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LPO: Limited Principle of Omniscience

LPO: If f : N→ {0,1} then 0 is in its range or it isn’t.

Written as an ∀∃ formula:

∀f ∃n (n = 0 ∨ n = 1 ∧ (n = 0↔ ∃t (f (t) = 0)))

A (the) realizer for LPO:

RLPO(f ) =

{
0 if 0 ∈ Range(f )
1 if 0 /∈ Range(f )



LLPO: Lesser Limited Principle of Omniscience

LLPO: If f : N→ {0,1} and 0 ∈ Range(f ), then the first 0 occurs
at an even integer or at an odd integer.

Written as an ∀∃ formula:

∀f ∃n (∃t (f (t) = 0)→ n ≡mod 2 µt(f (t) = 0))

Values of a realizer:

n 0 1 2 3 4 . . .

f (n) 1 1 0 1 0 . . .
RLLPO(f ) = 0

n 0 1 2 3 4 . . .

g(n) 1 1 1 0 0 . . .
RLLPO(g) = 1

n 0 1 2 3 4 . . .

h(n) 1 1 1 1 1 . . .
RLLPO(h) = 0 or 1



Weihrauch reductions

Suppose P and Q are problems.

We say P is Weihrauch reducible to Q (and write P 6W Q) if
there are (partial) computable functionals Φ and Ψ such that if
p is an instance of P, then
• Φ(p) is an instance of Q and
• for any solution s of Φ(p), Ψ(s,p) is a solution of p.

That is, if RQ is any realizer of Q, then Ψ(RQ(Φ(p)),p) is a
realizer for P.

If Ψ does not use the original problem p, we say P is strongly
Weihrauch reducible to Q.



Weihrauch reductions

If RQ is any realizer of Q, then Ψ(RQ(Φ(p)),p) is a realizer for P.

• Φ is a pre-processor, turning P problems into Q problems.

• Ψ is a post-processor, turning Q solutions (with copies of P
problems) into P solutions.

• Φ and Ψ uniformly turn any Q realizer into a P realizer.



Example of a Weihrauch reduction
We will show that LLPO 6W LPO, relying on post-processing.

Instructions for Φ:

Input an LLPO problem p.
Do nothing and output p.

Instructions for Ψ:

Input p and RLPO(Φ(p)).
Note: RLPO(Φ(p)) is the LPO solution for p.

If RLPO(p) = 1 (so p is all 1s)
then output 1 and halt.

If RLPO(p) = 0 (so p contains a 0)
then find the first 0 and output the location (mod 2).

Ψ is partial. A false value for RLPO(Φ(p)) may loop.



Example of a Weihrauch reduction

We will show that LLPO 6W LPO, relying on pre-processing.

Instructions for Φ:
Input an LLPO problem p.
For each n, define q(n) by

if there is an m 6 n such that p(m) = 0 and the first
such m is even, then set q(n) = 0, and

set q(n) = 1 otherwise.

Instructions for Ψ:
Input p and RLPO(Φ(p)).
Output RLPO(Φ(p)).

Φ and Ψ are total. Ψ doesn’t use p, so LLPO 6sW LPO.



Parallelization and Weihrauch reducibility

For a Weihrauch problem P, the parallelization is denoted by P̂.

P̂ accepts a sequence of P problems as input, and outputs the
sequence of their solutions.

For example, written as an ∀∃ formula, L̂PO is

∀〈fi〉 ∃〈ni〉 ∀i (ni = 0 ∨ ni = 1 ∧ (ni = 0↔ ∃t (fi(t) = 0)))

which is a set existence statement.



Reverse mathematics: The base theory

Reverse Mathematics measures the strength of theorems by
proving equivalence results over. . .

The base theory RCA0:

Variables for natural numbers and sets of natural numbers

Axioms

Arithmetic axioms
(e.g. n + 0 = n and n + (m′) = (n + m)′)

Induction for particularly simple formulas

Recursive comprehension:
If you can compute a set, then it exists.



Reverse mathematics: The big five

Many theorems of mathematics are equivalent to one of four
statements (over the base theory RCA0). [3]

RCA0 < WKL0 < ACA0 < ATR0 < Π
1
1-CA0

Where does L̂PO fit?

Prop (RCA0): The following are equivalent:
(1) ACA0.

(2) L̂PO.

For the reversal, find the range of an arbitrary injection on N.



Reverse mathematics: The big five

Many theorems of mathematics are equivalent to one of four
statements (over the base theory RCA0). [3]

RCA0 < WKL0 < ACA0 < ATR0 < Π
1
1-CA0

Where does L̂LPO fit?

Prop (RCA0): The following are equivalent:
(1) WKL0.

(2) L̂LPO.

For the reversal, separate the ranges of two injections with
disjoint ranges.



Computability theoretic observations

There is a computable injection on N with a range that
computes 0′.

There is a computable L̂PO problem such that every
solution computes 0′.

There is an ω model of WKL0 containing only low sets.

Every computable L̂LPO problem has a low solution.

Thus, L̂PO 66W L̂LPO, and so LPO 66W LLPO.



Higher order reverse mathematics

Work in collaboration with Carl Mummert.

Kohlenbach [5] proposed an extension of the axiom systems of
reverse mathematics to all finite types.

In this setting, we can prove equivalences between Skolemized
functional existence statements.

As an example,

LPO : ∀f ∃n (n = 0 ∨ n = 1 ∧ (n = 0↔ ∃t (f (t) = 0)))

(LPO) : ∃RLPO ∀f (RLPO(f ) = 0 ∨ RLPO(f ) = 1∧
(RLPO(f ) = 0↔ ∃t (f (t) = 0)))



Higher order RM: The base theory

Kohlenbach’s [5] RCAω
0 includes functionals of higher type,

like f : 2N → N and g : 2N → 2N.

It includes:
• Restricted induction

• Primitive recursion (on N with parameters)

• λ-abstraction

Naı̈vely, if you can compute a functional, it exists.



(LPO) as an ACA0 analog

(LPO) : ∃RLPO ∀f (RLPO(f ) = 0 ∨ RLPO(f ) = 1∧
(RLPO(f ) = 0↔ ∃t (f (t) = 0)))

(LPO) is Kohlenbach’s (∃2). The functional RLPO is Kleene’s E2.

RCAω
0 + (LPO) is a conservative extension of ACA0 for

Π1
2 formulas.[6]

And for (LLPO), there is a surprise:

Prop: (RCAω
0 ) The following are equivalent:

(1) (LPO)

(2) (LLPO)



RCAω0 ` (LLPO)→ (LPO)

Proof sketch: Working in RCAω
0 , suppose we have RLLPO.

Let f = 〈1,1,1, . . . 〉, and suppose RLLPO(f ) = 0.

Define a sequence of inputs:

gn(m) =

{
1 if m 6= 2n + 1
0 if m = 2n + 1

For every n, RLLPO(gn) = 1, so

lim
n

RLLPO(gn) = 1 6= 0 = RLLPO(f ) = RLLPO(limn gn)

and RLLPO is effectively sequentially discontinuous.

Apply Prop. 3.7 of Kohlenbach [5] to obtain (LPO).

If RLLPO(f ) = 1, revise the definition of gn.



Grilliot’s trick and Kohlenbach’s proposition

We can replace the use of Prop. 3.7 of Kohlenbach [5] with part
of the proof of Lemma 1 of Grilliot [4].

Let f and gn be as before. Define the functional J : 2N → 2N for
h : N→ 2 and j ∈ N by

J(h)(j) =

{
1 if ∀x 6 j (h(x) 6= 0),
gi(j) if i 6 j ∧ i = µt(h(t) = 0).

Note that if h = f , then J(h) = f . If i is the least value such that
h(i) = 0, then J(h) = gi .

So h contains a zero if and only if RLLPO(J(h)) 6= RLLPO(f ). We
can use RLLPO and J to compute RLPO.



The underlying computability theory

Why does RCAω
0 ` (LLPO)→ (LPO) when LPO 66W LLPO?

The two approaches yield different information.

LPO 66W LLPO because there are no fixed computable
pre-processing and post-processing functionals that can
(uniformly) convert every realizer for LLPO into a realizer for
LPO.

RCAω
0 ` (LLPO)→ (LPO) because given any realizer for LLPO

we can compute a realizer for LPO. In the proof, when we said
“suppose RLLPO(f ) = 0” we made a non-uniform choice.



What about the other half of the equivalence?

Prop: RCAω
0 ` (LPO)→ (LLPO).

The idea of the proof:

RCAω
0 can prove the existence of the pre-processing and

post-processing functionals in our second proof of
LLPO 6W LPO. The implication follows by composition of
functionals.

The post-processing functional in the first proof was not total,
so that argument does not work in the higher order reverse
mathematics setting.



Three questions, one answer.

• Are all Skolemized functional existence statements (SFEs)
corresponding to WKL0 statements equivalent to (LPO) in
higher order reverse mathematics?

No. Kohlenbach [5] noted statements about moduli of
uniform continuity that are conservative over WKL0.

• Which SFEs corresponding to WKL0 are equivalent to
(LPO)? Are the others weaker and equivalent to each
other, or is there a low-level higher-order zoo?

• What about SFEs corresponding to Π1
1−CA0 (and the

Suslin functional) as compared to those corresponding to
theorems equivalent to ATR0?
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