My favorite theorem

Uri Andrews

University of Wisconsin

May 2022

I want to tell you about my favorite theorem. I don't intend to tell you about my research at all. Congrats – you dodged a bullet there.

Theorem (Marker, '83)

If X computes an enumeration of the Scott set S, then X also computes an effective enumeration of the Scott set S.

I'll soon tell you what all the words here mean, but even without that, this should be remarkable. Effectivity of *anything* should never be "free".

A Scott set S is a nonempty subset of $P(\omega)$ with the following properties:

- If $X \in \mathcal{S}$ and $Y \leq_T X$ then $Y \in \mathcal{S}$
- If $X, Y \in \mathcal{S}$ then $X \oplus Y \in \mathcal{S}$.
- If $T \subseteq 2^{<\omega}$ is infinite and $T \leq_T X \in \mathcal{S}$, then there is some $Y \in \mathcal{S}$ which is a path through T.

Definition

 $E \subseteq \omega^2$ is an enumeration of the Scott set S if $\{E_i \mid i \in \omega\} = S$ where $E_i = \{j \mid (i, j) \in E\}.$

Observation

For any X in a Scott set S, there is a $Y >_T X$ in S.

E is an effective enumeration of the Scott set S if E is an enumeration of S and there are computable functions witnessing the closure properties of the Scott set. i.e. There is a computable function f(i, j) so that if T is an infinite tree in $2^{<\omega}$ and $T = \varphi_i(E_j)$, then $E_{f(i,j)}$ is a path through T.

So, enumerating a Scott set is just listing off its sets. Effectively enumerating it is to list off its sets and be able to computably *find* the columns that you know must be there somewhere.

Theorem (Marker, '83)

If X computes an enumeration of the Scott set S, then X also computes an effective enumeration of the Scott set S.

Effectivity for free! This is a statement that no computability theorist believes at first sight. After all, how could I possibly know which of the infinitely many columns is a path through T?

There are several components of this talk.

- The theory PA & overspill.
- Coding subsets of ω by elements in models of PA.
- The standard system of a model of PA, computable from a computation of the model.
- Matiyasevich's theorem on Hilbert's 10th problem.
- The standard system of a model of PA revisited.
- \mathcal{S} -Saturation and Homogeneity.
- Goncharov-Peretyat'kin on deciding homogeneous models.
- What does any of this have to do with Marker's theorem?
- Is there a direct proof? Inviting wild speculation into the computability-theoretic role of homogeneity/overspill/Hilbert's 10th.

The theory of PA and overspill

The theory PA is in the language $\{+, \cdot, 0, 1, <\}$ and it says the basic arithmetic facts (like distributivity, associativity, etc.) and the induction axioms:

Induction: For any formula $\varphi(x, \bar{y})$ and any tuple \bar{a} , either $\varphi(\mathcal{M}, \bar{a})$ is empty or it contains a least element.

Every model of PA starts with 0, 1, 2, ..., so has an initial segment that looks like \mathbb{N} . Further, since the complement of \mathbb{N} cannot have a least element (you can always subtract 1 and stay outside of \mathbb{N}), $\mathcal{M} \setminus \mathbb{N}$ is either empty or not definable.

Observation (Overspill Principle)

If $\mathcal{M} \models PA$ is not \mathbb{N} and X is a definable subset of \mathcal{M} which contains all of \mathbb{N} , then it must contain some element outside of \mathbb{N} .

Proof.

Otherwise X is a definition of $\mathbb N$ which violates an axiom of induction.

Coding subsets of ω in models of PA

Definition

If $a \in \mathcal{M} \models \text{PA}$, then $r(a) = \{n \mid \text{the } n^{\text{th}} \text{ prime divides } a\}$. For $\mathcal{M} \models \text{PA}$, we let $\mathcal{SS}(\mathcal{M}) = \{r(a) \mid a \in \mathcal{M}\}$.

Theorem (Scott-Tennenbaum)

If \mathcal{M} is a nonstandard model of PA, then $\mathcal{SS}(\mathcal{M})$ is a Scott set.

Proof.

Let T be an infinite tree coded by r(a). That is, $\sigma \in T$ if and only if $p_{\sigma}|a$ (the σ th prime – using a bijection between $2^{<\omega}$ and \mathbb{N}). Then consider the set of n so that $\{\sigma : p_{\sigma}|a\}$ defines a tree up to length n and there is a string σ_n of length n on the tree coded by some number b. This is a definable set and includes every standard integer. By overspill, there is a nonstandard integer in this set. So, we get some b coding a path through the tree.

\mathcal{M} computes an enumeration of $\mathcal{SS}(\mathcal{M})$

If we have a computation of $\mathcal{M} \models PA$, then we can computably find, for each n, the n^{th} prime p_n . Further, for any $x \in \mathcal{M}$, we can check if p_n divides x (because it either divides x or one of it's p_n successors). So, for any $x \in \mathcal{M}$, we can uniformly compute the set r(x).

Lemma

If X computes a copy of \mathcal{M} , then X computes an enumeration of $\mathcal{SS}(\mathcal{M})$. We call this the Standard Enumeration of $\mathcal{SS}(\mathcal{M})$ from the copy of \mathcal{M} .

Theorem (Tennenbaum)

There is no computable nonstandard model of PA.

Proof.

From a copy of the nonstandard model \mathcal{M} , we compute an enumeration of $\mathcal{SS}(\mathcal{M})$. But this is a Scott set, so it contains a non-computable element.

Hilbert's 10th problem and Matiyasevich's theorem

Hilbert's 10th problem asked for an algorithm to determine whether or not a polynomial $p(\bar{z})$ has a solution in \mathbb{N} (or \mathbb{Z}).

Definition

A set $X \subseteq \mathbb{N}^k$ is diophantine if there is some polynomial $p(\bar{x}, \bar{y})$ so that $X = \{\bar{x} \mid \exists \bar{y} p(\bar{x}, \bar{y}) = 0\}$

Theorem (Matiyasevich)

Every computably enumerable set is diophantine.

Theorem (Matiyasevich's theorem in PA)

If $\varphi(\bar{x})$ is a Σ_1^0 -definable subset of $\mathcal{M} \models PA$, then there is some p so that $\{\bar{x} \mid \mathcal{M} \models \exists \bar{y}p(\bar{x}, \bar{y}) = 0\} = \varphi(\mathcal{M})$

A forumla is Σ_1^0 if it is formed from quantifier-free formulas and the quantifiers $\exists y, \exists y < a \text{ and } \forall y < a.$

Σ_1^0 -definable sets are computably enumerable in M

Corollary

Let $\mathcal{M} \models PA$. Let A be a Σ_1^0 -definable set. Then A is computably enumerable in any copy of \mathcal{M} .

Proof.

The problem in this lemma is that $\forall x < v$ is not obviously computable to check if v is a non-standard integer. In \mathbb{N} , bounded quantification is obviously computable: Just check the finitely many cases needed. Solution: Replace the Σ_1^0 formula with an (equivalent) diophantine definition. There are no $\forall x < v$'s in the diophantine definition.

Corollary

If X is Δ_1^0 -definable in a model of PA, then it is computable in any copy of \mathcal{M} .

10

Theorem (Solovay)

If \mathcal{M} is a nonstandard model of PA, then the Standard Enumeration of $\mathcal{SS}(\mathcal{M})$ is M-effective. i.e., \mathcal{M} can compute the functions witnessing the closedness of the Scott set. So, \mathcal{M} computes an effective enumeration of $\mathcal{SS}(\mathcal{M})$.

Proof of Solovay's theorem.

Given $a \in \mathcal{M}$ (where we think of a as coding the tree T), there is some $\sigma \in 2^{\leq M}$ and $v \in \mathcal{M}$ so that

$$(\forall n < |\sigma|) p_{\sigma \restriction n} | a \land$$
$$(\forall \tau \in 2^{|\sigma|+1}) \neg (\forall n < |\tau|) p_{\tau \restriction n} | a \land$$
$$(\forall i < |\sigma|) (p_i | v \leftrightarrow \sigma(i) = 1)$$

In words: σ is a longest node on the tree and v codes σ .

There are several components of this talk.

- \checkmark The theory PA & overspill.
- \checkmark Coding subsets of ω by elements in models of PA.
- $\checkmark\,$ The standard system of a model of PA, computable from a computation of the model.
- $\checkmark\,$ Matiyas evich's theorem on Hilbert's 10th problem.
- $\checkmark\,$ The standard system of a model of PA revisited.
 - $\bullet~\mathcal{S}\text{-}\mathrm{Saturation}$ and Homogeneity.
 - Goncharov-Peretyat'kin on deciding homogeneous models.
 - What does any of this have to do with Marker's theorem?
 - Is there a direct proof? Inviting wild speculation into the computability-theoretic role of homogeneity/overspill/Hilbert's 10th.

Let $\mathcal{S} \subseteq P(\omega)$. \mathcal{M} is \mathcal{S} -saturated if

- Every type $p(\bar{x})$ realized in \mathcal{M} is computable in some $X \in \mathcal{S}$.
- If $p(\bar{x}, \bar{y})$ is a type computable in some $X \in \mathcal{S}$ and $\bar{a} \in \mathcal{M}$ is so that $p(\bar{x}, \bar{a})$ is consistent, then p is realized in \mathcal{M} .

Usually model-theorists consider full saturation, i.e., $S = P(\omega)$.

Lemma

If S is a countable Scott set and T is a complete theory in S, then T has a unique countable S-saturated model.

Goncharov-Peretyat'kin on deciding homogeneous structures

Theorem (Goncharov and Peretyat'kin, 78)

Let A be ω -homogeneous. Let E be a d-enumeration of the types realized in A. Suppose further that E has the d-effective extension property. Then there is a copy of A which is d-decidable.

Definition

An enumeration E of types has the *d*-effective extension property if there is a *d*-computable function g(i, j) so that if $p(\bar{x}) = E_i$ and $\varphi_j(\bar{x}, y)$ is consistent with p, then $E_{g(i,j)}$ is a type containing p and φ_j .

Theorem (Marker)

If $T \in S$ and E is an enumeration of S, then there is a copy of the countable S-saturated model of T whose elementary diagram is computable in E (i.e. \mathcal{M} is E-decidable).

From a type $p(\bar{x})$ and a formula $\varphi(\bar{x}, y)$ it is computable to produce a type containing both. The problem is in finding an index for it in the enumeration. But we can do this easily if we produce a new enumeration of the *T*-types in \mathcal{S} wherein we explicitly build many sets just to be these "extension types". Then, since \mathcal{S} is closed under Turing reduction, this is also an enumeration of the *T*-types in \mathcal{S} .

So, starting with an enumeration of S, we computably produce an enumeration of the *T*-types in S and then a second enumeration of the *T*-types in S along with a function witnessing the effective extension property. Apply Goncharov-Peretyat'kin. There are several components of this talk.

- \checkmark The theory PA & overspill.
- \checkmark Coding subsets of ω by elements in models of PA.
- $\checkmark\,$ The standard system of a model of PA, computable from a computation of the model.
- $\checkmark\,$ Matiyas evich's theorem on Hilbert's 10th problem.
- $\checkmark\,$ The standard system of a model of PA revisited.
- $\checkmark\,$ S-Saturation and Homogeneity.
- $\checkmark\,$ Goncharov-Peretyat'kin on deciding homogeneous models.
 - What does any of this have to do with Marker's theorem?
 - Is there a direct proof? Inviting wild speculation into the computability-theoretic role of homogeneity/overspill/Hilbert's 10th.

E is an effective enumeration of the Scott set S if E is an enumeration of S and there are computable functions witnessing the closure properties of the Scott set. i.e. There is a computable function f(i, j) so that if T is an infinite tree in $2^{<\omega}$ and $T = \varphi_i(E_j)$, then $E_{f(i,j)}$ is a path through T.

Theorem (Marker, '83)

If X computes an enumeration of the Scott set \mathcal{S} , then X also computes an effective enumeration of the Scott set \mathcal{S} .

Effectivity for free! This is a statement that no computability theorist believes at first sight. After all, how could I possibly know which of the infinitely many columns is a path through T?

Marker's proof

Proof.

Let E be the X-computable enumeration of S. There is some completion T of PA contained in S. Then X also computes (by the last theorem) the elementary diagram of an S-saturated model \mathcal{M} of T.

Now, let R = SS(M). This R is an X-effective enumeration of a Scott set. We now only need:

Lemma

If M is an S-saturated model of PA, then S = SS(M).

Proof.

 $SS \subseteq S$, since r(a) is computable in tp(a). $S \subseteq SS$, since for any set $A \in S$, we can cook up a type in S containing all the formulae $p_i|x$ if and only if $i \in A$. Marker's theorem does not mention PA or model theory, yet the only known proof involves specifically looking at models of PA and looking at S-saturated models.

It would be fascinating to see if there were a purely computability-theoretic proof. If so, what serves the role of homogeneity/saturation? What fills the role of Matiyasevich's theorem?!

It follows from results of Lachlan and Soare that there is an enumeration X of a jump ideal S so that X does not compute any enumeration of S which can find jumps effectively. So, this property of "free" uniformity is unique for finding paths through trees.

Thank you!