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Wadge reducibility

Pick a Polish space X — usually w* or 2“.

For A, B C X, write A < B if there is a continuous f with
A= f"Y(B).

Equivalently, Vx € X, x € A <— f(x) € B.

Analogy: A/BCw, A<, B.



Semi-linear ordering

Lemma (Wadge)

For any Borel A, B C X, at
least one of these holds:

o A<y B;

e B <y —A.
For any Borel A, B C X:

e B=yw AorB=yw —A; or

e B<w Aand B <y —A; or

@ B>y Aand B >y —A.




A self-dual degree

Let A=1[0] = {0"x: x € w*}.

~ . A=y A
~ 1™x ifb=0, w
(b X)_{OAX if b> 0. *

f shows A =y, —A.



Wadge classes

I C P(X) is a Wadge class if it is downwards closed under <y .
I is a pointclass if there is A€ T with ' = {B: B < A}

The ordering becomes containment: if I'; is the pointclass of A;,
then Ag <w A1 & g CIy.

Some example pointclasses: Z?, I'I?, Zg, I'Ig7 cen.



Duals and deltas

For I' a Wadge class:

@ The dual of Tis [ = {~B: B cT}. If [is a pointclass, so is
I

o Iis self-dual if T =T.
o The ambiguous class of Tis A(F) = NT.

<0 _ o
>, =1n,.
The class of clopen sets is self-dual.

A(ED) = A(MY) = A2,



Well ordering

By Wadge's lemma, the
pointclasses of Borel sets are
totally-ordered, if we collapse a
class with its dual.

Theorem (Martin) Fe——oc——eor

This is a well-ordering.

The order-type is beyond w; —
needs Veblen functions.



The start of the order

Open Closed

Clopen

{w?”} {0}



Successor steps

If A is non-self-dual, there is
non-self-dual I so that this
picture is convex. A(T)

All are pointclasses.



Countable limits

At a countable cofinality limit
point, there is non-self-dual I A(I)
so that A(I) is the limit.

All are pointclasses. °




Uncountable limits

At an uncountable cofinality
limit point, there is
non-self-dual T so that A() is
the union of the earlier classes.

A(T) is not a pointclass.

w1



A note about subscripts

For n < w, X9, means enumerable with n jumps.
For o« > w, Zg means enumerable with a jumps.

These can be unified:
@ Forn<w,l14+n=n+1. Z?Jrn:Z?,H.
@ Fora>w,1+a=a. Z(era:Zg.

For all o, X9, means enumerable with o jumps.



An example description

BiSep(X9, X9) is the class of all

sets (CoﬂAo)U(ClﬂAl) 0 1 1 0
satisfying:
o Go,C € X9, 0 ¢=1 ¢=1
o GNGC =0; Go G
e Ay € Zg;

o A € ¥3=n9.



Changing children

§

On a z € w*, a computable process with access to z(¢) starts at
the leftmost child, and can move to another child in a c.e. way.



Another example

D"(Z?+£) is the n-level in the Hausdorff difference hierarchy.
Members are sets of the form

U Aa\ U As

a<n B<a
parity(c)#parity(n)

where the A, are all 2(1)+5-



0
How | understand a D"(X7, ) set

From z(€), uniformly compute
two sequences (a,)ne., and
(Bn)new satisfying:

@ ag=0and By =1;

o For all n, B > Bnt1; 0 1
o If a, # apt1, then \/
Bn > Bn+1, and g,n

@ lim, a, indicates if z
belongs to the set.

Call this an n-bounded
approximation.



Changing children more

&n

On a z € w¥, a computable process with access to z(¢) starts at
the leftmost child, and can move to other children in an n-bounded
approximation.



The descriptions

A description is a labeled tree
T C w* such that:

o T is well-founded;
@ Each leaf of T is labeled
with 0 or 1;

@ Each non-leaf c € T is
labeled with ordinals &,
and 7;

e lfo C7€T arenot
leaves, then &, < &;.



Names for sets

If I is a description, a -name for a set consists of a collection
{®, : non-leaf o € Tr}. Each &, is a functional for generating an
ns-bounded approximation to a child of o, where the starting value
is the leftmost child. (All relative to some real parameter.)

For each z € w®, build a path through Tr:
@ Start at the root.
@ If we've reached a non-leaf o € T, we choose the child
lim &, (2(&)).
Membership of z is determined by the label on the leaf we reach: 0
or 1.



Described classes

If T is a description, let I' be the collection of all sets which have a
[-name.

The T are precisely the non-self dual Borel pointclasses.

Any self-dual Borel pointclass is A(T) for some description T .

A description of I can be made from ' by swapping all Os and 1s
at the leaves.



Returning to successors

r r
For any description A, we get a
description for the next pair up: A(T)
A A
0 A A 1 A



Returning to countable limits

r r
For any increasing sequence
©0,01,..., we get a
description for pair at the limit:
A(T)

0 © ©; 1 O ©;

\W \\W °

520,77:1 520,7’]:1 w
[}




Returning to the uncountable limits

(T, T) is a limit of uncountable cofinality precisely when there is a
o along the leftmost branch of ' with &, > 0.




A game for containment — GC(I', A)

I and A are descriptions.

Consider a convex piece of Tr
or Ty in which all internal
nodes have the same £.

The piece is a tree within T or
Th, not necessarily with the
same root.




A game for containment — GC(I', A)

Divide Tr and Tp into maximal
pieces like this.

Each leaf of a piece is either a
leaf of the original tree or the
root of another piece.

We have a [-player and
NA-player. The players will move
from piece to piece on their
respective trees, moving
towards a leaf.



A game for containment — GC(I', A)

Now compare & and €7, the € of the current two pieces. If one
player has reached a leaf of the original tree, treat their £ as oc.

If €7 < &N, the T player picks a leaf of their piece and moves there.
The A player stays where they are.

If €7 > ¢ the A player picks a leaf of their piece and moves there.
The I player stays where they are.

If €7 = ¢N < oo, things are more complicated.



GC(T,N\) — when ¢ = €M

The players dynamically choose leaves of their current pieces.

Each internal node o in a piece begins pointing towards its
leftmost child.

On their turn, a player may change some nodes to point to other
children, or they may pass. The changes of ¢ must be 7,-bounded.

This process ends when the players pass around. Each player starts
at the root of their piece and follows the pointers to reach a leaf.
This is their next piece.



GC(I', \) — victory

The game ends when both players reach a leaf of their original tree.

If the leaves have the same label (0 or 1), the A-player wins.
Otherwise, the I-player wins.

The N-player has a winning strategy for GC(I',\) iff T C A.




Monotone sequences and descriptions

A sequence of descriptions (©,) is monotone if for all n,
G)n - en—l—l-

Equivalently, ®,41 = O, or O, D o,.

A description is monotone if for every non-leaf o, the
subdescriptions rooted at ¢'s children form a monotone sequence.

Every non-self-dual Borel pointclass has a monotone description.
Henceforth all descriptions are monotone.



Distinguishing the halves of a pair

0 1
Definition \/ 50
A description has ¥-type if its 1+¢
leftmost leaf is labeled 0. &n=1
Otherwise, it has M-type. |
1 0

N/
The type of a class is invariant. 1+




The separation property

I'I[:f+£ has the separation property: for any two disjoint sets in
Ny, ., thereisa A(NY, ) = A, separator.
(Thls also works for lightface classes on w.)

[ has the separation property iff [ is of IN-type.




The reduction property

Z?+§ has the reduction property. for any Ag, A1 € 2(1)+§' there are
Bo, B1 € X9, satisfying:

@ By C Ag and B; C Aq;

@ BoN By =0; and

@ ByUB; = AgUA;.

(This also works for lightface classes on w.)



The situation is more complex

BiSep(X9, X9) does not have
the reduction property

If T has ¥-type and is closed under finite intersections, then it has
the reduction property.

D”(Z(l)%) has the reduction property but is not closed under finite
intersections (when n > 1).

A

v




More than X-type

Definition
A description has hereditarily ¥ -type if for every internal node, the
leftmost leaf extending that node is labeled 0.

I has the reduction property iff it has a description of hereditarily
> -type.

Unfortunately, hereditarily ¥-type is not invariant.

¥ 3 xS ¥ n o=



Generalizing separation and reduction

Definition
N separates T if for any two disjoint sets in I, there is a separator
in A(N).

N reduces T if for any Ag, A; € T, there are By, By € N satisfying:
@ By C Ag and B; C Aq;
@ BynN By = 0; and
@ ByUB; = Ay UA;.




Separation and reduction games

Define games GS(I',A) and GR(T, ).

Like GC(T',A), but each player has two copies of their tree:
T2, TP, T7 and T?. They work their way down both
simultaneously.

Each player ends up with two labels, one from each tree.

When the A-player wins GS(I', A\) When the A-player wins GR(T', A)
I-player A-player I-player A-player
(1,1) Anything ( (0,0)
(1,0) (1,0) (0,1) (0,1)
(0,1) (0,1) (1,0) (1,0)
(0,0) (0,1) or (1,0) (1,1) ) or (

(1,0) or (0,1)



What the games tell us

The N-player has a winning strategy for GS(I', \) iff \ separates T .

The N-player has a winning strategy for GR(T', \) iff \ reduces .




Back to computability theory

These descriptions can also be used on w to get m-reduciblity
classes.

Now z is a number, so instead of z(&), just use §(&) @ {z}.
Otherwise, nothing changes about names and descriptions.

When the tree and the ordinals are all finite, we get precisely
Selivanov's hierarchy of Boolean terms on ¥9 -sets. Semi-linear
ordering is immediate: GC is a finite game, so it has a computable
winning strategy.

Our student Qi Renrui is working on this to extend Selivanov's
hierarchy beyond arithmetical.



Thank you.



