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Abstract

We will explore issues within Geometric Measure Theory using methods

from Computability Theory and Set Theory. Except when stated

otherwise, this is joint work with Jan Reimann.
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Ingredients from Logic

I Lightface characterization of co-analytic sets: A is co-analytic i↵

there is a p 2 2
!
such that x 2 A is uniformly ⌃1-definable relative

to p in L!XP

1

(x , p).

– If V = L, then {x : x 2 L!x

1
} can be used to define co-analytic sets

by transfinite recursion.

I Set theory of the continuum.

– Especially the understanding of measure in generic extensions.

I Semi-recently uncovered connections between algorithmic

randomness and Hausdor↵ dimension.

I Determinacy.

– We will not explore this topic here, but recent results of Crone,
Fishman and Jackson (2020) show that some of the regularity
properties we will cite for analytic sets apply more generally under
determinacy assumptions.
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Gauge Functions and General Hausdor↵ Dimension

Definition

A gauge function is a function h : (0,1) ! (0,1) which has the

following properties:

I continuous

I increasing

I limt!0+ h(t) = 0

Example

h(t) = ts , for s > 0.
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Gauge Functions and General Hausdor↵ Dimension

Definition

Let h be a gauge function. For a set A ✓ 2
!
(or !!, Rn

etc.), define

Hh
(A) = lim

�!0

inf
A✓[Fi

max d(Fi )<�

1X

i=1

h(d(Fi ))

where {Fi} is a sequence of closed (open) sets covering A and d(Fi ) is

the diameter of Fi .

I When h(t) is ts , Hh
= Hs

is the usual s-dimensional Hausdor↵ outer

measure.

I Gauge functions provide a more finely graded calibration of measure

and thereby of dimension than is given by the usual family

{t 7! ts : s 2 [0, 1]}.
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Gauge Functions and General Hausdor↵ Dimension

Definition

The Hausdor↵ dimension of a set A is the number d such that whenever

d0 < d < d1, Hd0(A) = 1 and Hd1 = 0.

Example

The Cantor middle-third set, which has dimension log(2)/ log(3) is null
with respect to linear (Lebesgue) measure.
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Point-to-Set Principle

Definition (Lutz, Mayordomo 2002)

For any x 2 2
!
,

dim
e↵

H
(x) = lim inf

`!1

K (x � `)
`

where K denotes Kolmogorov complexity.

Theorem (J. Lutz and N. Lutz 2017)

For A ✓ 2
!, the Hausdor↵ dimension of a set A is equal to

the infimum over all B ✓ N
of the supremum over all x 2 A

of dime↵ (B)

H
(x), the e↵ective-relative-to-B H-dimension of x .
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Gauge Functions and General Hausdor↵ Dimension

The clarity of Hausdor↵ dimension transfers only partially to gauge

measures.

Recall:

Definition

Write h � g to indicate that limt!0+
g(t)

h(t)
= 0.

Similarities:

I If Hh
(A) is finite and h � g then Hg

(A) = 0.

I If Hh
(A) is not zero and j � h then H j

(A) is infinite.

Di↵erence:

I (Besicovitch 1956) If Hh
(A) = 0 then there is a j with j � h such

that H j
(A) = 0.
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Sets of non-�-finite measure

Definition

A set A is �-finite for Hh
i↵ A is a countable union of sets Ai , such that

each Hh
(Ai ) is finite.

Improved observation from previous slide:

I If Hh
(A) is not zero and j � h then A is non-�-finite for H j

.

Example

For d in (0, 1), the set De↵

d
= {x : dim

e↵

H
(x) = d} has Hausdor↵

dimension d and is non-�-finite for Hd
.

Question

Is there a useful point-to-set formulation of a set’s being non-�-finite for
Hh?
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Sets of Strong Dimension h

Definition

A set E has strong dimension h i↵

8f [f � h ) H f
(E ) = 1]

8g [h � g ) Hg
(E ) = 0]

As a limiting case, E has strong dimension 0 i↵ for all g , Hg
(E ) = 0.

Example

A line segment within the plane has strong dimension 1.
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Sets of Strong Dimension h

Theorem (Besicovitch 1956, generalized Rogers 1962)

If E is compact and is non-�-finite for Hh, then there is a g such that
h � g and E is non-�-finite for Hg .

Thus, if E is compact then E cannot have strong dimension h and be

non-�-finite for Hh.

Theorem (Davies 1956 for x s , Sion and Sjerve 1962)

If E is analytic and is non-�-finite for Hh, then there is a compact subset
of E that is non-�-finite for Hh.

Hence, we can make the above observation for analytic sets.

It would be interesting to find proofs of these theorems using e↵ective

methods.
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Sets of Strong Dimension h

Theorem (Besicovitch 1963)

If CH then there is a set E ⇢ R2 such that E has strong linear dimension
and is non-�-finite for linear measure.

Theorem (Combining Besicovitch 1963 with Erdős, Kunen and Mauldin

1981)

If V = L there there is a ⇧
1

1
set E ✓ R2 such that E has strong linear

dimension and is non-�-finite for linear measure.
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Proof Sketch

E = A⇥ [0, 1], where A is a small uncountable set.

I (Besicovitch) CH implies that there is an uncountable set A such

that any open cover of Q is an open cover of A.

I (Erdős, Kunen and Mauldin) V = L implies that there is a

co-analytic example of such an A.
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Other Examples under V = L
capacitability

Theorem (Besicovitch and Davies (independently) 1952)

If A is an analytic subset of 2! and dimH(A) = d , then for every s < d
there is a closed set Cs ✓ A such that s  dimH(C )  d .

Theorem (Slaman)

If V = L then the maximal thin ⇧
1

1
set, {x : x 2 L!x

1
}, has Hausdor↵

dimension 1, but all of its closed subsets are countable.
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Other Examples under V = L
projections of sets of positive dimension

Theorem (Marstrand 1952)

Let E ✓ R2 be analytic. Then, for almost every angle ✓ 2 [0, 2⇡],

dimH(p✓ E ) = min{dimH(E ), 1},

where p✓(x , y) = x cos ✓ + y sin ✓. Moreover, if dimH(E ) > 1, then
µ(p✓ E ) > 0, for almost every angle ✓.

Theorem (Slaman and Stull (in progress))

If V = L then for every s 2 (0, 1) there is a ⇧
1

1
set E ✓ R2 such that

dimH(E ) = 1 + s but

dimH(p✓E ) = s

for every ✓ 2 (0, 2⇡).
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Borel Conjecture
return to discussion of strong dimension h

Definition

A set E ✓ R has strong measure 0 i↵ for any sequence of positive real

numbers {✏i} there is a sequence of open intervals {Oi} such that for

each i , Oi has length ✏i , and E ✓ [1
i=1

Oi .

Borel (1919) conjectured that strong measure 0 implies countable (BC).

Theorem

I (Sierpiński 1928) CH implies that there is an uncountable set of
strong measure 0.

I (Laver 1976) Con(ZFC ) implies Con(ZFC + BC ).
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Borel Conjecture

Theorem (Besicovitch 1955)

A set E has strong dimension 0 i↵ it has strong measure 0.

Theorem (Another variation on Besicovitch 1963)

¬BC implies that there is a subset of R2 which has strong linear
dimension and which is non-�-finite for linear measure.
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A Challenge

Question

Does the Borel Conjecture imply that there do not exist h and A such
that A has strong dimension h and A is not �-finite for Hh?

The conceptual challenge is to overcome the intractability of the property

that A is non-�-finite for Hh
.
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Understanding Non-�-finiteness
A case study

Consider ⇧
0

1
subsets of 2

! ⇥ 2
!
and linear measure H1

.

Exercise

The set of indices for ⇧0

1
subsets C of 2

! ⇥ 2
! such that H1

(C ) 6= 0 is
arithmetic.

By the compactness of 2
! ⇥ 2

!
, we can assume that all the open covers

in the definition of H1
(C ) are finite, which means that the prima facie

definition of “H1
(C ) 6= 0” can be expressed arithmetically.
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Understanding Non-�-finiteness

Definition

Let N�Finite be the of indices for ⇧
0

1
subsets C of 2

! ⇥ 2
!
such that C

is non-�-finite for H1

Theorem

N�Finite is ⌃1

1
-complete.

Here is a more familiar situation which is analogous.

Exercise

The set of indices for ⇧0

1
subsets C of 2

! such that C is uncountable
⌃

1

1
-complete.

Use Cantor’s theorem: C is uncountable i↵ C has a perfect subset.
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Understanding Non-�-finiteness
N�Finite is ⌃

1

1

The ingredients in the proof of Davies’s (1956) theorem about

capacitability of non-�-finiteness entail the following:

C is non-�-finite for H1
i↵ there is perfect tree of closed sets

such that each path corresponds to a closed set of H1
-positive

measure.

I It follows that N�Finite is a ⌃
1

1
set.

I Show that N�Finite is ⌃
1

1
-hard by direct construction, analogous to

the analysis of Cantor’s theorem.

Remark

We also exhibit a perfect tree of pairwise-disjoint closed subsets of
positive measure in the example that De↵

d
is non-�-finite for Hd .
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The End
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