Wadge Degrees, Games, and the Separation and Reduction Properties

Daniel Turetsky Victoria University of Wellington

Joint work with Noam Greenberg Partly joint with Matthew Harrison-Trainor

October 2022

Pick a Polish space X – usually ω^{ω} or 2^{ω} .

For $A, B \subseteq X$, write $A \leq_W B$ if there is a continuous f with $A = f^{-1}(B)$.

Equivalently, $\forall x \in X$, $x \in A \iff f(x) \in B$.

Analogy: $A, B \subseteq \omega, A \leq_m B$.

Lemma (Wadge)

For any Borel $A, B \subseteq X$, at least one of these holds:

- $A \leq_W B$;
- $B \leq_W \neg A$.

Corollary

For any Borel $A, B \subseteq X$:

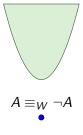
- $B \equiv_W A$ or $B \equiv_W \neg A$; or
- $B <_W A$ and $B <_W \neg A$; or

• $B >_W A$ and $B >_W \neg A$.

Let
$$A = [0] = \{0^{x} : x \in \omega^{\omega}\}.$$

$$f(b^{x}) = \begin{cases} 1^{x} & \text{if } b = 0, \\ 0^{x} & \text{if } b > 0. \end{cases}$$

f shows $A \equiv_W \neg A$.



- $\Gamma \subseteq \mathcal{P}(X)$ is a *Wadge class* if it is downwards closed under \leq_W .
- Γ is a *pointclass* if there is $A \in \Gamma$ with $\Gamma = \{B : B \leq_W A\}$.

The ordering becomes containment: if Γ_i is the pointclass of A_i , then $A_0 \leq_W A_1 \Leftrightarrow \Gamma_0 \subseteq \Gamma_1$.

Some example pointclasses: $\Sigma_1^0, \Pi_1^0, \Sigma_2^0, \Pi_2^0, \ldots$

For Γ a Wadge class:

- The dual of Γ is $\check{\Gamma} = \{\neg B : B \in \Gamma\}$. If Γ is a pointclass, so is $\check{\Gamma}$.
- Γ is *self-dual* if $\Gamma = \check{\Gamma}$.
- The *ambiguous class* of Γ is $\Delta(\Gamma) = \Gamma \cap \check{\Gamma}$.

 $\check{\mathbf{\Sigma}}^{\mathbf{0}}_{\alpha} = \mathbf{\Pi}^{\mathbf{0}}_{\alpha}.$

The class of clopen sets is self-dual.

 $\Delta(\mathbf{\Sigma}^{\mathbf{0}}_{\alpha}) = \Delta(\mathbf{\Pi}^{\mathbf{0}}_{\alpha}) = \mathbf{\Delta}^{\mathbf{0}}_{\alpha}.$

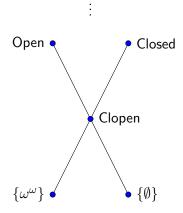
By Wadge's lemma, the pointclasses of Borel sets are totally-ordered, if we collapse a class with its dual.

Theorem (Martin)

This is a well-ordering.

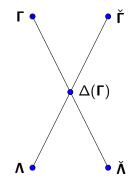
The order-type is beyond ω_1 — needs Veblen functions.

The start of the order



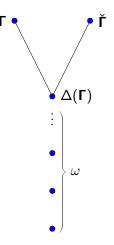
If Λ is non-self-dual, there is non-self-dual Γ so that this picture is convex.

All are pointclasses.



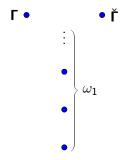
At a countable cofinality limit point, there is non-self-dual Γ so that $\Delta(\Gamma)$ is the limit.

All are pointclasses.



At an uncountable cofinality limit point, there is non-self-dual Γ so that $\Delta(\Gamma)$ is the union of the earlier classes.

 $\Delta(\mathbf{\Gamma})$ is *not* a pointclass.



For $n < \omega$, $\sum_{n=1}^{0}$ means enumerable with *n* jumps.

For $\alpha \geq \omega$, Σ^0_{α} means enumerable with α jumps.

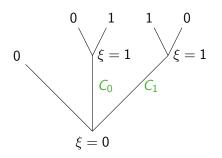
These can be unified:

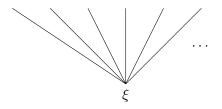
• For
$$n < \omega$$
, $1 + n = n + 1$. $\Sigma_{1+n}^0 = \Sigma_{n+1}^0$.
• For $\alpha \ge \omega$, $1 + \alpha = \alpha$. $\Sigma_{1+\alpha}^0 = \Sigma_{\alpha}^0$.

For all α , $\Sigma^0_{1+\alpha}$ means enumerable with α jumps.

BiSep(Σ_1^0, Σ_2^0) is the class of all sets ($C_0 \cap A_0$) \cup ($C_1 \cap A_1$) satisfying:

- $C_0, C_1 \in \mathbf{\Sigma}_1^0;$
- $C_0 \cap C_1 = \emptyset;$
- $A_0\in \mathbf{\Sigma}_2^0$;
- $A_1 \in \check{\Sigma}_2^0 = \Pi_2^0$.





On a $z \in \omega^{\omega}$, a computable process with access to $z^{(\xi)}$ starts at the leftmost child, and can move to another child in a c.e. way.

 $D^{\eta}(\Sigma_{1+\xi}^{0})$ is the η -level in the Hausdorff difference hierarchy. Members are sets of the form

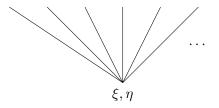
$$\bigcup_{\substack{\alpha < \eta \\ \mathsf{parity}(\alpha) \neq \mathsf{parity}(\eta)}} \left(\mathsf{A}_{\alpha} \setminus \bigcup_{\beta < \alpha} \mathsf{A}_{\beta} \right)$$

where the A_{α} are all $\Sigma_{1+\xi}^{0}$.

From $z^{(\xi)}$, uniformly compute two sequences $(a_n)_{n\in\omega}$ and $(\beta_n)_{n\in\omega}$ satisfying:

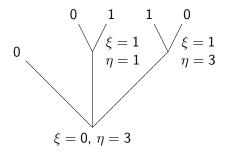
- $a_0 = 0$ and $\beta_0 = \eta$;
- For all $n, \beta_n \geq \beta_{n+1}$;
- If $a_n \neq a_{n+1}$, then $\beta_n > \beta_{n+1}$; and
- lim_n a_n indicates if z belongs to the set.

Call this an η -bounded approximation.



On a $z \in \omega^{\omega}$, a computable process with access to $z^{(\xi)}$ starts at the leftmost child, and can move to other children in an η -bounded approximation.

- A description is a labeled tree
- $T \subseteq \omega^{\omega}$ such that:
 - T is well-founded;
 - Each leaf of *T* is labeled with 0 or 1;
 - Each non-leaf σ ∈ T is labeled with ordinals ξ_σ and η_σ;
 - If $\sigma \subseteq \tau \in T$ are not leaves, then $\xi_{\sigma} \leq \xi_{\tau}$.



If Γ is a description, a Γ -name for a set consists of a collection $\{\Phi_{\sigma} : \text{non-leaf } \sigma \in T_{\Gamma}\}$. Each Φ_{σ} is a functional for generating an η_{σ} -bounded approximation to a child of σ , where the starting value is the leftmost child. (All relative to some real parameter.)

For each $z \in \omega^{\omega}$, build a path through T_{Γ} :

- Start at the root.
- If we've reached a non-leaf $\sigma \in T_{\Gamma}$, we choose the child $\lim \Phi_{\sigma}(z^{(\xi_{\sigma})})$.

Membership of z is determined by the label on the leaf we reach: 0 or 1.

If Γ is a description, let $\pmb{\Gamma}$ be the collection of all sets which have a $\Gamma\text{-name}.$

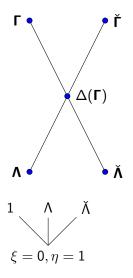
Theorem

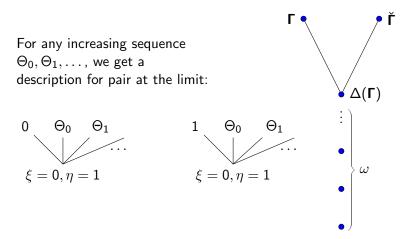
The **Γ** are precisely the non-self dual Borel pointclasses.

Any self-dual Borel pointclass is $\Delta(\Gamma)$ for some description Γ .

A description of $\check{\Gamma}$ can be made from Γ by swapping all 0s and 1s at the leaves.

For any description Λ , we get a description for the next pair up:





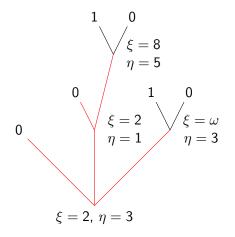
Theorem

 $(\mathbf{\Gamma}, \check{\mathbf{\Gamma}})$ is a limit of uncountable cofinality precisely when there is a σ along the leftmost branch of Γ with $\xi_{\sigma} > 0$.

 Γ and Λ are descriptions.

Consider a convex piece of T_{Γ} or T_{Λ} in which all internal nodes have the same ξ .

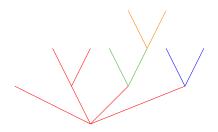
The piece is a tree within T_{Γ} or T_{Λ} , not necessarily with the same root.



Divide T_{Γ} and T_{Λ} into maximal pieces like this.

Each leaf of a piece is either a leaf of the original tree or the root of another piece.

We have a Γ -player and Λ -player. The players will move from piece to piece on their respective trees, moving towards a leaf.



Now compare ξ^{Γ} and ξ^{Λ} , the ξ of the current two pieces. If one player has reached a leaf of the original tree, treat their ξ as ∞ .

If $\xi^{\Gamma} < \xi^{\Lambda}$, the Γ player picks a leaf of their piece and moves there. The Λ player stays where they are.

If $\xi^{\Gamma} > \xi^{\Lambda}$, the Λ player picks a leaf of their piece and moves there. The Γ player stays where they are.

If $\xi^{\Gamma} = \xi^{\Lambda} < \infty$, things are more complicated.

The players dynamically choose leaves of their current pieces.

Each internal node σ in a piece begins pointing towards its leftmost child.

On their turn, a player may change some nodes to point to other children, or they may pass. The changes of σ must be η_{σ} -bounded.

This process ends when the players pass around. Each player starts at the root of their piece and follows the pointers to reach a leaf. This is their next piece. The game ends when both players reach a leaf of their original tree.

If the leaves have the same label (0 or 1), the $\Lambda\text{-player}$ wins. Otherwise, the $\Gamma\text{-player}$ wins.

Theorem

The Λ -player has a winning strategy for $GC(\Gamma, \Lambda)$ iff $\Gamma \subseteq \Lambda$.

A sequence of descriptions (Θ_n) is *monotone* if for all n, $\check{\Theta}_n \subseteq \Theta_{n+1}$.

Equivalently, $\boldsymbol{\Theta}_{n+1} = \check{\boldsymbol{\Theta}}_n$ or $\boldsymbol{\Theta}_{n+1} \supset \check{\boldsymbol{\Theta}}_n$.

A description is monotone if for every non-leaf σ , the subdescriptions rooted at σ 's children form a monotone sequence.

Every non-self-dual Borel pointclass has a monotone description. Henceforth all descriptions are monotone.

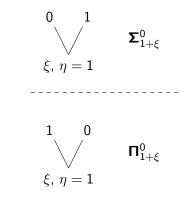
Definition

A description has Σ -*type* if its leftmost leaf is labeled 0.

Otherwise, it has Π -type.

Lemma

The type of a class is invariant.



$\Pi^0_{1+\xi}$ has the *separation property*: for any two disjoint sets in $\Pi^0_{1+\xi}$, there is a $\Delta(\Pi^0_{1+\xi}) = \Delta^0_{1+\xi}$ separator. (This also works for lightface classes on ω .)

Theorem

\Gamma has the separation property iff Γ is of Π -type.

 $\Sigma_{1+\xi}^{0}$ has the *reduction property*: for any $A_0, A_1 \in \Sigma_{1+\xi}^{0}$, there are $B_0, B_1 \in \Sigma_{1+\xi}^{0}$ satisfying:

- $B_0 \subseteq A_0$ and $B_1 \subseteq A_1$;
- $B_0 \cap B_1 = \emptyset$; and
- $B_0 \cup B_1 = A_0 \cup A_1$.

(This also works for lightface classes on ω .)

The situation is more complex

Lemma

If Γ has Σ -type and is closed under finite intersections, then it has the reduction property.

Example

 $D^{\eta}(\mathbf{\Sigma}_{1+\xi}^{0})$ has the reduction property but is not closed under finite intersections (when $\eta > 1$).

More than Σ -type

Definition

A description has *hereditarily* Σ -*type* if for every internal node, the leftmost leaf extending that node is labeled 0.

Theorem

 $\pmb{\Gamma}$ has the reduction property iff it has a description of hereditarily $\Sigma\text{-type.}$

Unfortunately, hereditarily Σ -type is not invariant.

Definition

A separates Γ if for any two disjoint sets in Γ , there is a separator in $\Delta(\Lambda)$.

Λ reduces Γ if for any $A_0, A_1 \in Γ$, there are $B_0, B_1 \in Λ$ satisfying:

- $B_0 \subseteq A_0$ and $B_1 \subseteq A_1$;
- $B_0 \cap B_1 = \emptyset$; and
- $B_0 \cup B_1 = A_0 \cup A_1$.

Define games $GS(\Gamma, \Lambda)$ and $GR(\Gamma, \Lambda)$.

Like $GC(\Gamma, \Lambda)$, but each player has two copies of their tree: $T_{\Gamma}^{a}, T_{\Gamma}^{b}, T_{\Lambda}^{a}$ and T_{Λ}^{b} . They work their way down both simultaneously.

Each player ends up with two labels, one from each tree.

When the Λ -player wins $GS(\Gamma, \Lambda)$		When the Λ -player wins $GR(\Gamma, \Lambda)$	
Γ-player	Λ-player	Γ-player	Λ-player
(1,1)	Anything	(0,0)	(0,0)
(1, 0)	(1, 0)	(0, 1)	(0, 1)
(0, 1)	(0, 1)	(1, 0)	(1, 0)
(0, 0)	(0,1) or $(1,0)$	(1, 1)	(1,0) or $(0,1)$

Theorem

The Λ -player has a winning strategy for $GS(\Gamma, \Lambda)$ iff Λ separates Γ .

The Λ -player has a winning strategy for $GR(\Gamma, \Lambda)$ iff Λ reduces Γ .

These descriptions can also be used on ω to get m-reduciblity classes.

Now z is a number, so instead of $z^{(\xi)}$, just use $\emptyset^{(\xi)} \oplus \{z\}$. Otherwise, nothing changes about names and descriptions.

When the tree and the ordinals are all finite, we get precisely Selivanov's hierarchy of Boolean terms on Σ_{1+n}^0 -sets. Semi-linear ordering is immediate: *GC* is a finite game, so it has a computable winning strategy.

Our student Qi Renrui is working on this to extend Selivanov's hierarchy beyond arithmetical.

Thank you.