.

(Actually, there are four choices here because in the first ordering, we didn’t specify the relationship between x and

¢, and in the second ordering, we didn't specify the relationship between x and a.)

9/18



“Disjunctive” results

Our result on no “Ahmad triples” generalizes the following

Theorem (Ahmad 1989)

There are no “symmetric Ahmad pairs”, i.e., for every
incomparable a and b, there is some x such that:

> x <ea but x £ b, or
> x <o b but x £, a.

In other words, every embedding of the antichain {a, b} can be
extended to one of the following:

» an embedding of {a, b, x} where x < aand x £ b
» an embedding of {a, b, x} where x < b and x £ a.
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What's the goal here?

We'd like to give an algorithm for deciding the two-quantifier
first-order theory of the X3 e-degrees. In terms of quantifier
alternations, two quantifiers is the most we can hope to decide
(Kent 2006).

Fact: Every two-quantifier sentence can be thought of as a
disjunctive extension of embeddings problem.
Our focus (for now) is the following special case:

One-point extensions of antichains problem
Given a (finite) antichain P and one-point extensions Qy, ..., 9,

of P, decide whether every embedding of P into the ¥3 e-degrees
extends to an embedding of some Q;.

n = 0 was solved by Lempp, Slaman, Sorbi 2005. n > 1 is open.
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One-point extensions of antichains problem

We'll restrict ourselves further to one-point extensions where the
new element is not above any of the old elements.

Given an antichain P = {ao, ..., ax} and such one-point
extensions Qy, ..., @, of P, how might we embed P in a way
which does not extend to an embedding of any Q;?

Let x; denote the new element added by Q;.

Say x; < aj in Q;. By density, given any a;, we can find some
(nonzero) x; <. a;.

Whether this defines an embedding of O; depends on the set of
J' # j for which x; <¢ aj.
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One-point extensions which put a new element below
exactly one old element

Suppose now that in Q;, we have x; < aj and x; | aj for j/ # j.
We shall call such Q; singleton extensions.

(If no Q; is a singleton extension, we can make ag, ..., a pairwise
minimal pairs to prevent extensions to every Q;.)

If ag, ...,ak is an antichain which does not extend to an
embedding of Q; then:

Every x <. aj must be below some other a;:.
If a; has the above property we say that it is a weak Ahmad base.

» If a and b form an Ahmad pair, then a is a weak Ahmad base.

» Not all weak Ahmad bases come from Ahmad pairs
(G., Lempp, Ng, Soskova 2021).
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We want to understand which degrees can be weak Ahmad bases,
because in the general (i.e., disjunctive) situation, we want to
construct an embedding P which cannot be extended to any Q; in
a finite list, not just a single Q;.

Theorem (G., Lempp, Ng, Soskova ongoing)
If a and b form an Ahmad pair, then b is not a weak Ahmad base.

This generalizes our result on “no Ahmad triple”.

In fact, we believe we have proved the following stronger statement

(%):

Ifag,...,a; are incomparable weak Ahmad bases, then
for each i, there is some X; <. a; such that
x; e ay forall i’ #i.

(To derive the theorem from (x), take j =1, a0 =a, a; = b.)

14 /18



A necessary condition for embeddings which fail to extend

Suppose ag, ..., ax is an antichain which does not extend to an
embedding of any of Qp, ..., 9,.

WLOG we can put all singleton extensions at the front. Fix j < k
such that the Q; for i < j are those whose new element x; lies
below a; and no other a;.

Then ag, ...,a; are weak Ahmad bases, so (assuming (x)) for each
i < j, we can choose some x; <, a; such that x; £, a; for other
P

" <.

Each x; must be below some aj/, where j' > j (otherwise we could
extend to Q; using x;).

Furthermore, there cannot be any Q,, such that for j/ < k,

xj <caj ifandonly if xn <apin Qp.
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Lemma (assuming (x))

If there is an embedding of {ag, ..., ax} which does not extend to
an embedding of any of Qq, ..., Qp, then there is a function v,
defined on the set of i such that Q; is a singleton extension, with
the following properties for each i € dom(v):

I. v(i) is a nonempty subset of {0, ..., k} —dom(v)
[I. There is no Q,, such that

{iYuv(i)={j' < k:xm<ajinQnm}.

Example

Every embedding of the antichain {ag, a;} extends to an
embedding of one of the following:

> Qg adds xp where xg < ag only <+ singleton extension
> O adds x; where x; < ag, a1

because (by I) the only possibility for (0) is {1}, but then Il is
violated because of Q.
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A further necessary condition

Recalling the setup from two slides ago:

> ag,...,ak does not extend to an embedding of any of
Qo, -, .

» The Q; for i < j are those whose new element x; lies below a;
and no other aj:.

» For each i < j, we can choose some Xx; <, a; such that
x; %o aj for other i/ <.

Consider the join x; V x;r, for i < i’ <.

The set of j// < k such that x; V x; <, aj is exactly the
intersection of that for x; and x;.

This intersection cannot be “realized” by any Q,, either.

We may apply a similar analysis to any join of the x;.
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A working conjecture

We believe that the previous necessary conditions are sufficient,
i.e.,

As long as there is some function v with the required
properties, then we can construct an embedding of the
antichain {ag, ..., ax} which fails to extend.

If true, this would give us an algorithm for deciding whether every
embedding of a given finite antichain P extends to an embedding
of some Q;, where Q, ..., Q, are one-point extensions of P
where the new element is not above any old elements.

Thanks!
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