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In this talk...

I want to tell you about my favorite theorem. I don’t intend to
tell you about my research at all. Congrats – you dodged a
bullet there.

Theorem (Marker, ’83)
If X computes an enumeration of the Scott set S, then X also
computes an effective enumeration of the Scott set S.

I’ll soon tell you what all the words here mean, but even
without that, this should be remarkable. Effectivity of anything
should never be “free”.
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Scott Sets

Definition
A Scott set S is a nonempty subset of P (ω) with the following
properties:

If X ∈ S and Y ≤T X then Y ∈ S
If X,Y,∈ S then X ⊕ Y ∈ S.
If T ⊆ 2<ω is infinite and T ≤T X ∈ S, then there is some
Y ∈ S which is a path through T .

Definition
E ⊆ ω2 is an enumeration of the Scott set S if {Ei | i ∈ ω} = S
where Ei = {j | (i, j) ∈ E}.

Observation
For any X in a Scott set S, there is a Y >T X in S.
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Effectively enumerating Scott sets

Definition
E is an effective enumeration of the Scott set S if E is an
enumeration of S and there are computable functions witnessing
the closure properties of the Scott set. i.e. There is a
computable function f(i, j) so that if T is an infinite tree in 2<ω

and T = ϕi(Ej), then Ef(i,j) is a path through T .

So, enumerating a Scott set is just listing off its sets. Effectively
enumerating it is to list off its sets and be able to computably
find the columns that you know must be there somewhere.

Theorem (Marker, ’83)
If X computes an enumeration of the Scott set S, then X also
computes an effective enumeration of the Scott set S.

Effectivity for free! This is a statement that no computability
theorist believes at first sight. After all, how could I possibly
know which of the infinitely many columns is a path through T?
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The trajectory of our journey

There are several components of this talk.
The theory PA & overspill.
Coding subsets of ω by elements in models of PA.
The standard system of a model of PA, computable from a
computation of the model.
Matiyasevich’s theorem on Hilbert’s 10th problem.
The standard system of a model of PA revisited.
S-Saturation and Homogeneity.
Goncharov-Peretyat’kin on deciding homogeneous models.
What does any of this have to do with Marker’s theorem?
Is there a direct proof? Inviting wild speculation into the
computability-theoretic role of
homogeneity/overspill/Hilbert’s 10th.
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The theory of PA and overspill

The theory PA is in the language {+, ·, 0, 1, <} and it says the
basic arithmetic facts (like distributivity, associativity, etc.) and
the induction axioms:
Induction: For any formula ϕ(x, ȳ) and any tuple ā, either
ϕ(M, ā) is empty or it contains a least element.
Every model of PA starts with 0, 1, 2, ..., so has an initial
segment that looks like N. Further, since the complement of N
cannot have a least element (you can always subtract 1 and stay
outside of N),MrN is either empty or not definable.

Observation (Overspill Principle)

IfM |= PA is not N and X is a definable subset ofM which
contains all of N, then it must contain some element outside of
N.

Proof.
Otherwise X is a definition of N which violates an axiom of
induction. 6 / 20



Coding subsets of ω in models of PA

Definition

If a ∈M |= PA, then r(a) = {n | the nth prime divides a}.
ForM |= PA, we let SS(M) = {r(a) | a ∈M}.

Theorem (Scott-Tennenbaum)

IfM is a nonstandard model of PA, then SS(M) is a Scott set.

Proof.
Let T be an infinite tree coded by r(a). That is, σ ∈ T if and
only if pσ|a (the σth prime – using a bijection between 2<ω and
N). Then consider the set of n so that {σ : pσ|a} defines a tree
up to length n and there is a string σn of length n on the tree
coded by some number b. This is a definable set and includes
every standard integer. By overspill, there is a nonstandard
integer in this set. So, we get some b coding a path through the
tree.
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M computes an enumeration of SS(M)

If we have a computation ofM |= PA, then we can computably
find, for each n, the nth prime pn. Further, for any x ∈M, we
can check if pn divides x (because it either divides x or one of
it’s pn successors). So, for any x ∈M, we can uniformly
compute the set r(x).

Lemma
If X computes a copy ofM, then X computes an enumeration
of SS(M). We call this the Standard Enumeration of SS(M)
from the copy ofM.

Theorem (Tennenbaum)
There is no computable nonstandard model of PA.

Proof.
From a copy of the nonstandard modelM, we compute an
enumeration of SS(M). But this is a Scott set, so it contains a
non-computable element.
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Hilbert’s 10th problem and Matiyasevich’s theorem

Hilbert’s 10th problem asked for an algorithm to determine
whether or not a polynomial p(z̄) has a solution in N (or Z).

Definition

A set X ⊆ Nk is diophantine if there is some polynomial p(x̄, ȳ)
so that X = {x̄ | ∃ȳp(x̄, ȳ) = 0}

Theorem (Matiyasevich)
Every computably enumerable set is diophantine.

Theorem (Matiyasevich’s theorem in PA)

If ϕ(x̄) is a Σ0
1-definable subset ofM |= PA, then there is some

p so that {x̄ | M |= ∃ȳp(x̄, ȳ) = 0} = ϕ(M)

A forumla is Σ0
1 if it is formed from quantifier-free formulas and

the quantifiers ∃y, ∃y < a and ∀y < a.
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Σ0
1-definable sets are computably enumerable in M

Corollary

LetM |= PA. Let A be a Σ0
1-definable set. Then A is

computably enumerable in any copy ofM.

Proof.
The problem in this lemma is that ∀x < v is not obviously
computable to check if v is a non-standard integer. In N,
bounded quantification is obviously computable: Just check the
finitely many cases needed.
Solution: Replace the Σ0

1 formula with an (equivalent)
diophantine definition. There are no ∀x < v’s in the diophantine
definition.

Corollary

If X is ∆0
1-definable in a model of PA, then it is computable in

any copy ofM.
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First huge shock: We get effectivity free here.

Theorem (Solovay)
IfM is a nonstandard model of PA, then the Standard
Enumeration of SS(M) is M -effective. i.e.,M can compute the
functions witnessing the closedness of the Scott set. So,M
computes an effective enumeration of SS(M).

Proof of Solovay’s theorem.
Given a ∈M (where we think of a as coding the the tree T ),
there is some σ ∈ 2<M and v ∈M so that

(∀n < |σ|) pσ�n|a∧

(∀τ ∈ 2|σ|+1)¬(∀n < |τ |) pτ�n|a∧

(∀i < |σ|)(pi|v ↔ σ(i) = 1)

In words: σ is a longest node on the tree and v codes σ.
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The trajectory of our journey

There are several components of this talk.
The theory PA & overspill.
Coding subsets of ω by elements in models of PA.
The standard system of a model of PA, computable from a
computation of the model.
Matiyasevich’s theorem on Hilbert’s 10th problem.
The standard system of a model of PA revisited.
S-Saturation and Homogeneity.
Goncharov-Peretyat’kin on deciding homogeneous models.
What does any of this have to do with Marker’s theorem?
Is there a direct proof? Inviting wild speculation into the
computability-theoretic role of
homogeneity/overspill/Hilbert’s 10th.
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S-saturation

Definition
Let S ⊆ P (ω). M is S-saturated if

Every type p(x̄) realized inM is computable in some
X ∈ S.
If p(x̄, ȳ) is a type computable in some X ∈ S and ā ∈M is
so that p(x̄, ā) is consistent, then p is realized inM.

Usually model-theorists consider full saturation, i.e., S = P (ω).

Lemma
If S is a countable Scott set and T is a complete theory in S,
then T has a unique countable S-saturated model.
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Goncharov-Peretyat’kin on deciding homogeneous
structures

Theorem (Goncharov and Peretyat’kin, 78)
Let A be ω-homogeneous. Let E be a d-enumeration of the
types realized in A. Suppose further that E has the d-effective
extension property. Then there is a copy of A which is
d-decidable.

Definition
An enumeration E of types has the d-effective extension
property if there is a d-computable function g(i, j) so that if
p(x̄) = Ei and ϕj(x̄, y) is consistent with p, then Eg(i,j) is a type
containing p and ϕj .
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Deciding S-saturated models

Theorem (Marker)
If T ∈ S and E is an enumeration of S, then there is a copy of
the countable S-saturated model of T whose elementary
diagram is computable in E (i.e. M is E-decidable).

From a type p(x̄) and a formula ϕ(x̄, y) it is computable to
produce a type containing both. The problem is in finding an
index for it in the enumeration. But we can do this easily if we
produce a new enumeration of the T -types in S wherein we
explicitly build many sets just to be these “extension types”.
Then, since S is closed under Turing reduction, this is also an
enumeration of the T -types in S.

So, starting with an enumeration of S, we computably produce
an enumeration of the T -types in S and then a second
enumeration of the T -types in S along with a function
witnessing the effective extension property. Apply
Goncharov-Peretyat’kin.
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The trajectory of our journey

There are several components of this talk.
The theory PA & overspill.
Coding subsets of ω by elements in models of PA.
The standard system of a model of PA, computable from a
computation of the model.
Matiyasevich’s theorem on Hilbert’s 10th problem.
The standard system of a model of PA revisited.
S-Saturation and Homogeneity.
Goncharov-Peretyat’kin on deciding homogeneous models.
What does any of this have to do with Marker’s theorem?
Is there a direct proof? Inviting wild speculation into the
computability-theoretic role of
homogeneity/overspill/Hilbert’s 10th.
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My favorite theorem - reminder slide

Definition
E is an effective enumeration of the Scott set S if E is an
enumeration of S and there are computable functions witnessing
the closure properties of the Scott set. i.e. There is a
computable function f(i, j) so that if T is an infinite tree in 2<ω

and T = ϕi(Ej), then Ef(i,j) is a path through T .

Theorem (Marker, ’83)
If X computes an enumeration of the Scott set S, then X also
computes an effective enumeration of the Scott set S.

Effectivity for free! This is a statement that no computability
theorist believes at first sight. After all, how could I possibly
know which of the infinitely many columns is a path through T?
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Marker’s proof

Proof.
Let E be the X-computable enumeration of S. There is some
completion T of PA contained in S. Then X also computes (by
the last theorem) the elementary diagram of an S-saturated
modelM of T .
Now, let R = SS(M). This R is an X-effective enumeration of
a Scott set. We now only need:

Lemma
If M is an S-saturated model of PA, then S = SS(M).

Proof.
SS ⊆ S, since r(a) is computable in tp(a). S ⊆ SS, since for
any set A ∈ S, we can cook up a type in S containing all the
formulae pi|x if and only if i ∈ A.
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Some general comments

Marker’s theorem does not mention PA or model theory, yet the
only known proof involves specifically looking at models of PA
and looking at S-saturated models.

It would be fascinating to see if there were a purely
computability-theoretic proof. If so, what serves the role of
homogeneity/saturation? What fills the role of Matiyasevich’s
theorem?!

It follows from results of Lachlan and Soare that there is an
enumeration X of a jump ideal S so that X does not compute
any enumeration of S which can find jumps effectively. So, this
property of “free” uniformity is unique for finding paths through
trees.
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The end

Thank you!
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