Background The Current Status

Toward deciding the $\forall \exists$ -theory of the Σ_2^0 -enumeration degrees

Steffen Lempp

University of Wisconsin-Madison

October 4, 2022

(joint work with Goh, Ng and M. Soskova)

Most "natural" degree structures ${\cal D}$ are very complicated partial orders and usually follow this pattern:

 The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Most "natural" degree structures ${\cal D}$ are very complicated partial orders and usually follow this pattern:

 The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study "fragments" of the first-order theory, determined by a bound on the quantifier depth of the formulas:

Most "natural" degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

 The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study "fragments" of the first-order theory, determined by a bound on the quantifier depth of the formulas:

 The ∃-theory of D is decidable (since all finite partial orders embed into D).

Most "natural" degree structures \mathcal{D} are very complicated partial orders and usually follow this pattern:

 The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study "fragments" of the first-order theory, determined by a bound on the quantifier depth of the formulas:

- The ∃-theory of D is decidable (since all finite partial orders embed into D).
- The ∀∃-theory of D can "often" be shown to be decidable (more later).

Most "natural" degree structures ${\cal D}$ are very complicated partial orders and usually follow this pattern:

 The first-order theory of the partial order D is undecidable. In fact, it is usually as complicated as second-order arithmetic (for global degree structures) or first-order arithmetic (for countable local degree structures).

Therefore, computability theorists often study "fragments" of the first-order theory, determined by a bound on the quantifier depth of the formulas:

- The ∃-theory of D is decidable (since all finite partial orders embed into D).
- The ∀∃-theory of D can "often" be shown to be decidable (more later).
- The ∃∀∃-theory of D can "usually" be shown to be undecidable.

Definition

 $A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all $x, x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.

Definition

 $A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all $x, x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.

In particular, we will focus on the degree structure S_e of the enumeration degrees of the Σ_2^0 -sets, which coincides with the enumeration degrees $a \leq 0'_e$. They form a densely ordered countable upper semilattice with least element $\mathbf{0}_e$ (the degree of the c.e. sets) and greatest element $\mathbf{0}'_e$ (the degree of \overline{K}).

Definition

 $A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all $x, x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.

In particular, we will focus on the degree structure S_e of the enumeration degrees of the Σ_2^0 -sets, which coincides with the enumeration degrees $a \leq 0'_e$. They form a densely ordered countable upper semilattice with least element $\mathbf{0}_e$ (the degree of the c.e. sets) and greatest element $\mathbf{0}'_e$ (the degree of \overline{K}).

For S_e , the \exists -theory is decidable by Lagemann (1972), whereas the $\exists \forall \exists$ -theory is undecidable by Kent (2006). The full first-order theory is as complicated as first-order arithmetic by Ganchev/M. Soskova (2012).

Definition

 $A \leq_e B$ if there is an enumeration operator Φ with $A = \Phi(B)$, i.e., there is a c.e. set Φ of pairs (x, F) (of numbers x and finite sets F) denoting that for all $x, x \in A$ iff there is $(x, F) \in \Phi$ with $F \subseteq B$.

In particular, we will focus on the degree structure S_e of the enumeration degrees of the Σ_2^0 -sets, which coincides with the enumeration degrees $a \leq 0'_e$. They form a densely ordered countable upper semilattice with least element $\mathbf{0}_e$ (the degree of the c.e. sets) and greatest element $\mathbf{0}'_e$ (the degree of \overline{K}).

For S_e , the \exists -theory is decidable by Lagemann (1972), whereas the $\exists \forall \exists$ -theory is undecidable by Kent (2006). The full first-order theory is as complicated as first-order arithmetic

by Ganchev/M. Soskova (2012).

However, the decidability of the $\forall \exists$ -theory of \mathcal{S}_e remains open.

Deciding the $\forall \exists$ -theory of a degree structure \mathcal{D} amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall \exists$ -theory of \mathcal{D})

Given finite partial orders \mathcal{P} and $\mathcal{Q}_i \supseteq \mathcal{P}$ (for $i \leq n$), does every embedding of \mathcal{P} into \mathcal{D} extend to an embedding of \mathcal{Q}_i into \mathcal{D} for some $i \leq n$ (where *i* may depend on the embedding of \mathcal{P})?

Deciding the $\forall \exists$ -theory of a degree structure \mathcal{D} amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall \exists$ -theory of \mathcal{D})

Given finite partial orders \mathcal{P} and $\mathcal{Q}_i \supseteq \mathcal{P}$ (for $i \leq n$), does every embedding of \mathcal{P} into \mathcal{D} extend to an embedding of \mathcal{Q}_i into \mathcal{D} for some $i \leq n$ (where *i* may depend on the embedding of \mathcal{P})?

Two major subproblems of the $\forall \exists$ -theory of \mathcal{S}_e are decidable:

Extension of Embeddings Problem

Given finite partial orders \mathcal{P} and $\mathcal{Q} \supseteq \mathcal{P}$, does every embedding of \mathcal{P} into \mathcal{S}_e extend to an embedding of \mathcal{Q} into \mathcal{S}_e ? (Lempp/Slaman/Sorbi 2005: complicated decision procedure)
 Background
 The Setup

 The Current Status
 ∀∃-Theory

Deciding the $\forall \exists$ -theory of a degree structure \mathcal{D} amounts to giving a uniform decision procedure to the following

Algebraic Problem (for deciding the $\forall \exists$ -theory of \mathcal{D})

Given finite partial orders \mathcal{P} and $\mathcal{Q}_i \supseteq \mathcal{P}$ (for $i \leq n$), does every embedding of \mathcal{P} into \mathcal{D} extend to an embedding of \mathcal{Q}_i into \mathcal{D} for some $i \leq n$ (where *i* may depend on the embedding of \mathcal{P})?

Two major subproblems of the $\forall \exists$ -theory of \mathcal{S}_e are decidable:

Extension of Embeddings Problem

Given finite partial orders \mathcal{P} and $\mathcal{Q} \supseteq \mathcal{P}$, does every embedding of \mathcal{P} into \mathcal{S}_e extend to an embedding of \mathcal{Q} into \mathcal{S}_e ? (Lempp/Slaman/Sorbi 2005: complicated decision procedure)

Lattice Embeddings Problem

Which finite lattices can be embedded into S_e (preserving join and meet)? (Lempp/Sorbi 2002: all finite lattices embed)

The main technical obstacles to deciding the $\forall\exists$ -theory of \mathcal{S}_e showed up first in the following

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

There is an Ahmad pair of Σ₂⁰-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree v < a is ≤ b.

The main technical obstacles to deciding the $\forall\exists$ -theory of \mathcal{S}_e showed up first in the following

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

- There is an Ahmad pair of Σ₂⁰-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree v < a is ≤ b.
- 2 There is no symmetric Ahmad pair of ∑₂⁰-enumeration degrees, i.e., there are no incomparable degrees *a* and *b* such that any degree *v* < *a* is ≤ *b*, and any degree *w* < *b* is ≤ *a*.

The main technical obstacles to deciding the $\forall\exists$ -theory of \mathcal{S}_e showed up first in the following

Theorem (Ahmad 1989 (cf. Ahmad/Lachlan 1998))

- There is an Ahmad pair of Σ₂⁰-enumeration degrees (a, b), i.e., there are incomparable degrees a and b such that any degree v < a is ≤ b.
- 2 There is no symmetric Ahmad pair of ∑₂⁰-enumeration degrees, i.e., there are no incomparable degrees a and b such that any degree v < a is ≤ b, and any degree w < b is ≤ a.

These are examples of $\forall \exists$ -statements blocking $\mathcal{P} \subset \mathcal{Q}_0$ but not both $\mathcal{P} \subset \mathcal{Q}_0$ and $\mathcal{P} \subset \mathcal{Q}_1$:

Technical Questions

Is there an Ahmad triple of Σ₂⁰-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?

Technical Questions

- Is there an Ahmad triple of Σ₂⁰-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?
- ② Is there a *cupping Ahmad pair*, i.e., is there an Ahmad pair (a, b) with $a \cup b = 0'_e$?

Technical Questions

- Is there an Ahmad triple of Σ₂⁰-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?
- ② Is there a *cupping Ahmad pair*, i.e., is there an Ahmad pair (a, b) with $a \cup b = 0'_e$?

So, e.g., \bigcirc is an example of simultaneously blocking $\mathcal{P} \subset \mathcal{Q}_0, \mathcal{Q}_1, \mathcal{Q}_2, \mathcal{Q}_3$:

Technical Questions

- Is there an Ahmad triple of Σ₂⁰-enumeration degrees, i.e., are there degrees a, b and c such that (a, b) and (b, c) form Ahmad pairs?
- ② Is there a *cupping Ahmad pair*, i.e., is there an Ahmad pair (a, b) with $a \cup b = 0'_e$?

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

• There is no Ahmad triple of Σ_2^0 -enumeration degrees.

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

- There is no Ahmad triple of Σ_2^0 -enumeration degrees.
- But there is a *weak Ahmad triple*, i.e., there are pairwise incomparable ∑₂⁰-enumeration degrees *a*, *b* and *c* such that (*a*, *b*) and (*a*, *c*) do not form Ahmad pairs but any degree *v* < *a* is ≤ *b* or ≤ *c*.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

- There is no Ahmad triple of Σ_2^0 -enumeration degrees.
- But there is a *weak Ahmad triple*, i.e., there are pairwise incomparable ∑₂⁰-enumeration degrees *a*, *b* and *c* such that (*a*, *b*) and (*a*, *c*) do not form Ahmad pairs but any degree *v* < *a* is ≤ *b* or ≤ *c*.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.

As for the other question:

Theorem (Goh, Lempp, Ng, M. Soskova, to appear)

- There is no Ahmad triple of Σ_2^0 -enumeration degrees.
- But there is a weak Ahmad triple, i.e., there are pairwise incomparable ∑₂⁰-enumeration degrees a, b and c such that (a, b) and (a, c) do not form Ahmad pairs but any degree v < a is ≤ b or ≤ c.

This has led to some exciting on-going work that I will present in more detail in the remainder of the talk.

As for the other question:

Theorem (Kalimullin, Lempp, Ng, Yamaleev, submitted)

There is no cupping Ahmad pair.

The proof turns out to be a non-uniform finite-injury(!) argument.

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$),

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}^T for some such T?

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.)

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.) The subproblem involving only extensions $\mathcal{Q}^{\mathcal{T}}$ is trivial: Extendible iff there is a singleton \mathcal{T} .

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.) The subproblem involving only extensions $\mathcal{Q}^{\mathcal{T}}$ is trivial: Extendible iff there is a singleton \mathcal{T} . We have now found a (complicated) complete characterization for the above subproblem involving only extensions \mathcal{Q}_S .

1-Point Extensions of Antichains

Decide, given a finite antichain $\mathcal{P} = \{a_0, \ldots, a_n\}$ and 1-point extensions $\mathcal{Q}_S = \{a_0, \ldots, a_n, x_S\}$ and $\mathcal{Q}^T = \{a_0, \ldots, a_n, x^T\}$ for some nonempty subsets $S, T \subseteq \{0, \ldots, n\}$ (where $x_S < a_i$ iff $i \in S$; and $x^T > a_i$ iff $i \in T$), whether any embedding of \mathcal{P} can be extended to an embedding of \mathcal{Q}_S for some such S or to an embedding of \mathcal{Q}^T for some such T?

(Note that it is always possible to extend an embedding of a finite antichain \mathcal{P} to an embedding of a larger antichain.) The subproblem involving only extensions $\mathcal{Q}^{\mathcal{T}}$ is trivial: Extendible iff there is a singleton \mathcal{T} . We have now found a (complicated) complete characterization for the above subproblem involving only extensions \mathcal{Q}_S . We have no working conjecture that combines the \mathcal{Q}_S and the $\mathcal{Q}^{\mathcal{T}}$. Background The Current Status

Main Theorem (Goh, Lempp, Ng, M. Soskova, in preparation)

Fix n > 0 and $S \subseteq \mathcal{P}(\{0, \dots, n\}) - \{\emptyset\}$. Let $S_0 = \{i \le n \mid \{i\} \in S\}$, and let $S_1 = \{0, \dots, n\} - S_0$.

Fix n > 0 and $S \subseteq \mathcal{P}(\{0, \dots, n\}) - \{\emptyset\}$. Let $S_0 = \{i \le n \mid \{i\} \in S\}$, and let $S_1 = \{0, \dots, n\} - S_0$. Then some embedding of \mathcal{P} into \mathcal{S}_e cannot be extended to an embedding of \mathcal{Q}_S for any $S \in S$ ("S can be blocked") iff (*) holds:

•
$$S_0=\emptyset$$
, or

•
$$\{0,\ldots,n\} \neq \bigcup \mathcal{S}; \text{ or }$$

Fix n > 0 and $S \subseteq \mathcal{P}(\{0, \dots, n\}) - \{\emptyset\}$. Let $S_0 = \{i \le n \mid \{i\} \in S\}$, and let $S_1 = \{0, \dots, n\} - S_0$. Then some embedding of \mathcal{P} into \mathcal{S}_e cannot be extended to an embedding of \mathcal{Q}_S for any $S \in S$ ("S can be blocked") iff (*) holds:

•
$$S_0=\emptyset$$
, or

•
$$\{0,\ldots,n\} \neq \bigcup \mathcal{S}; \text{ or }$$

• $S_0, S_1 \neq \emptyset$ and there is an assignment $\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\}$, i.e., a function such that

• for each
$$i \in S_0$$
, $\{i\} \cup \nu(i) \notin \mathcal{S}$, and

• for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$.

Fix n > 0 and $S \subseteq \mathcal{P}(\{0, \dots, n\}) - \{\emptyset\}$. Let $S_0 = \{i \le n \mid \{i\} \in S\}$, and let $S_1 = \{0, \dots, n\} - S_0$. Then some embedding of \mathcal{P} into \mathcal{S}_e cannot be extended to an embedding of \mathcal{Q}_S for any $S \in S$ ("S can be blocked") iff (*) holds:

•
$$S_0=\emptyset$$
, or

•
$$\{0,\ldots,n\} \neq \bigcup \mathcal{S}; \text{ or }$$

• $S_0, S_1 \neq \emptyset$ and there is an assignment $\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\}$, i.e., a function such that

• for each
$$i \in S_0$$
, $\{i\} \cup \nu(i) \notin S$, and

• for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$.

Let me first give examples for each of the three clauses of (*): $S_0 = \emptyset$: Make the degrees **a**_i pairwise minimal pairs.

Fix n > 0 and $S \subseteq \mathcal{P}(\{0, \dots, n\}) - \{\emptyset\}$. Let $S_0 = \{i \le n \mid \{i\} \in S\}$, and let $S_1 = \{0, \dots, n\} - S_0$. Then some embedding of \mathcal{P} into \mathcal{S}_e cannot be extended to an embedding of \mathcal{Q}_S for any $S \in S$ ("S can be blocked") iff (*) holds:

•
$$S_0=\emptyset$$
, or

•
$$\{0,\ldots,n\} \neq \bigcup \mathcal{S}; \text{ or }$$

• $S_0, S_1 \neq \emptyset$ and there is an assignment $\nu : S_0 \rightarrow \mathcal{P}(S_1) - \{\emptyset\}$, i.e., a function such that

• for each
$$i \in S_0$$
, $\{i\} \cup \nu(i) \notin S$, and

• for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$.

Let me first give examples for each of the three clauses of (*): $S_0 = \emptyset$: Make the degrees a_i pairwise minimal pairs. $\{0, \ldots, n\} \neq \bigcup S$: Fix $j \in \{0, \ldots, n\} - \bigcup S$ and make each a_k (for $k \neq j$) form an Ahmad pair with a_j .

- for each $i \in S_0$, $\{i\} \cup
 u(i) \notin \mathcal{S}$, and
- for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$:

- for each $i \in S_0$, $\{i\} \cup
 u(i) \notin \mathcal{S}$, and
- for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$:

Easy example showing the first bullet is needed:

 a_0 forms an Ahmad pair with a_1 ; so $S_0 = \{0\}$ and $\nu : 0 \mapsto \{1\}$, namely, $S = \{\{0\}\}$ can be blocked, but $\{\{0\}, \{0, 1\}\}$ cannot.

- for each $i \in S_0$, $\{i\} \cup
 u(i) \notin \mathcal{S}$, and
- for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$:

Easy example showing the first bullet is needed:

 a_0 forms an Ahmad pair with a_1 ; so $S_0 = \{0\}$ and $\nu : 0 \mapsto \{1\}$, namely, $S = \{\{0\}\}$ can be blocked, but $\{\{0\}, \{0, 1\}\}$ cannot.

Harder example showing the second bullet is needed:

 a_0 and a_1 both form an Ahmad pair with a_2 , and a_0 and a_1 form a minimal pair; so $S_0 = \{0, 1\}$ and $\nu : 0, 1 \mapsto \{2\}$, namely, $S = \{\{0\}, \{1\}, \{0, 1, 2\}\}$ and even $S = \{\{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\}$ can be blocked.

- for each $i \in S_0$, $\{i\} \cup
 u(i) \notin \mathcal{S}$, and
- for each $F \subseteq S_0$ with |F| > 1, we have $\bigcap \{\nu(i) \mid i \in F\} \notin S$:

Easy example showing the first bullet is needed:

 a_0 forms an Ahmad pair with a_1 ; so $S_0 = \{0\}$ and $\nu : 0 \mapsto \{1\}$, namely, $S = \{\{0\}\}$ can be blocked, but $\{\{0\}, \{0, 1\}\}$ cannot.

Harder example showing the second bullet is needed:

 a_0 and a_1 both form an Ahmad pair with a_2 , and a_0 and a_1 form a minimal pair; so $S_0 = \{0, 1\}$ and $\nu : 0, 1 \mapsto \{2\}$, namely, $S = \{\{0\}, \{1\}, \{0, 1, 2\}\}$ and even $S = \{\{0\}, \{1\}, \{0, 1\}, \{0, 1, 2\}\}$ can be blocked. But: Note that the first bullet fails for $S = \{\{0\}, \{1\}, \{0, 2\}\}$, so this cannot be blocked. Background The Current Status

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$.

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose **a**, **b**_i and **c**_{i,j} (for i < m and $j < n_i$) are degrees with $a \leq b_i$ and $b_i \leq c_{i,j}$ for all *i* and *j*.

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose \boldsymbol{a} , \boldsymbol{b}_i and $\boldsymbol{c}_{i,j}$ (for i < m and $j < n_i$) are degrees with $\boldsymbol{a} \nleq \boldsymbol{b}_i$ and $\boldsymbol{b}_i \nleq \boldsymbol{c}_{i,j}$ for all i and j. Then there is either $\boldsymbol{v} < \boldsymbol{a}$ with $\boldsymbol{v} \nleq \boldsymbol{b}_i$ for all i; or for some i, there is $\boldsymbol{w} < \boldsymbol{b}_i$ with $\boldsymbol{w} \nleq \boldsymbol{c}_{i,j}$.

The proof is a substantial extension of our "no Ahmad triple" result.

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose \boldsymbol{a} , \boldsymbol{b}_i and $\boldsymbol{c}_{i,j}$ (for i < m and $j < n_i$) are degrees with $\boldsymbol{a} \nleq \boldsymbol{b}_i$ and $\boldsymbol{b}_i \nleq \boldsymbol{c}_{i,j}$ for all i and j. Then there is either $\boldsymbol{v} < \boldsymbol{a}$ with $\boldsymbol{v} \nleq \boldsymbol{b}_i$ for all i; or for some i, there is $\boldsymbol{w} < \boldsymbol{b}_i$ with $\boldsymbol{w} \nleq \boldsymbol{c}_{i,j}$.

The proof is a substantial extension of our "no Ahmad triple" result.

Now suppose \mathcal{P} embeds via degrees a_i . For each $i \in S_0$, fix nonzero $\mathbf{v}_i < \mathbf{a}_i$ with $\mathbf{v}_i \nleq \mathbf{a}_k$ for all $k \in S_0 - \{i\}$, and set $\nu(i) = \{j \in S_1 \mid \mathbf{v}_i \le \mathbf{a}_j\}$, so $\{i\} \cup \nu(i) \notin S$ (and $\nu(i) \neq \emptyset$).

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose \boldsymbol{a} , \boldsymbol{b}_i and $\boldsymbol{c}_{i,j}$ (for i < m and $j < n_i$) are degrees with $\boldsymbol{a} \nleq \boldsymbol{b}_i$ and $\boldsymbol{b}_i \nleq \boldsymbol{c}_{i,j}$ for all i and j. Then there is either $\boldsymbol{v} < \boldsymbol{a}$ with $\boldsymbol{v} \nleq \boldsymbol{b}_i$ for all i; or for some i, there is $\boldsymbol{w} < \boldsymbol{b}_i$ with $\boldsymbol{w} \nleq \boldsymbol{c}_{i,j}$.

The proof is a substantial extension of our "no Ahmad triple" result.

Now suppose \mathcal{P} embeds via degrees \mathbf{a}_i . For each $i \in S_0$, fix nonzero $\mathbf{v}_i < \mathbf{a}_i$ with $\mathbf{v}_i \notin \mathbf{a}_k$ for all $k \in S_0 - \{i\}$, and set $\nu(i) = \{j \in S_1 \mid \mathbf{v}_i \leq \mathbf{a}_j\}$, so $\{i\} \cup \nu(i) \notin \mathcal{S}$ (and $\nu(i) \neq \emptyset$). On the other hand, for $F \subseteq S_0$ with |F| > 1, set $\mathbf{v}_F = \bigcup_{i \in F} \mathbf{v}_i$, and so $\mathbf{v}_F < \mathbf{a}_j$ iff $j \in \bigcap \{\nu(i) \mid i \in F\}$ (and $\bigcap \{\nu(i) \mid i \in F\} \notin \mathcal{S}$).

Proof Sketch: "S can be blocked" implies (*): Suppose $S_0 \neq \emptyset$ and $\{0, \ldots, n\} = \bigcup S$. We will use the following

Theorem

Suppose \boldsymbol{a} , \boldsymbol{b}_i and $\boldsymbol{c}_{i,j}$ (for i < m and $j < n_i$) are degrees with $\boldsymbol{a} \nleq \boldsymbol{b}_i$ and $\boldsymbol{b}_i \nleq \boldsymbol{c}_{i,j}$ for all i and j. Then there is either $\boldsymbol{v} < \boldsymbol{a}$ with $\boldsymbol{v} \nleq \boldsymbol{b}_i$ for all i; or for some i, there is $\boldsymbol{w} < \boldsymbol{b}_i$ with $\boldsymbol{w} \nleq \boldsymbol{c}_{i,j}$.

The proof is a substantial extension of our "no Ahmad triple" result.

Now suppose \mathcal{P} embeds via degrees \mathbf{a}_i . For each $i \in S_0$, fix nonzero $\mathbf{v}_i < \mathbf{a}_i$ with $\mathbf{v}_i \nleq \mathbf{a}_k$ for all $k \in S_0 - \{i\}$, and set $\nu(i) = \{j \in S_1 \mid \mathbf{v}_i \leq \mathbf{a}_j\}$, so $\{i\} \cup \nu(i) \notin S$ (and $\nu(i) \neq \emptyset$). On the other hand, for $F \subseteq S_0$ with |F| > 1, set $\mathbf{v}_F = \bigcup_{i \in F} \mathbf{v}_i$, and so $\mathbf{v}_F < \mathbf{a}_j$ iff $j \in \bigcap \{\nu(i) \mid i \in F\}$ (and $\bigcap \{\nu(i) \mid i \in F\} \notin S$). So ν is an assignment as desired.

(*) implies " \mathcal{S} can be blocked": $\mathbf{0}^{\prime\prime\prime}$ -argument with requirements:

(*) implies " \mathcal{S} can be blocked": $\mathbf{0}'''$ -argument with requirements:

 $\mathcal{A}_i: X = \Phi(A_i) \rightarrow \forall j \in \nu(i) \, (X = \Gamma_j(A_j)) \text{ or } \exists \Delta (A_i = \Delta(X)) \; (i \in S_0)$

(*) implies " ${\cal S}$ can be blocked": ${f 0}^{\prime\prime\prime}$ -argument with requirements:

 $\begin{aligned} \mathcal{A}_i : X &= \Phi(A_i) \to \forall j \in \nu(i) \, (X = \Gamma_j(A_j)) \text{ or } \exists \Delta \left(A_i = \Delta(X) \right) \, (i \in S_0) \\ \mathcal{J}_{i,j} : A_i &\neq \Psi(A_j) \quad (\text{if } j \in \nu(i)) \end{aligned}$

(*) implies " ${\cal S}$ can be blocked": ${f 0}^{\prime\prime\prime}$ -argument with requirements:

 $\begin{aligned} \mathcal{A}_{i} : X &= \Phi(A_{i}) \rightarrow \forall j \in \nu(i) \left(X = \Gamma_{j}(A_{j}) \right) \text{ or } \exists \Delta \left(A_{i} = \Delta(X) \right) \left(i \in S_{0} \right) \\ \mathcal{J}_{i,j} : A_{i} &\neq \Psi(A_{j}) \quad (\text{if } j \in \nu(i)) \\ \mathcal{E}_{F} : \forall k \in F \left(Y = \Phi(A_{k}) \right) \rightarrow Y = \Lambda(A_{i}) \\ & (\text{if } F \in S \text{ and there is a unique } i \in S_{0} \text{ with } F \subseteq \nu(i)) \\ \mathcal{E}_{F,j} : \forall k \in F \left(Y = \Phi(A_{k}) \right) \rightarrow Y = \Lambda(A_{j}) \\ & (\text{if } F \in S \text{ and } F \subseteq \nu(i) \text{ for at least two } i \in S_{0}, \\ & \text{and } j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F) \end{aligned}$

)

(*) implies " \mathcal{S} can be blocked": $\mathbf{0}^{\prime\prime\prime}$ -argument with requirements:

$$\begin{array}{l} \mathcal{A}_{i}: X = \Phi(A_{i}) \rightarrow \forall j \in \nu(i) \left(X = \Gamma_{j}(A_{j}) \right) \text{ or } \exists \Delta \left(A_{i} = \Delta(X) \right) \left(i \in S_{0} \right. \\ \mathcal{J}_{i,j}: A_{i} \neq \Psi(A_{j}) \quad (\text{if } j \in \nu(i)) \\ \mathcal{E}_{F}: \forall k \in F \left(Y = \Phi(A_{k}) \right) \rightarrow Y = \Lambda(A_{i}) \\ \left(\text{if } F \in \mathcal{S} \text{ and there is a unique } i \in S_{0} \text{ with } F \subseteq \nu(i) \right) \\ \mathcal{E}_{F,j}: \forall k \in F \left(Y = \Phi(A_{k}) \right) \rightarrow Y = \Lambda(A_{j}) \\ \left(\text{if } F \in \mathcal{S} \text{ and } F \subseteq \nu(i) \text{ for at least two } i \in S_{0}, \right. \\ \left. \text{and } j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F \right) \\ \mathcal{M}_{i,j}: Y = \Phi(A_{i}) = \Phi(A_{j}) \rightarrow Y \text{ is c.e. } \left(\text{if } i \in S_{0}; j \in S - \left(\{i\} \cup \nu(i)\right) \right) \\ \mathcal{M}_{F}: \forall j \in F \left(Y = \Phi(A_{j}) \right) \rightarrow Y \text{ is c.e.} \\ \left(\text{if } |F| > 1, F \subseteq S_{1}, \text{ and } F \not\subseteq \nu(i) \text{ for all } i \in S_{0} \right) \end{array}$$

(*) implies " ${\cal S}$ can be blocked": 0^{$\prime\prime\prime$}-argument with requirements:

 $\mathcal{A}_i: X = \Phi(\mathcal{A}_i) \to \forall j \in \nu(i) (X = \Gamma_i(\mathcal{A}_i)) \text{ or } \exists \Delta (\mathcal{A}_i = \Delta(X)) (i \in S_0)$ $\mathcal{J}_{i,i}: A_i \neq \Psi(A_i) \quad (\text{if } i \in \nu(i))$ $\mathcal{E}_F: \forall k \in F(Y = \Phi(A_k)) \to Y = \Lambda(A_i)$ (if $F \in S$ and there is a unique $i \in S_0$ with $F \subseteq \nu(i)$) $\mathcal{E}_{F,i}: \forall k \in F(Y = \Phi(A_k)) \rightarrow Y = \Lambda(A_i)$ (if $F \in S$ and $F \subseteq \nu(i)$ for at least two $i \in S_0$, and $j \in \bigcap \{\nu(i) \mid F \subseteq \nu(i)\} - F$ $\mathcal{M}_{i,i}: Y = \Phi(A_i) = \Phi(A_i) \rightarrow Y$ is c.e. (if $i \in S_0, j \in S - (\{i\} \cup \nu(i)))$ $\mathcal{M}_F: \forall i \in F(Y = \Phi(A_i)) \to Y \text{ is c.e.}$ (if |F| > 1, $F \subseteq S_1$, and $F \not\subseteq \nu(i)$ for all $i \in S_0$) $\mathcal{I}_{j,k}: A_j \neq \Psi(A_k) \quad (\text{if } j, k \in S_1 \text{ and there is } i \in S_0 \text{ with } j, k \in \nu(i))$ $\mathcal{I}_j : A_j \neq W$ (if $j \in S_1 - \bigcup_{i \in S_0} \nu(i)$)

Background The Current Status

Thanks!