Three views of LPO and LLPO

Jeffry Hirst Appalachian State University Boone, NC

April 18, 2022

Midwest Computability Seminar

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

LPO: Limited Principle of Omniscience

LPO: If $f : \mathbb{N} \to \{0, 1\}$ then 0 is in its range or it isn't.

Written as an $\forall \exists$ formula:

$$\forall f \exists n (n = 0 \lor n = 1 \land (n = 0 \leftrightarrow \exists t (f(t) = 0)))$$

A (the) realizer for LPO:

$$\mathcal{R}_{ ext{LPO}}(f) = egin{cases} 0 & ext{if } 0 \in ext{Range}(f) \ 1 & ext{if } 0
otin ext{Range}(f) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

LLPO: Lesser Limited Principle of Omniscience

LLPO: If $f : \mathbb{N} \to \{0, 1\}$ and $0 \in \text{Range}(f)$, then the first 0 occurs at an even integer or at an odd integer.

Written as an $\forall \exists$ formula:

$$\forall f \exists n (\exists t (f(t) = 0) \rightarrow n \equiv_{\mathsf{mod 2}} \mu t(f(t) = 0))$$

Values of a realizer:

Weihrauch reductions

Suppose P and Q are problems.

We say P is Weihrauch reducible to Q (and write $P \leq_W Q$) if there are (partial) computable functionals Φ and Ψ such that if *p* is an instance of P, then

- $\Phi(p)$ is an instance of Q and
- for any solution *s* of $\Phi(p)$, $\Psi(s, p)$ is a solution of *p*.

That is, if R_Q is any realizer of Q, then $\Psi(R_Q(\Phi(p)), p)$ is a realizer for P.

If Ψ does not use the original problem p, we say P is strongly Weihrauch reducible to Q.

Weihrauch reductions

If R_Q is any realizer of Q, then $\Psi(R_Q(\Phi(p)), p)$ is a realizer for P.

- Φ is a pre-processor, turning P problems into Q problems.
- Ψ is a post-processor, turning Q solutions (with copies of P problems) into P solutions.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Φ and Ψ uniformly turn any Q realizer into a P realizer.

Example of a Weihrauch reduction

We will show that LLPO \leq_W LPO, relying on post-processing.

Instructions for Φ :

Input an LLPO problem p. Do nothing and output p.

Instructions for Ψ :

```
Input p and R_{LPO}(\Phi(p)).

Note: R_{LPO}(\Phi(p)) is the LPO solution for p.

If R_{LPO}(p) = 1 (so p is all 1s)

then output 1 and halt.

If R_{LPO}(p) = 0 (so p contains a 0)

then find the first 0 and output the location (mod 2).
```

 Ψ is partial. A false value for $R_{LPO}(\Phi(p))$ may loop.

Example of a Weihrauch reduction

We will show that LLPO \leq_W LPO, relying on pre-processing.

Instructions for Φ :

Input an LLPO problem p. For each *n*, define q(n) by if there is an $m \le n$ such that p(m) = 0 and the first such *m* is even, then set q(n) = 0, and set q(n) = 1 otherwise.

Instructions for Ψ :

Input p and $R_{LPO}(\Phi(p))$. Output $R_{LPO}(\Phi(p))$.

 Φ and Ψ are total. Ψ doesn't use *p*, so LLPO \leq_{sW} LPO.

Parallelization and Weihrauch reducibility

For a Weihrauch problem P, the parallelization is denoted by \widehat{P} .

 $\widehat{\mathsf{P}}$ accepts a sequence of P problems as input, and outputs the sequence of their solutions.

For example, written as an $\forall \exists$ formula, \widehat{LPO} is

$$\forall \langle f_i \rangle \exists \langle n_i \rangle \forall i (n_i = 0 \lor n_i = 1 \land (n_i = 0 \leftrightarrow \exists t (f_i(t) = 0)))$$

(日) (日) (日) (日) (日) (日) (日)

which is a set existence statement.

Reverse mathematics: The base theory

Reverse Mathematics measures the strength of theorems by proving equivalence results over...

The base theory RCA₀:

Variables for natural numbers and sets of natural numbers Axioms

Arithmetic axioms

(e.g. n + 0 = n and n + (m') = (n + m)')

Induction for particularly simple formulas

Recursive comprehension:

If you can compute a set, then it exists.

Reverse mathematics: The big five

Many theorems of mathematics are equivalent to one of four statements (over the base theory RCA_0). [3]

```
\mathsf{RCA}_0 < \mathsf{WKL}_0 < \mathsf{ACA}_0 < \mathsf{ATR}_0 < \Pi_1^1 \cdot \mathsf{CA}_0
```

Where does LPO fit?

Prop (RCA₀): The following are equivalent:

- (1) ACA_0 .
- (2) LPO.

For the reversal, find the range of an arbitrary injection on \mathbb{N} .

Reverse mathematics: The big five

Many theorems of mathematics are equivalent to one of four statements (over the base theory RCA_0). [3]

```
\mathsf{RCA}_0 < \mathsf{WKL}_0 < \mathsf{ACA}_0 < \mathsf{ATR}_0 < \Pi_1^1 \cdot \mathsf{CA}_0
```

Where does LLPO fit?

Prop (RCA₀): The following are equivalent:
(1) WKL₀.
(2) LLPO.

For the reversal, separate the ranges of two injections with disjoint ranges.

Computability theoretic observations

There is a computable injection on \mathbb{N} with a range that computes 0'.

There is a computable \widehat{LPO} problem such that every solution computes 0'.

There is an ω model of WKL₀ containing only low sets.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Every computable \widehat{LLPO} problem has a low solution.

Thus, $\widehat{LPO} \not\leq_W \widehat{LLPO}$, and so LPO $\not\leq_W LLPO$.

Higher order reverse mathematics

Work in collaboration with Carl Mummert.

Kohlenbach [5] proposed an extension of the axiom systems of reverse mathematics to all finite types.

In this setting, we can prove equivalences between Skolemized functional existence statements.

As an example,

$$\mathsf{LPO}: \forall f \exists n \, (n = 0 \lor n = 1 \land (n = 0 \leftrightarrow \exists t \, (f(t) = 0)))$$

$$\begin{aligned} (\mathsf{LPO}) : \exists R_{\mathsf{LPO}} \,\forall f(R_{\mathsf{LPO}}(f) = \mathbf{0} \lor R_{\mathsf{LPO}}(f) = \mathbf{1} \land \\ (R_{\mathsf{LPO}}(f) = \mathbf{0} \leftrightarrow \exists t \, (f(t) = \mathbf{0}))) \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Higher order RM: The base theory

Kohlenbach's [5] RCA₀^{ω} includes functionals of higher type, like $f : 2^{\mathbb{N}} \to \mathbb{N}$ and $g : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$.

It includes:

- Restricted induction
- Primitive recursion (on N with parameters)
- λ-abstraction

Naïvely, if you can compute a functional, it exists.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(LPO) as an ACA₀ analog

$$(\mathsf{LPO}): \exists R_{\mathsf{LPO}} \forall f(R_{\mathsf{LPO}}(f) = 0 \lor R_{\mathsf{LPO}}(f) = 1 \land (R_{\mathsf{LPO}}(f) = 0 \leftrightarrow \exists t (f(t) = 0)))$$

(LPO) is Kohlenbach's (\exists^2) . The functional R_{LPO} is Kleene's E^2 .

$$\label{eq:RCA_0} \begin{split} & \mathsf{RCA_0^\omega} + (\mathsf{LPO}) \text{ is a conservative extension of } \mathsf{ACA_0} \text{ for} \\ & \Pi_2^1 \text{ formulas.[6]} \end{split}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

And for (LLPO), there is a surprise:

Prop: (RCA₀^ω) The following are equivalent:
(1) (LPO)
(2) (LLPO)

$\mathsf{RCA}_0^\omega \vdash (\mathsf{LLPO}) \rightarrow (\mathsf{LPO})$

Proof sketch: Working in RCA₀^{ω}, suppose we have R_{LLPO} . Let $f = \langle 1, 1, 1, ... \rangle$, and suppose $R_{LLPO}(f) = 0$. Define a sequence of inputs:

$$g_n(m) = \begin{cases} 1 & \text{if } m \neq 2n+1 \\ 0 & \text{if } m = 2n+1 \end{cases}$$

For every n, $R_{LLPO}(g_n) = 1$, so

$$\lim_{n} R_{\text{LLPO}}(g_n) = 1 \neq 0 = R_{\text{LLPO}}(f) = R_{\text{LLPO}}(\lim_{n} g_n)$$

and R_{LLPO} is effectively sequentially discontinuous.

Apply Prop. 3.7 of Kohlenbach [5] to obtain (LPO).

If $R_{\text{LLPO}}(f) = 1$, revise the definition of g_n .

Grilliot's trick and Kohlenbach's proposition

We can replace the use of Prop. 3.7 of Kohlenbach [5] with part of the proof of Lemma 1 of Grilliot [4].

Let f and g_n be as before. Define the functional $J : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ for $h : \mathbb{N} \to 2$ and $j \in \mathbb{N}$ by

$$J(h)(j) = \begin{cases} 1 & \text{if } \forall x \leq j \ (h(x) \neq 0), \\ g_i(j) & \text{if } i \leq j \land i = \mu t(h(t) = 0). \end{cases}$$

Note that if h = f, then J(h) = f. If *i* is the least value such that h(i) = 0, then $J(h) = g_i$.

So *h* contains a zero if and only if $R_{LLPO}(J(h)) \neq R_{LLPO}(f)$. We can use R_{LLPO} and *J* to compute R_{LPO} .

The underlying computability theory

Why does $\text{RCA}_0^\omega \vdash (\text{LLPO}) \rightarrow (\text{LPO})$ when LPO ${\not\leqslant}_W$ LLPO?

The two approaches yield different information.

LPO \leq_W LLPO because there are no fixed computable pre-processing and post-processing functionals that can (uniformly) convert every realizer for LLPO into a realizer for LPO.

 $\text{RCA}_0^{\omega} \vdash (\text{LLPO}) \rightarrow (\text{LPO})$ because given any realizer for LLPO we can compute a realizer for LPO. In the proof, when we said "suppose $R_{\text{LLPO}}(f) = 0$ " we made a non-uniform choice.

What about the other half of the equivalence?

```
Prop: \mathsf{RCA}_0^{\omega} \vdash (\mathsf{LPO}) \rightarrow (\mathsf{LLPO}).
```

The idea of the proof:

 RCA_0^{ω} can prove the existence of the pre-processing and post-processing functionals in our second proof of LLPO \leqslant_W LPO. The implication follows by composition of functionals.

The post-processing functional in the first proof was not total, so that argument does not work in the higher order reverse mathematics setting.

Three questions, one answer.

 Are all Skolemized functional existence statements (SFEs) corresponding to WKL₀ statements equivalent to (LPO) in higher order reverse mathematics?

No. Kohlenbach [5] noted statements about moduli of uniform continuity that are conservative over WKL_0 .

- Which SFEs corresponding to WKL₀ are equivalent to (LPO)? Are the others weaker and equivalent to each other, or is there a low-level higher-order zoo?
- What about SFEs corresponding to Π¹₁-CA₀ (and the Suslin functional) as compared to those corresponding to theorems equivalent to ATR₀?

References

- Vasco Brattka and Guido Gherardi, *Effective choice and boundedness principles in computable analysis*, Bull. Symbolic Logic **17** (2011), no. 1, 73–117. DOI 10.2178/bsl/1294186663. MR2760117
- [2] Vasco Brattka, Guido Gherardi, and Arno Pauly, Weihrauch Complexity in Computable Analysis (2018), 50+11. arXiv:1707.03202v4 DOI 10.48550/arXiv.1707.03202.
- Harvey Friedman, Abstracts: Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic 41 (1976), 557–559.
 DOI 10.2307/2272259.
- [4] Thomas J. Grilliot, On effectively discontinuous type-2 objects, J. Symbolic Logic 36 (1971), 245–248. DOI 10.2307/2270259. MR290972
- [5] Ulrich Kohlenbach, *Higher order reverse mathematics*, Reverse mathematics 2001, Lect. Notes Log., vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 281–295. DOI 10.1017/9781316755846. MR2185441
- [6] Nobuyuki Sakamoto and Takeshi Yamazaki, Uniform versions of some axioms of second order arithmetic, MLQ Math. Log. Q. 50 (2004), no. 6, 587–593.
 DOI 10.1002/malq.200310122. MR2096172
- Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press and ASL, 2009. DOI 10.1017/CBO9780511581007. MR2517689