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Computational problems

Given an instance of a problem, produce a solution.

Even ∀∃ theorems can be seen as computational problems!

(∀X)(φ(X) → (∃Y )ψ(X,Y ))

We want to focus on problems on the Baire space NN.

f ⊂ NN × NN

f :⊆ NN → ℘(NN)

f :⊆ NN ⇒ NN
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Computability on NN

Computability for functions f :⊆ NN → NN is induced by
computability on N using monotone partial computable
functions (on N).

Computability on multi-valued functions f :⊆ NN ⇒ NN:

F :⊆ NN → NN is a realizer for f :⊆ NN ⇒ NN if

(∀p ∈ dom(f))(F (p) ∈ f(p))

f is computable if it has a
computable realizer, i.e. a
computable choice function

NN

id

��

F // NN

id

��
NN //

f // NN
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Reducibilities on computational
problems

Diagram of a generic g ≤ f :

p Φ(p)

g(p) f(Φ(p))

Φ

f

Ψ

g

forward functional

backward functional

According to the properties of Φ and Ψ we get different reductions.
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Weihrauch reducibility

The forward and backward functional are partial computable
functions on NN.

p Φ(p)

g(p) q

Φ

f

Ψ

g

computable

computable

Strong Weihrauch reducibility:

g ≤sW f :⇐⇒ g ≤W f and Ψ does not depend on p.
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Weihrauch reducibility

The forward and backward functional are partial computable
functions on NN.

g ≤W f :⇐⇒ there are computable Φ,Ψ :⊆ NN → NN s.t.

• Given p ∈ dom(g), Φ(p) ∈ dom(f)

• Given q ∈ f(Φ(p)), Ψ(p, q) ∈ g(p)

Φ

f

Ψ(p, ·)

g

p Φ(p)

g(p) q

Strong Weihrauch reducibility:

g ≤sW f :⇐⇒ g ≤W f and Ψ does not depend on p.
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Represented spaces

Weihrauch reducibility is usually defined in a more general context.

A represented space is a pair (X, δX) where X is just a set and
δX :⊆ NN → X is a surjection.

Computability for problems on represented spaces is induced via
the notion of realizer

NN

δX

��

F // NN

δY

��
X //

f // Y

(∀p ∈ dom(f◦δX))(δY F (p) ∈ f(p))
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Represented spaces

Weihrauch reducibility is usually defined in a more general context.

A represented space is a pair (X, δX) where X is just a set and
δX :⊆ NN → X is a surjection.

Weihrauch reducibility g ≤W f is defined using names and realizers
F ⊢ f , G ⊢ g:

• Given a name p for x ∈ dom(g), Φ(p) is a
name for some z ∈ dom(f)

• Given a name q for w ∈ f(z), Ψ(p, q) is a
name for y ∈ g(x)

Φ

F

Ψ(p, ·)

G

p Φ(p)

g(p) q
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Weihrauch reducibility

Take-home messages:

• It is a uniform reduction with exactly one oracle call.

• It works on names

• If we are only interested on the structure of the degrees we do
not need to talk about represented spaces.

While several authors have studied the degrees of specific problems,
many questions on the structure of the degrees are open.
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The structure of Weihrauch degrees

Is there a bottom element?

Yes, vacuously: ∅

Is there a top element?

No, under ZFC

A function with no realizer is a “natural”
top element.

The existence of a realizer coincides with the
existence of a choice function.

Φ

f

Ψ(p, ·)

g

p Φ(p)

g(p) q
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The structure of Weihrauch degrees

Is there a join?

Yes: for every f0, f1, we define f0 ⊔ f1 :⊆ 2× NN ⇒ NN as

(f0 ⊔ f1)(i, p) := fi(p)

with dom(f0 ⊔ f1) := dom(f0) ⊔ dom(f1).

Why is this a join?

fi ≤W f0 ⊔ f1: p 7→ (i, p)

If fi ≤W h for i < 2 then f0 ⊔ f1 ≤W h: assume fi ≤W h via
Φi,Ψi.

Given (i, p) we use Φi,Ψi to compute fi(p) using h.
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The structure of Weihrauch degrees

Is there a meet?

Yes: for every f0, f1, we define f0 ⊓ f1 :⊆ NN × NN ⇒ NN as

(f0 ⊓ f1)(p0, p1) := f0(p0) ⊔ f1(p1) = {(i, r) : r ∈ fi(pi)}

with dom(f0 ⊓ f1) := dom(f0)× dom(f1).

Proposition (Pauly; Brattka, Gherardi)

Meet and join distribute, hence the Weihrauch degrees form a
distributive lattice.
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The structure of Weihrauch degrees

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

d = sup{dn}n∈N ⇐⇒ (∃N)(d = sup{dn}n<N )

Moreover, there is an infinite descending sequence (bn)n∈N in W
with no infimum.

Corollary (Higuchi, Pauly)

The Weihrauch degrees are not a ℵ0-complete join/meet
semi-lattice.

Warning: the operations
⊔

n∈N dn and
d

n∈N dn are not
degree-theoretic!
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The structure of Weihrauch degrees

Is there a jump?

Well...there is a thing called “jump”

(Brattka, Gherardi, Marcone) For a problem f , f ′ works as follows:

input : a sequence (pn)n∈N converging to p ∈ dom(f);

output : f(p)

However:
• it is not degree theoretic, let alone monotone

(it is monotone w.r.t. strong Weihrauch reducibility)

• it does not jump! (it is possible that f ′ ≡W f)
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...What?

Intuitively, f ′ corresponds to:

given (pn)n∈N compute its limit p, and then solve f(p). In symbols

f ∗ lim

Historically, the name comes from:

• a basic analogy with the Turing jump for “simple” problems

• lim ≡sW J, where J := p 7→ p′ is the Turing jump.

Open question: is there a true jump in the
Weihrauch lattice/degrees?
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Trying to build one “by hands”

It is not hard to define an operator that “jumps”. Example

f1(⟨x, p⟩) :=

{
1⌢Φf

x(p) if Φf
x(p) ↓

0N otherwise

where Φf
x(p) intuitively is a continuous functional that uses f as

oracle.

Problem: this is not degree theoretic.

Proposition (Marcone, V.)

If an operator Λ is such that Λ(f) computes the characteristic
function of dom(f) then Λ is not degree-theoretic.

Manlio Valenti The structure of Weihrauch degrees 13 / 29



Minimal degrees

Is there a minimal element above ∅?

No

Proof (Dzhafarov, Lerman, Patey, Solomon).

Assume ∅ <W f . In particular, there is p ∈ dom(f) ̸= ∅.

Define g as dom(g) := {p′} and g(p′) := f(p).

g ≤W f as p ≤T p
′.

f ̸≤W g as p′ ̸≤T p, hence there is no computable Φ that map
dom(f) to dom(g).

We are heavily exploiting the complexity of the domain!
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Minimal degrees

Is there a minimal element above id?
id is the ≤W-least problem with a computable input.

By adapting the classical proof of the existence of minimal pairs in
the Turing degrees:

Proposition (Marcone, V.)

For every non uniformly computable F : NN → NN there is a non
uniformly computable function G : NN → NN s.t. F and G form a
minimal pair on the total deterministic degrees, i.e. for every
H : NN → NN, if H ≤W F and H ≤W G then H ≤W id.

Can we do better?
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Medvedev reducibility

Reducibility on subsets of NN (“mass problems”)

A ≤M B :⇐⇒ (∃Φ :⊆ NN → NN computable)(Φ(B) ⊂ A)

⇐⇒ (∃Φ :⊆ NN → NN computable)(∀b ∈ B)(Φ(b) ∈ A)

The lower A is in the Medvedev degrees, the easier it is to

uniformly compute an element of A.

Muchnik reducibility: non-uniform version of Medvedev

(∀b ∈ B)(∃Φ :⊆ NN → NN computable)(Φ(b) ∈ A)
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Medvedev vs Weihrauch

p Φ(p)
Φ

B∈ A∈
Medvedev reducibility:

g(p) q

fg

Ψ

Weihrauch reducibility:

“The first half of a Weihrauch reduction is a Medvedev reduction”.

g ≤W f ⇒ dom(f) ≤M dom(g)

This suggests a way to embed the Medvedev degrees in the
Weihrauch degrees.
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Medvedev ↪→ Weihrauch
We map A ⊂ NN to dA : A→ {0N} defined as dA(p) := 0N.

B ≤M A iff dA ≤W dB:

p Φ(p)
Φ

A∈ B∈

0N 0N

dBdA

Ψ

This embedding reverses the Medvedev order!
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Weihrauch degrees

∅

id

M
ed

ved
ev

Some results on the structure of Weihrauch degrees are obtained as
corollaries of structural results on the Medvedev lattice.
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Chains in the Weihrauch degrees
Let M and W be the Medvedev and Weihrauch degrees resp.

Corollary (of Terwijn)

Under ZFC + 2<c = c, there is a chain of size 2c in W.

Let us write M0 for M without the top element.

Proposition (Marcone, V.)

There is a chain in M0 of order type ω1 with no upper bound.

The proof can be adapted to show that

Corollary (Marcone, V.)

There is a chain in W of order type ω1 with no upper bound.
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Cofinality

A chain C is cofinal in a poset P if every element of P is below
some element of C.

Proposition (Exercise)

Let T denote the Turing degrees. The following are equivalent:

• CH;

• There is a cofinal chain in T (of order type ω1).

The same result holds for the Medvedev degrees.
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Cofinality

Theorem (Marcone, V.)

The following are equivalent

1. CH;

2. There is a cofinal chain in M0 (of order type ω1).

Proof: (Sketch).

(1) ⇒ (2): If (dα)α<ω1 is cofinal in T then ({dα})α<ω1 is cofinal in M0.

(2) ⇒ (1): Let (Aα)α<κ be cofinal in M0.

We can assume κ = ω1 as
every mass problem has countably many singletons in its ≤M-lower
cone. Choosing pα ∈ Aα, the set {pα : α < ω1} is cofinal in T . We
use {pα : α < ω1} to define a cofinal sequence (qα)α<ω1 in T .
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Cofinality

Theorem (Marcone, V.)

The following are equivalent

1. CH; There is a cofinal chain in T of order type ω1;

2. There is a cofinal chain in M0 (of order type ω1).

Proof: (Sketch).

(1) ⇒ (2): If (dα)α<ω1 is cofinal in T then ({dα})α<ω1 is cofinal in M0.

(2) ⇒ (1): Let (Aα)α<κ be cofinal in M0. We can assume κ = ω1 as
every mass problem has countably many singletons in its ≤M-lower
cone. Choosing pα ∈ Aα, the set {pα : α < ω1} is cofinal in T . We
use {pα : α < ω1} to define a cofinal sequence (qα)α<ω1 in T .
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Cofinality

Proof: (cont).

For every α < ω1 fix a fundamental sequence for α, i.e. a sequence
(α[n])n∈N s.t.

• (∀n ∈ N)(α[n] ≤ α[n+ 1] < α)

• α = sup{α[n] + 1 : n ∈ N}.
Define

• q0 := p0

• for α > 0, qα :=
(⊕

n∈N qα[n]
)
⊕ pα.

Since (qα)α<ω1 is a chain and pα ≤T qα, the claim follows.
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Cofinality
The set-cofinality of a poset P is the size of the smallest cofinal
subset (every element of P is below some element of the subset).

Theorem (Marcone, V.)

The set-cofinality of M0 is c.

The situation is different for the Weihrauch degrees:

Theorem (Marcone, V.)

There are no cofinal chains in W and the set-cofinality is > c.

In particular, the last part follows from

Theorem (Marcone, V.)

For every family {fp}p∈NN of multi-valued functions, there is g s.t.
for every p, g ̸≤W fp.
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Antichains
What do we know about antichains in M or W?

Proposition (Marcone, V. generalizing Sorbi, Platek)

There are maximal antichains in M of size κ, for every 1 ≤ κ ≤ c
or κ = 2c.

Open question: how about c < κ < 2c?

This does not generalize to Weihrauch degrees!

Proposition (Dzhafarov, Lerman, Patey, Solomon)

For every countable family {fn}n∈N of non-trivial problems there is
g s.t. for every n, g |W fn. In particular, every countable antichain
is extendible.
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Maximal antichains

The result by (DLPS) cannot be extended to c-sized families:

Proposition (Marcone, V.)

There is a family {fp}p∈NN s.t. for every non-trivial g there is

p ∈ NN s.t. fp ≤W g.

Proof.

For every p ∈ NN, we define fp with dom(fp) := {p} and
fp(p) := NN. It is trivial to see that, for every non-empty g and for
every p ∈ dom(g), fp ≤W g.

Unfortunately, the above family cannot be refined to a maximal
continuum-sized antichain!
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Maximal antichains

Theorem (Marcone, V.)

If {fp}p∈NN is an antichain in W s.t. {dom(fp)}p∈NN is not cofinal in

M0, then there is g s.t. for every p ∈ NN, g |W fp.

Proof: (Sketch).

Fix A ⊂ NN s.t. for every p ∈ NN, A ̸≤M dom(fp). W.l.o.g. we can
assume |A| = c.
We define a function g with dom(g) := A. This already guarantees
that fp ̸≤W g.
For the other direction, we define g so that g((e, i)⌢p) witnesses that
g ̸≤W fp via Φe,Φi. We skip the details.
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Maximal antichains
Since the set-cofinality of M0 is c:

Corollary (Marcone, V.)

No antichain {fα}α<κ in W with κ < c is maximal.

Since no antichain in M0 is cofinal:

Corollary (Marcone, V.)

If {fα}α<κ is an antichain in W s.t. {dom(fα)}α<k is an antichain
in M0, then {fα}α<κ is not maximal.

Open question: what happens if {fp}p∈NN is an
antichain in W and dom(fα) is cofinal in M0?
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