# Galvin's problem in higher dimensions

#### Dilip Raghavan

National University of Singapore

UW Logic Seminar, University of Wisconsin – Madison, Madison, WI, USA. May 24, 2022





# 2 The Rationals



# Ramsey's theorem

### Theorem (Ramsey)

Suppose  $c : [\mathbb{N}]^2 \to 2$  is any function. Then there is an infinite  $X \subseteq \mathbb{N}$  such that c is constant on  $[X]^2$ .

#### Theorem (Ramsey)

Suppose  $k, l \ge 1$  are natural numbers. If  $c : [\mathbb{N}]^k \to l$  is any function, then there is an infinite set  $X \subseteq \mathbb{N}$  such that c is constant on  $[X]^k$ .

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

# **Expansion Problems**

- A consequence of Ramsey's theorem may be a little less well known: all finitary relations on N can be classified modulo restriction to an infinite subset of N.
- Recall there are "too many" binary relations on N to classify up to isomorphism.
- For example there are continuum many pairwise non-isomorphic linear orders on N.

(日)

#### Theorem (Ramsey)

Suppose  $R \subseteq \mathbb{N}^2$  is any relation. Then there is an infinite set  $M \subseteq \mathbb{N}$  such that  $R \cap M^2$  is **equal** to one of the following relations restricted to  $M: \top, \bot$ , =,  $\neq$ , <, >, ≤, ≥.

- There is an analogous result for subsets of  $\mathbb{N}^k$  for any finite *k*.
- For all finite *k*, the relations are quantifier free definable using = and <.

#### Definition

Let A and B be structures. For natural numbers  $k, l, t \ge 1$ , the notation

$$B \to (A)_{l,t}^k$$

means that for every coloring  $c : [B]^k \to l$ , there exists a substructure *C* of *B* such that *C* is isomorphic to *A* and  $|c''[C]^k| \le t$ .

イロト イロト イヨト イヨト

• Suppose that *C* is some class of structures and that *A* is a structure that embeds into every member of *C*.

#### Ramsey degree

For a natural number  $k \ge 1$ , the *k*-dimensional Ramsey degree of *A* within *C* is the the smallest natural number  $t_k \ge 1$  (if it exists) such that  $B \to (A)_{l,t_k}^k$ , for every natural number  $l \ge 1$  and for every structure  $B \in C$ . When no such  $t_k$  exists, we say that the *k*-dimensional Ramsey degree of *A* within *C* is infinite or does not exist.

### Theorem (Ramsey)

For each  $k \ge 1$ , the *k*-dimensional Ramsey degree of  $\mathbb{N}$  within the class of all infinite sets is 1.

• Suppose that *C* is some class of structures and that *A* is a structure that embeds into every member of *C*.

#### **Expansion Problem**

Suppose that  $R_1, \ldots, R_m$  are finitely many finitary relations on the structure A. The relations  $R_1, \ldots, R_m$  are said to solve the expansion problem for A within the class C if for every structure  $B \in C$  and every finitary relation S on B, there exists a substructure C of B and an isomorphism  $\varphi : A \to C$  such that the restriction of S to C is quantifier free definable from the images of  $R_1, \ldots, R_m$  under  $\varphi$ .

## Theorem (Ramsey)

The relations < and = solve the expansion problem for  $\mathbb{N}$  within the class of all infinite sets.

イロト イポト イヨト イヨト

# These are equivalent problems

- Solving the expansion problem for *A* within *C* for *k*-ary relations is equivalent to finding the *k*-dimensional Ramsey degree of *A* within *C*.
- This notion of *k*-dimensional Ramsey degree is distinct from the notions of Ramsey degree in the context of Fraïssé theory.
- Special cases of this problem appear in topological dynamics in the guise of computing the universal minimal flows of various automorphism groups.

(日)

# Expansion problem for the rationals

The 2-dimensional Ramsey degree of ⟨Q, <⟩ within the class {⟨Q, <⟩} is not 1.</li>

### Sierpinski's coloring

Let  $<_{wo}$  be a well-ordering of  $\mathbb{Q}$ . Define  $s : [\mathbb{Q}]^2 \to \{0, 1\}$  by

$$s(\{p,q\}) = \begin{cases} 0 & \text{if } < \text{ and } <_{wo} \text{ disagree on } \{p,q\} \\ 1 & \text{if } < \text{ and } <_{wo} \text{ agree on } \{p,q\}, \end{cases}$$

for any  $\{p,q\} \in [\mathbb{Q}]^2$ .

• For any  $X \subseteq \mathbb{Q}$ :

- if *s* is constantly 1 on [*X*]<sup>2</sup>, then *X* is well-ordered by the usual ordering <;
- if s is constantly 0 on [X]<sup>2</sup>, then X is well-ordered by the reserve ordering >.
- Thus if  $\langle X, \langle \rangle$  contains a  $\mathbb{Z}$ -chain, then *s* takes both colors on  $[X]^2$ .

イロト イポト イヨト イヨト

### Theorem (Galvin)

Suppose  $l \in \mathbb{N}$ . If  $c : [\mathbb{Q}]^2 \to \{0, ..., l\}$  is any function, then there exists  $X \subseteq \mathbb{Q}$  such that  $\langle X, \langle \rangle$  isomorphic to  $\langle \mathbb{Q}, \langle \rangle$  and c takes at most 2 values on  $[X]^2$ .

In other words, the 2-dimensional Ramsey degree of ⟨Q, <⟩ within {⟨Q, <⟩} is precisely 2.</li>

#### Theorem (Laver; Devlin)

For every  $k \ge 1$ , the *k*-dimensional Ramsey degree of  $\langle \mathbb{Q}, \langle \rangle$  within the class of all non-empty dense linear orders without endpoints exists.

This degree  $t_k$  is given by the following formula:  $t_1 = 1$ , and for k > 1,  $t_k = \sum_{l=1}^{k-1} \binom{2k-2}{2l-1} \cdot t_l \cdot t_{k-l}$ .

• The sequence  $\{t_k\}_{k\geq 1}$  are called the odd tangent numbers because  $t_k = T_{2k-1}$ , where  $\tan(z) = \sum_{n=0}^{\infty} \frac{T_n}{n!} z^n$ .

< ロ > < 同 > < 三 > < 三 > 、

#### Corollary

Let  $<_{wo}$  be any well-ordering of  $\mathbb{Q}$ . Then the relations  $<, =, and <_{wo}$  solve the expansion problem for the structure  $\langle \mathbb{Q}, < \rangle$  within the class of all non-empty dense linear orders without endpoints.

(日)

# The topological structure of the rationals

- Let  $\mathcal{T}_{\mathbb{R}}$  denote the usual topology of the real numbers, and  $\mathcal{T}_X$  its restriction to any  $X \subseteq \mathbb{R}$ .
- It is not true that if X ⊆ Q is order isomorphic to Q, then X is homeomorphic to Q.
- Easy exercise: construct X ⊆ Q which is order-isomorphic to Q, but so that every point is isolated.

#### Theorem (Sierpiński)

 $\langle X, \mathcal{T} \rangle$  is homeomorphic to  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  if and only if  $\langle X, \mathcal{T} \rangle$  is non-empty, countable, metrizable, and dense-in-itself.

• It turns out that the expansion problem for  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  within the class  $\{\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle\}$  does not have any solution.

### Theorem (Baumgartner [1])

Suppose  $\langle X, \mathcal{T} \rangle$  is any Hausdorff space with  $|X| = \aleph_0$ . There is a coloring  $c : [X]^2 \to \omega$  such that for any subspace  $R \subseteq X$  that is homeomorphic to  $\mathbb{Q}$ ,  $c''[R]^2 = \omega$ .

- For each natural number  $l \ge 1$ , define  $d_l : [\mathbb{Q}]^2 \to l$  by  $d_l(\{x, y\}) = c(\{x, y\}) \mod l$ .
- If  $X \subseteq \mathbb{Q}$  is homeomorphic to  $\mathbb{Q}$ , then  $d_l$  will take all l values on  $[X]^2$ .
- No finite list of finitary relations on Q will capture all binary relations on Q up to shrinking to a topological copy of Q.

< ロ > < 同 > < 三 > < 三 > 、

## Theorem (Todorcevic and Weiss)

If  $\langle X, d \rangle$  is a  $\sigma$ -discrete metric space, then there is a coloring  $c : [X]^2 \to \omega$ such that  $c''[Y]^2 = \omega$  for all  $Y \subseteq X$  homeomorphic to  $\mathbb{Q}$ .

• How about the class of all uncountable sets of reals?

### Galvin's Conjecture (1970s)

Suppose  $X \subseteq \mathbb{R}$  is uncountable. For every natural number  $l \ge 1$ ,

$$\langle X, \mathcal{T}_X \rangle \to \left( \langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle \right)_{l,2}^2$$

### Theorem (R. and Todorcevic [2])

If there is a Woodin cardinal, then the 2-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  within the class of all uncountable sets of reals is 2.

• Note this includes sets of reals of size  $\aleph_1$ . Recall  $\aleph_1 \rightarrow [\aleph_1]_{\aleph_1}^2$ .

 This result solves the expansion problem for binary relations for the structure ⟨Q, T<sub>Q</sub>⟩ within the class of all uncountable sets of real numbers.

### Theorem (R.+Todorcevic [2])

Assume that there is a Woodin cardinal. Let  $<_{WO}$  be any well-ordering of  $\mathbb{R}$ . Then for every uncountable  $X \subseteq \mathbb{R}$  and every binary relation  $M \subseteq X^2$ , there exists a set  $Y \subseteq X$ , which is homeomorphic to  $\mathbb{Q}$ , such that  $M \cap Y^2$  is quantifier free definable from the restrictions of  $<_{WO}$ , <, and = to Y.

(日)

#### • We can go beyond just sets of reals.

## Theorem (R.+Todorcevic [2])

If there is a proper class of Woodin cardinals, then the 2-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  within the class of all non- $\sigma$ -discrete metric spaces is equal to 2.

(日)

### Definition

Let  $\langle X, \mathcal{T} \rangle$  be a topological space. A base  $\mathcal{B} \subseteq \mathcal{T}$  is said to be point-countable if for each  $x \in X$ ,  $\{U \in \mathcal{B} : x \in U\}$  is countable.

### Definition

A topological space  $\langle X, \mathcal{T} \rangle$  is said to be left-separated if there exists a well-ordering  $<_{wo}$  of X so that for each  $x \in X$ ,  $\{y \in X : y <_{wo} x\}$  is a closed set.

### Theorem (R.+Todorcevic [2])

If there is a proper class of Woodin cardinals, then the 2-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  within the class of all regular, non-left-separated spaces with point-countable bases is at most 2.

イロト イポト イヨト イヨト

#### Definition

 $\delta$  is a Woodin cardinal if for every  $f : \delta \to \delta$ , there exists  $\kappa < \delta$  such that  $\kappa$  is closed under f and there exists  $j : \mathbf{V} < \mathbf{M}$  with  $\operatorname{crit}(j) = \kappa$  and  $V_{j(f)(\kappa)} \subseteq \mathbf{M}$ .

 We need a δ such that the countable stationary tower up to δ is precipitous.

イロト イポト イヨト イヨト

#### Definition

Let  $\delta$  be a strongly inaccessible cardinal. As usual,  $V_{\delta}$  denotes  $\{a : \operatorname{rank}(a) < \delta\}$ . The countable stationary tower up to  $\delta$ , denoted  $\mathbb{Q}_{<\delta}$ , is defined to be the collection of all  $\langle A, S \rangle \in V_{\delta}$  such that A is a non-empty set and  $S \subseteq [A]^{<\aleph_1}$  is stationary in  $[A]^{<\aleph_1}$ . An ordering on  $\mathbb{Q}_{<\delta}$  is defined as follows. For  $\langle A, S \rangle, \langle B, T \rangle \in \mathbb{Q}_{<\delta}$ , define  $\langle B, T \rangle \leq \langle A, S \rangle$  to mean that  $B \supseteq A$  and  $T \subseteq \{M \in [B]^{<\aleph_1} : M \cap A \in S\}$ .

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

## Definition

Define a two-player game  $\Im(\delta)$  as follows. Two players Empty and Non-Empty take turns playing conditions in  $\mathbb{Q}_{<\delta}$ , with Empty making the first move. When one of the players has played  $\langle A_n, S_n \rangle \in \mathbb{Q}_{<\delta}$ , his opponent is required to play  $\langle A_{n+1}, S_{n+1} \rangle \leq \langle A_n, S_n \rangle$ . Thus each run of the game produces a sequence

| Empty     | $\langle A_0, S_0 \rangle$ |                            | $\langle A_2, S_2 \rangle$ |     | ••• |
|-----------|----------------------------|----------------------------|----------------------------|-----|-----|
| Non-Empty |                            | $\langle A_1, S_1 \rangle$ |                            | ••• |     |

such that for each  $n \in \omega$ ,  $\langle A_{2n}, S_{2n} \rangle$  has been played by Empty,  $\langle A_{2n+1}, S_{2n+1} \rangle$  has been played by Non-Empty and  $\langle A_{n+1}, S_{n+1} \rangle \leq \langle A_n, S_n \rangle$ . Non-Empty wins this particular run of  $\Im(\delta)$  if and only if there exists a sequence  $\langle N_l : l \in \omega \rangle$  such that  $\forall l \in \omega [N_l \in S_l]$  and  $\forall k \leq l [N_k = N_l \cap A_k]$ .

• We need a  $\delta$  such that Empty does not have a winning strategy in  $\Im(\delta)$ .

イロト イロト イヨト イヨト

- When *C* is the class of all regular, non-left-separated spaces with point-countable bases, then the large cardinal hypothesis can be weakened to the following: for every ordinal  $\alpha$ , there exists an inner model *N* of ZFC such that  $V_{\alpha} \subseteq N$  and there is a Woodin cardinal greater than  $\alpha$  in *N*.
- This weakening is implied by each of the following: existence of one strongly compact cardinal, PFA, PID.
- The weakening does not even imply the existence of an inaccessible cardinal in V.
- Woodin showed that this weakening is equivalent to the statement that  $\Sigma_2^1$ -determinacy holds in V and all of its set generic extensions.

イロト イロト イヨト イヨト

- When *C* is the class of all uncountable sets of reals, then the large cardinal hypothesis can be weakened to the following: there is an inner model containing all sets of reals with at least one Woodin cardinal in it.
- Actually, if one is only interested in consistency strength, then an upper bound in this case is one measurable cardinal.
- If there is a precipitous ideal on ω<sub>1</sub>, then the 2-dimensional Ramsey degree of ⟨Q, T<sub>Q</sub>⟩ within the class of all uncountable sets of reals is 2.

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

# **Higher dimensions**

- A generalization of Sierpinski's coloring shows that the number of unavoidable colors in dimension k (on a topological copy of Q) is k!(k − 1)!.
- Do large cardinals imply that this number can always be achieved for any coloring of [R]<sup>3</sup>?

イロト イロト イヨト イヨト

### Theorem (R.+Todorcevic [3])

Let  $n \in \omega$ . Let  $\langle X, \mathcal{T} \rangle$  be any Hausdorff space with  $|X| = \aleph_n$ . There is a coloring  $c : [X]^{n+2} \to \omega$  such that for any subspace  $R \subseteq X$  that is homeomorphic to  $\mathbb{Q}$ ,  $c''[R]^{n+2} = \omega$ .

- The case n = 0 is precisely Baumgartner's theorem.
- So the *n* + 2-dimensional expansion problem for the space ⟨Q, T<sub>Q</sub>⟩ within the class of sets of real numbers of size at most ℵ<sub>n</sub> does not have any solution.

< ロ > < 同 > < 三 > < 三 > 、

#### Corollary

Let  $n \in \omega$ . Suppose *C* is any class of topological spaces. If *C* contains any Hausdorff space of cardinality at most  $\aleph_n$ , then the n + 2-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  within *C* does not exist.

#### Corollary

If  $\langle \mathbb{R}, \mathcal{T}_{\mathbb{R}} \rangle \rightarrow (\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle)_{l,12}^3$ , for all  $1 \leq l < \omega$ , then CH fails. For any  $k \geq 1$ , if for every  $1 \leq l < \omega$ ,  $\langle \mathbb{R}, \mathcal{T}_{\mathbb{R}} \rangle \rightarrow (\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle)_{l,k!(k-1)!}^k$ , then  $|\mathbb{R}| \geq \aleph_{k-1}$ . If the *k*-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  in  $\{\langle \mathbb{R}, \mathcal{T}_{\mathbb{R}} \rangle\}$  exists for every natural number  $k \geq 1$ , then  $2^{\aleph_0} \geq \aleph_{\omega+1}$ .

A B > A B > A B >
 A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

 A key combinatorial aspect of the proof is a classical set mapping theorem of Kuratowski.

### Lemma (Kuratowski)

For each 
$$n \in \omega$$
, there exists  $f_n : [\omega_n]^{n+1} \to [\omega_n]^{<\aleph_0}$  such that  
•  $\forall s \in [\omega_n]^{n+1} [f_n(s) \subseteq \max(s)];$   
•  $\forall t \in [\omega_n]^{n+2} \exists \alpha \in t [\alpha < \max(t) \text{ and } \alpha \in f_n(t \setminus \{\alpha\})].$ 

イロト イポト イヨト イヨト

## Questions

### Question

What is the largest class of topological spaces within which the *k*-dimensional Ramsey degree of  $\langle \mathbb{Q}, \mathcal{T}_{\mathbb{Q}} \rangle$  is equal to k!(k-1)!?

# Bibliography

- J. E. Baumgartner, *Partition relations for countable topological spaces*, J. Combin. Theory Ser. A **43** (1986), no. 2, 178–195.
- D. Raghavan and S. Todorcevic, *Proof of a conjecture of Galvin*, Forum Math. Pi **8** (2020), e15, 23 pp.
- Galvin's problem in higher dimensions, preprint, 2022, pp. 1–6.