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Wadge reducibility

Pick a Polish space X – usually ωω or 2ω.

For A,B ⊆ X , write A ≤W B if there is a continuous f with
A = f −1(B).

Equivalently, ∀x ∈ X , x ∈ A ⇐⇒ f (x) ∈ B.

Analogy: A,B ⊆ ω, A ≤m B.



Semi-linear ordering

Lemma (Wadge)

For any Borel A,B ⊆ X, at
least one of these holds:

A ≤W B;

B ≤W ¬A.

Corollary

For any Borel A,B ⊆ X:

B ≡W A or B ≡W ¬A; or
B <W A and B <W ¬A; or
B >W A and B >W ¬A.

A ¬A



A self-dual degree

Let A = [0] = {0̂x : x ∈ ωω}.

f (b̂x) = {
1̂x if b = 0,
0̂x if b > 0.

f shows A ≡W ¬A.

A ≡W ¬A



Wadge classes

Γ ⊆ P(X ) is a Wadge class if it is downwards closed under ≤W .

Γ is a pointclass if there is A ∈ Γ with Γ = {B : B ≤W A}.

The ordering becomes containment: if Γi is the pointclass of Ai ,
then A0 ≤W A1 ⇔ Γ0 ⊆ Γ1.

Some example pointclasses: Σ0
1,Π

0
1,Σ

0
2,Π

0
2, . . . .



Duals and deltas

For Γ a Wadge class:

The dual of Γ is Γ̌ = {¬B : B ∈ Γ}. If Γ is a pointclass, so is
Γ̌.

Γ is self-dual if Γ = Γ̌.

The ambiguous class of Γ is ∆(Γ) = Γ ∩ Γ̌.

Σ̌0
α = Π0

α.

The class of clopen sets is self-dual.

∆(Σ0
α) = ∆(Π0

α) = ∆0
α.



Well ordering

By Wadge’s lemma, the
pointclasses of Borel sets are
totally-ordered, if we collapse a
class with its dual.

Theorem (Martin)

This is a well-ordering.

The order-type is beyond ω1 —
needs Veblen functions.

Γ Γ̌

∆(Γ)



The start of the order

...

Open Closed

Clopen

{ωω} {∅}



Successor steps

If Λ is non-self-dual, there is
non-self-dual Γ so that this
picture is convex.

All are pointclasses.

Γ Γ̌

∆(Γ)

Λ Λ̌



Countable limits

At a countable cofinality limit
point, there is non-self-dual Γ
so that ∆(Γ) is the limit.

All are pointclasses.

Γ Γ̌

∆(Γ)
...

ω



Uncountable limits

At an uncountable cofinality
limit point, there is
non-self-dual Γ so that ∆(Γ) is
the union of the earlier classes.

∆(Γ) is not a pointclass.

Γ Γ̌
...

ω1



A note about subscripts

For n < ω, Σ0
n+1 means enumerable with n jumps.

For α ≥ ω, Σ0
α means enumerable with α jumps.

These can be unified:

For n < ω, 1 + n = n + 1. Σ0
1+n = Σ0

n+1.

For α ≥ ω, 1 + α = α. Σ0
1+α = Σ0

α.

For all α, Σ0
1+α means enumerable with α jumps.



An example description

BiSep(Σ0
1,Σ

0
2) is the class of all

sets (C0 ∩ A0) ∪ (C1 ∩ A1)
satisfying:

C0,C1 ∈ Σ0
1;

C0 ∩ C1 = ∅;
A0 ∈ Σ0

2;

A1 ∈ Σ̌0
2 = Π0

2.
ξ = 0

0 ξ = 1

0 1

ξ = 1

1 0

C0 C1



Changing children

ξ

· · ·

On a z ∈ ωω, a computable process with access to z(ξ) starts at
the leftmost child, and can move to another child in a c.e. way.



Another example

Dη(Σ0
1+ξ) is the η-level in the Hausdorff difference hierarchy.

Members are sets of the form

⋃
α<η

parity(α)̸=parity(η)

Aα \
⋃
β<α

Aβ


where the Aα are all Σ0

1+ξ.



How I understand a Dη(Σ0
1+ξ) set

From z(ξ), uniformly compute
two sequences (an)n∈ω and
(βn)n∈ω satisfying:

a0 = 0 and β0 = η;

For all n, βn ≥ βn+1;

If an ̸= an+1, then
βn > βn+1; and

limn an indicates if z
belongs to the set.

Call this an η-bounded
approximation.

ξ, η

0 1



Changing children more

ξ, η

· · ·

On a z ∈ ωω, a computable process with access to z(ξ) starts at
the leftmost child, and can move to other children in an η-bounded
approximation.



The descriptions

A description is a labeled tree
T ⊆ ωω such that:

T is well-founded;

Each leaf of T is labeled
with 0 or 1;

Each non-leaf σ ∈ T is
labeled with ordinals ξσ
and ησ;

If σ ⊆ τ ∈ T are not
leaves, then ξσ ≤ ξτ .

ξ = 0, η = 3

0
ξ = 1
η = 1

0 1

ξ = 1
η = 3

1 0



Names for sets

If Γ is a description, a Γ-name for a set consists of a collection
{Φσ : non-leaf σ ∈ TΓ}. Each Φσ is a functional for generating an
ησ-bounded approximation to a child of σ, where the starting value
is the leftmost child. (All relative to some real parameter.)

For each z ∈ ωω, build a path through TΓ:

Start at the root.

If we’ve reached a non-leaf σ ∈ TΓ, we choose the child
limΦσ(z

(ξσ)).

Membership of z is determined by the label on the leaf we reach: 0
or 1.



Described classes

If Γ is a description, let Γ be the collection of all sets which have a
Γ-name.

Theorem

The Γ are precisely the non-self dual Borel pointclasses.

Any self-dual Borel pointclass is ∆(Γ) for some description Γ.

A description of Γ̌ can be made from Γ by swapping all 0s and 1s
at the leaves.



Returning to successors

For any description Λ, we get a
description for the next pair up:

Γ Γ̌

∆(Γ)

Λ Λ̌

ξ = 0, η = 1

0 Λ Λ̌

ξ = 0, η = 1

1 Λ Λ̌



Returning to countable limits

For any increasing sequence
Θ0,Θ1, . . . , we get a
description for pair at the limit:

ξ = 0, η = 1

0 Θ0 Θ1

. . .

ξ = 0, η = 1

1 Θ0 Θ1

. . .

Γ Γ̌

∆(Γ)
...

ω



Returning to the uncountable limits

Theorem

(Γ, Γ̌) is a limit of uncountable cofinality precisely when there is a
σ along the leftmost branch of Γ with ξσ > 0.



A game for containment – GC (Γ,Λ)

Γ and Λ are descriptions.

Consider a convex piece of TΓ

or TΛ in which all internal
nodes have the same ξ.

The piece is a tree within TΓ or
TΛ, not necessarily with the
same root.

ξ = 2, η = 3

0
ξ = 2
η = 1

0

ξ = 8
η = 5

ξ = ω
η = 3

1 0

1 0



A game for containment – GC (Γ,Λ)

Divide TΓ and TΛ into maximal
pieces like this.

Each leaf of a piece is either a
leaf of the original tree or the
root of another piece.

We have a Γ-player and
Λ-player. The players will move
from piece to piece on their
respective trees, moving
towards a leaf.



A game for containment – GC (Γ,Λ)

Now compare ξΓ and ξΛ, the ξ of the current two pieces. If one
player has reached a leaf of the original tree, treat their ξ as ∞.

If ξΓ < ξΛ, the Γ player picks a leaf of their piece and moves there.
The Λ player stays where they are.

If ξΓ > ξΛ, the Λ player picks a leaf of their piece and moves there.
The Γ player stays where they are.

If ξΓ = ξΛ < ∞, things are more complicated.



GC (Γ,Λ) – when ξΓ = ξΛ

The players dynamically choose leaves of their current pieces.

Each internal node σ in a piece begins pointing towards its
leftmost child.

On their turn, a player may change some nodes to point to other
children, or they may pass. The changes of σ must be ησ-bounded.

This process ends when the players pass around. Each player starts
at the root of their piece and follows the pointers to reach a leaf.
This is their next piece.



GC (Γ,Λ) – victory

The game ends when both players reach a leaf of their original tree.

If the leaves have the same label (0 or 1), the Λ-player wins.
Otherwise, the Γ-player wins.

Theorem

The Λ-player has a winning strategy for GC (Γ,Λ) iff Γ ⊆ Λ.



Monotone sequences and descriptions

A sequence of descriptions (Θn) is monotone if for all n,
Θ̌n ⊆ Θn+1.

Equivalently, Θn+1 = Θ̌n or Θn+1 ⊃ Θ̌n.

A description is monotone if for every non-leaf σ, the
subdescriptions rooted at σ’s children form a monotone sequence.

Every non-self-dual Borel pointclass has a monotone description.
Henceforth all descriptions are monotone.



Distinguishing the halves of a pair

Definition

A description has Σ-type if its
leftmost leaf is labeled 0.

Otherwise, it has Π-type.

Lemma

The type of a class is invariant.

ξ, η = 1

0 1

Σ0
1+ξ

ξ, η = 1

1 0

Π0
1+ξ



The separation property

Π0
1+ξ has the separation property: for any two disjoint sets in

Π0
1+ξ, there is a ∆(Π0

1+ξ) = ∆0
1+ξ separator.

(This also works for lightface classes on ω.)

Theorem

Γ has the separation property iff Γ is of Π-type.



The reduction property

Σ0
1+ξ has the reduction property: for any A0,A1 ∈ Σ0

1+ξ, there are

B0,B1 ∈ Σ0
1+ξ satisfying:

B0 ⊆ A0 and B1 ⊆ A1;

B0 ∩ B1 = ∅; and
B0 ∪ B1 = A0 ∪ A1.

(This also works for lightface classes on ω.)



The situation is more complex

Example

BiSep(Σ0
1,Σ

0
2) does not have

the reduction property

ξ = 0, η = 1

0
ξ = 1
η = 1

0 1

ξ = 1
η = 1

1 0

Lemma

If Γ has Σ-type and is closed under finite intersections, then it has
the reduction property.

Example

Dη(Σ0
1+ξ) has the reduction property but is not closed under finite

intersections (when η > 1).



More than Σ-type

Definition

A description has hereditarily Σ-type if for every internal node, the
leftmost leaf extending that node is labeled 0.

Theorem

Γ has the reduction property iff it has a description of hereditarily
Σ-type.

Unfortunately, hereditarily Σ-type is not invariant.

ξ = 0, η = 1

Σ0
1 Σ0

2 Σ0
3

. . .

ξ = 0, η = 1

Σ0
1 Π0

2 Σ0
3

. . .



Generalizing separation and reduction

Definition

Λ separates Γ if for any two disjoint sets in Γ, there is a separator
in ∆(Λ).

Λ reduces Γ if for any A0,A1 ∈ Γ, there are B0,B1 ∈ Λ satisfying:

B0 ⊆ A0 and B1 ⊆ A1;

B0 ∩ B1 = ∅; and
B0 ∪ B1 = A0 ∪ A1.



Separation and reduction games

Define games GS(Γ,Λ) and GR(Γ,Λ).

Like GC (Γ,Λ), but each player has two copies of their tree:
T a
Γ ,T

b
Γ ,T

a
Λ and T b

Λ . They work their way down both
simultaneously.

Each player ends up with two labels, one from each tree.

When the Λ-player wins GS(Γ,Λ)

Γ-player Λ-player

(1, 1) Anything
(1, 0) (1, 0)
(0, 1) (0, 1)
(0, 0) (0, 1) or (1, 0)

When the Λ-player wins GR(Γ,Λ)

Γ-player Λ-player

(0, 0) (0, 0)
(0, 1) (0, 1)
(1, 0) (1, 0)
(1, 1) (1, 0) or (0, 1)



What the games tell us

Theorem

The Λ-player has a winning strategy for GS(Γ,Λ) iff Λ separates Γ.

The Λ-player has a winning strategy for GR(Γ,Λ) iff Λ reduces Γ.



Back to computability theory

These descriptions can also be used on ω to get m-reduciblity
classes.

Now z is a number, so instead of z(ξ), just use ∅(ξ) ⊕ {z}.
Otherwise, nothing changes about names and descriptions.

When the tree and the ordinals are all finite, we get precisely
Selivanov’s hierarchy of Boolean terms on Σ0

1+n-sets. Semi-linear
ordering is immediate: GC is a finite game, so it has a computable
winning strategy.

Our student Qi Renrui is working on this to extend Selivanov’s
hierarchy beyond arithmetical.



Thank you.


