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Muchnik reducibility between structures

Definition
If A and B are countable structures, then A is Muchnik reducible to B
(written A <, B) if every w-copy of B computes an w-copy of A.

» A <, B can be interpreted as saying that B is intrinsically at
least as complicated as A.

» This is a special case of Muchnik reducibility; it might be more
precise to say that the problem of presenting the structure A is
Muchnik reducible to the problem of presenting 5.

» Muchnik reducibility doesn’t apply to uncountable structures.

Various approaches have been used to extend computable structure
theory beyond the countable:

» Computability on admissible ordinals (aka a-recursion theory),

» Computability on separable structures, as in computable analysis,

>...
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Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures
(see Knight, Montalban, and Schweber [2016]):

Definition (Schweber)

If A and B are (possibly uncountable) structures, then A is generically
Muchnik reducible to B (written A <% B) if A <,, B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik
reducibility is robust.

Lemma (Schweber)
If A<¥ B, then A <,, B in every forcing extension that makes .4
and B countable.

In particular, for countable structures, A <} B «<— A <, B.
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Collapsing the continuum

Goal. Understand the generic Muchnik degrees of (expansions of)
Cantor space C, Baire space B, and the field of real numbers (R, +, -).

Consider a forcing extension that makes these structures countable.
Let I be the the ground model’s copy of 2% = P(w).
By absoluteness, I is closed under

» Turing reduction,

> join,

» the Turing jump,

» ...and much more.

So I is (at least) a countable jump ideal in the Turing degrees.

Notation. We say that a function f € w* is in I if it is computable
from an element of I. We do the same for other countable objects,
like trees T' € w=* and real numbers.
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Enumerations of ideals

Definition
An enumeration of a countable family of sets S € 2“ is a sequence
{ X }new of sets such that

S ={Xn:new}

The enumeration is injective if all of the X, are distinct.

Lemma (folklore)

Let I be a countable ideal. Every enumeration of I computes an
injective enumeration of I.

» This is proved by a simple finite injury argument.

» We can define an enumeration of a countable family of functions
in the same way. The lemma also holds for the family of
functions in a countable ideal I.
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Initial example

Definition (Cantor space)
Let C be the structure with universe 2 and predicates P,,(X) that
hold if and only if X (n) = 1.
Observation (Knight, Montalban, Schweber [2016])
C <y (R, +,).

To understand this, take a forcing extension that collapses the
continuum and let I be the ground model’s version of 2¢.

Let R; be the real numbers in I and let C; denote the restriction of C
to sets in 1.

In other words, R is the ground model’s version of R and Cj is the
ground model’s version of C.
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Initial example

Facts

» From a copy of (Ry, +, <), we can compute an (injective)
enumeration of I.

» A degree d computes a copy of Cy iff it computes an (injective)
enumeration of I.

This shows that C; <, (R, +, <). It is even easier to see that
(RD =+, <) Sw (RI, =+, )

Therefore, ¢ <* (R, +,<) <& (R, +, ).

Question (KMS [2016]). Is (R, +,-) <X C?

This was answered by Igusa and Knight [2017], and independently
(though later) by Downey, Greenberg, and M [2016].
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First question

Is (R,+,-) <& C?



Downey, Greenberg, and M.’s solution

Definition (Baire space)

Let B be the structure with universe w* and, for each finite string
o € w=¥ a predicate P,(f) that holds if and only if o < f.

» From a copy of (R, +,-), or even (Ry, +, <), we can compute an
(injective) enumeration of the functions in I.

» A degree d computes a copy of By iff it computes an (injective)
enumeration of the functions in 1.

As before, we have B <}, (R, +, <) <¥ (R, +,-).

Theorem (DGM [2016])

Let I be a countable Scott ideal. There is an enumeration of I that
does not compute an enumeration of the functions in I.

This implies that By €., Cr, so B £ C.
Theorem. (R, +,-) < C.
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Many structures are equivalent (to B)

Perhaps surprisingly, what makes (R, +,-) more complicated than C
has little to do with the field structure.

Theorem (DGM [2016]). B=* (R, +,<) =* (R, +,-).

From an enumeration of the functions in a countable ideal I, we build
a copy of (Ry,+,-). We use quantifier elimination and decidability for
real closed fields.

Around the same time (and still independently):

Theorem (Igusa, Knight, Schweber [2017])

(E{,{—,<<) EEZ)(ER’+U') EE::(Egvﬁ_»'7ew)‘

They use the o-minimality of (R, +, -, e*) and the fact that its theory
is in the ground model.

In both cases, tameness is used to recover from injury in the
construction. Is it necessary?
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Is o-minimality essential?

Summary
¢ <'t>l:1 BE’Z‘) (R7+7<) E:; (R7+7) E’Z‘) (R?+7'76x)'

Going further, by the same method that they used for e*:
Theorem (Igusa, Knight, Schweber [2017])
» If (R, +, -, f) is o-minimal, then (R, +,-) =¥ (R, +,-, f).
» (R, +,:) = (R, +, -, sin).

Although (R, +, -, sin) is not o-minimal, (R, +,-,sin | [0,7/2]) is, and
these structures are =%.

Question (Igusa, Knight, Schweber [2017])

Is there a continuous function f: R — R such that
(Ra +, ) <i (Ra +, f)?

We will see that the answer is no.
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Second question

[s there a continuous function f: R — R s.t.
(Ra +, ) <Z) <R7 +,5 f)?

(Joint work with Andrews, Knight, Kuyper, Lempp, and M. Soskova)



Enumeration with the running jump

When building a structure over I, it would be very helpful to have
access to the jump. Our main lemma gives us that.

Definition. Let {X, },c. be an enumeration of sets. The
corresponding running jump is the sequence

@]

<n

Note that computing the running jump is equivalent to uniformly
being able to compute the jump of any join of members of the
enumeration.

Lemma (AKKMS)

Let I be a countable jump ideal. Every enumeration of the functions
in I computes an enumeration of I along with the running jump.

The proof is a delicate finite injury construction.
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Enumeration with the running jump

Lemma (AKKMS). Let I be a countable jump ideal. Every
enumeration of the functions in I computes an enumeration of the
sets in I along with the running jump.

Main ideas

» To compute the next set in the running jump, we guess a
function in I that majorizes the corresponding settling-time
function. If we are wrong, there is an injury (and a new guess).

» When an injury occurs, we use the low basis theorem to “patch

up” the enumeration consistently and keep control of the jumps.

Warnings

» We need to start with an enumeration of the functions in I so
that we can search for settling-time functions.

» We can only hope to produce an enumeration of the sets in I.
(We can’t use the low basis theorem in Baire space.)
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Continuous expansions of the reals

We can now expand the reals by continuous functions.

Theorem (AKKMS). Let f1, fo,... be continuous functions (of
any arities) on R. Then (R, +, -, {fi}icw) =5 (R, +,-) = B.

Proof sketch.

Let P € 2¥ be a parameter coding {f;}icw- Let I be a countable jump
ideal including P. From any copy of (Ry, +,-), we can enumerate [
along with the running jump.

For X € 2%, let 0.X denote the real number in [0, 1] with binary

expansion X. For z € Z, let 2.X denote z + 0.X. Using (X, ® X;)’, we
can check if zg.Xog = 21.X;. Using (P®Xo®---® X,,), we can check
if fi(z0.Xo0,.-y2n-1.Xn—1) = 2p.X,. Similarly, we can check + and -.

Therefore, we can build a copy of (Ry, +, -, { fi }iew)- O
Note that the construction has no injury. We have moved all of the
injury into building the enumeration of sets with the running jump.

12 /29



Continuous expansions of Cantor space

The running jump lemma can also be used to build continuous
expansions of C.

Theorem (AKKMS)

Any expansion of C by countably many continuous functions is <*

Some natural expansions of C turn out to be equivalent to B.

Let 0: w¥ — w* denote the shift: i.e., o(ngningnz - --) = ningng - -.
Let ®: w* x w¥ — w* denote the join. Both are continuous and both
restrict to functions on 2.

Proposition (AKKMS). (C,0) =% (C,®) =% B.

In both cases, we can recognize the finite sets in a c.e. way, allowing a
copy of (Cy,0) or (Cr,®) to enumerate the infinite sets (hence
functions) in I.
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Continuous expansions of Baire space

It turns out that continuous expansions of Baire space can be more
complex than Baire space.

Note that
Z ={(f®g) ®h: h is the settling-time function for f' and g = f’}

is a closed subset of w* (in fact, a I1{ class). Let F be a continuous
function on w* such that Z = F~1(0%).

Proposition (AKKMS). Let I be a countable jump ideal. Any
copy of (Br,®, F') computes an enumeration of the functions in I
along with join and jump as functions on indices of the enumeration.

Proof idea.

A copy A of (Br,®, F) gives us a natural enumeration {f,}new of 1
such that @4 is exactly a function that takes two indices to the index
of the join. To find the jump of f,, search for m, j € w such that
FA((n@®* m) @™ j) is the index of 0. Then f,, = f.. O
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Hyper-Scott ideals

Corollary. (C,®,") <¥ (B,®,") <! (B,®, F).

We want to prove that (C,®, ') £* B. (Note that although @ is
continuous, ' is not; it is Baire class 1.)

Definition
An ideal I is a hyper-Scott ideal if whenever a tree T' S w=% in I has
an infinite path, it has an infinite path in I. (Mention S-models.)

Fact. If I is the ground model’s version of 2, then it is a
hyper-Scott ideal.

Proof.

(This is Shoenfield absoluteness in its simplest form.) If T' € w<¥ is a
tree in the ground model with no path, then in the ground model
there is a rank function p: T'— w; witnessing that T is well-founded.
But p also witnesses that T is well-founded in the extension. O
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Beyond the degree of Baire space

Theorem (AKKMS). Assume that 7 is a countable hyper-Scott
ideal. There is an enumeration of the functions in I that does not
compute an enumeration of the functions in I along with join and
jump as functions on indices.

Corollary. (C,®,"), (B,®,") £ B.

Corollary. There is an expansion of B by continuous functions that
is strictly above B in the generic Muchnik degrees.

In particular, (B,®, F) «* B.

It turns out that (B,®, F) =* (B,®, ') =% (C,®, ). We have seen
one direction; the other follows from the fact that (C,®, ') is above all
Borel structures.
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Borel structures

Definition

A Borel structure has a presentation of the form (D, E, f1, fo,...)
where D € w* is Borel, E is a Borel equivalence relation on D, and
f1, f2,... are Borel functions (of any arities) on D that are
compatible with E. (The domain of the structure is D/FE.)

Examples
» Every structure we’ve talked about today,

» The Turing degrees with join and jump,
» The automorphism group of any countable structure,

» All Biichi automatic structures (Hjorth, Khoussainov,
Montalbén, and Nies [2008]).

Theorem (AKKMS). Every Borel structure is < (C,®, ).
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Borel structures

Theorem (AKKMS). Every Borel structure is <* (C,®, ).

Proof idea.

Let I be a countable hyper-Scott ideal. From (Cr,®, /) we can
enumerate the functions in I along with join and jump as functions on
indices.

For simplicity, we restrict our attention to a single Borel relation
R € w®. We may assume that R has a code c € I. Since R is Al[c],
there are trees T, S € w<¥, both in I, such that

feR < (3h) fOhe[T] < (Vh) fdh¢[S]

Using the enumeration of I, and the fact that f @ h € [T'] can be
checked using (f ®@h @ T)’, we can computably determine if R(f)
holds for any function f € I. O
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The story so far

¢e)
Borel expansions of B
B
Continuous/closed expansions of C
C
» B =% any continuous/closed expansion of (R, +, ).

» In terms of the jumps of these structures:

» ' =¥ B, and
> B'=} (C®, ).
Question

Is there a generic Muchnik degree strictly between C and B? (Yes!)
Can it be the degree of a continuous expansion of C? (No!)
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Third question

Is there a generic Muchnik degree
strictly between C and B?

(Joint work with Andrews, Schweber, and M. Soskova)



Definability and post-extension complexity

It is going to be important to understand the complexity of definable
sets both before and after the forcing extension.

Definition
We say that a relation R on a structure M is 3¢ (M) if it is definable
by a computable ¥,, L, formula with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)

If M is countable, then R is 3¢ (M) if and only if it is relatively
intrinsically X9 i.e., its image in any w-copy of M is 3% relative to
that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary. A relation R is 3¢ (M) if and only if it is relatively
intrinsically ©0 in any/every forcing extension making M countable.
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Definability and pre-extension complexity

In structures like C and B, we can also measure the complexity of
3¢ (M) relations in the projective hierarchy.

The “complexity profile” depends on the structure:
X5 Xy X§ X5 g

B |2 | 2|22 =t

C| x| x| =23 |2} | =

» These bounds are sharp, e.g., every X7 relation on B is ¥5(B).

» The “lost quantifiers” correspond to the first order quantifiers
needed in the normal form for ! relations with function/set
quantifiers.

» This gives us an easy (and essentially different) separation
between the generic Muchnik degrees of C and B.
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Differentiating C and B with a linear order

Lemma (AMSS)
There is a linear order £ such that £ <* B but £ <% C.

Proof Idea
For X € C, we define a linear order Lx that codes X. It is essentially
a shuffle sum of delimited (-representations of all elements of Cantor
space along with markers for the sequences not in X.
It is designed so that:

» If X is II§(B), then Lx <¥ B,

» If Lx <X C, then X is 5(C).

Now take X < C to be IT§ but not X1. By the analysis on the
previous slide:

» X is TI§(B), so Lx <¥ B,
» X is not £4(C), so Lx £k C. O
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A degree strictly between C and B

Lemma (AMSS)
There is a linear order £ such that £ <¥* B but £ <% C.

But linear orders are bad at coding:
Lemma (AMSS). If £ is a linear order, then B <* C u L.

This can be proved by showing that C and C L £ have the same A$§
definable subsets of C. The key fact used about linear orders is that
their ~s-equivalence classes are tame (Knight 1986).

Now let M = C u L, where L is the linear order from the first lemma.

Corollary (AMSS). There is an M such that C <¥ M <¥* B.

Great! But...not the most satisfying example.
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What kind of example would we like?

The initial attempts to find an intermediate degree involved natural
expansions of C, but without success. For example:

» (C,®) =% (C,0) =% B, where o is the shift operator on 2¢.
> (C,c) =i (CA) = C.
Another approach would be to expand C with sufficiently generic

relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of
this that involved adding infinitely many unary relations.

In both cases, we considered ezpansions of C.

Open Question
Is there an expansion of C that is strictly between C and B?
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Fourth question

Is there an expansion of C that is
strictly between C and B?

(More joint work with Andrews, Schweber, and M. Soskova)



Expansions of C above B

Let M = (C, Stuff) be an expansion of C. First, we want a criterion
that guarantees that M >¥

» If the set F < 2% of sequences with finitely many ones is A§(M),
i.e., computable in every w-copy of M, then M =¥
» Why? There is a natural bijection between B and C \ F.

» If Fis A§(M), then M =} B.
> Add a little injury.
» This is how we show, for example, that (C,®) > B.

» If any countable dense set is A§(M), then M =* B.

» If there is a perfect set P < C with a countable dense Q — P that
is A§(M), then M =¥ B.
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Expansions of C above B

» If there is a perfect set P < C with a countable dense Q — P that
is A5(M), then M =¥ B.

Lemma (AMSS)
If M <¥ Band R < C is A§5(M), then it is A§(B), i.e., Borel.

Lemma (Hurewicz)

If R  C is Borel but not A9, then there is a perfect set P < C such
that either P n R or P ~. R is countable and dense in P.

Putting it all together (and noting that arity doesn’t matter here):

Lemma (AMSS). If M <¥* B is an expansion of C and R € C" is
AS(M) but not A9, then M =¥ B.
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Tameness and dichotomy

In the contrapositive (and using the fact that A9 = A§(C)):

Tameness Lemma (AMSS)
If M <% B is an expansion of C, then A§(M) = A5(C).

Dichotomy Theorem for Closed Expansions (AMSS)

If M <¥ B is an expansion of C by closed relations (and/or
continuous functions), then either M =% C or M =% B.

Proof Idea

For a tuple X < C, let p(X) be the (code for the) complete positive
%1 (M) type of X. The relation that holds only on tuples of the form
(X, p(X)) is AG(M).

If it is not A§(C), then M =% B.

If it is AS(C), then a delicate injury argument can be used to prove
that M <} C. O
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Another dichotomy result

Combined with work of Greenberg, Igusa, Turetsky, and Westrick:

Dichotomy Theorem for Unary Expansions

If M <% B is an expansion of C by countably many unary relations,
then either M =} C or M =} B.

» If M is an expansion of C by finitely many A9 unary relations,
then M <¥ C. This is a fairly simple finite injury argument.

» Expansions by infinitely many closed unary relations need not be
below C: For o € 2<%, let U, hold only on ¢0¥. Then the set of
sequences with finitely many ones is X5(C, {Uy }yea<w).

» Greenberg, et al. supplied the right condition distinguishing the
cases, and one direction of the proof.

The dichotomy results kill off a lot of possible natural (and many
unnatural) examples of expansions.
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Final comments

1. We still don’t know if an expansion of C can be strictly between C
and B. (In particular, the non-unary A9 case is open.)

2. (Gura) There is a chain C <% .- <* My <¥ Mg < Moy <% B.

(AMSS) There is also an M, with the same complexity profile
as C and such that C <¥ M, <¥ B.

3. Are there incomparable degrees between C and B?

4. This talk has focused on the interval between C and B. For the
interval between B and (C,®, ), we have proved all of the
analogous results (assuming A} Wadge determinacy)

...and the analogous questions are open.
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