Generic Muchnik Reducibility Joseph S. Miller* University of Wisconsin–Madison UW-Madison Logic Seminar October 25, 2022 *Partially supported by NSF Grant No. DMS-2053848 # Muchnik reducibility between structures #### Definition If \mathcal{A} and \mathcal{B} are countable structures, then \mathcal{A} is *Muchnik reducible* to \mathcal{B} (written $\mathcal{A} \leq_w \mathcal{B}$) if every ω -copy of \mathcal{B} computes an ω -copy of \mathcal{A} . - $A \leq_w \mathcal{B}$ can be interpreted as saying that \mathcal{B} is intrinsically at least as complicated as A. - ▶ This is a special case of Muchnik reducibility; it might be more precise to say that the problem of presenting the structure \mathcal{A} is Muchnik reducible to the problem of presenting \mathcal{B} . - ▶ Muchnik reducibility doesn't apply to uncountable structures. Various approaches have been used to extend computable structure theory beyond the countable: - Computability on admissible ordinals (aka α -recursion theory), - ▶ Computability on separable structures, as in computable analysis, **•** # Generic Muchnik reducibility Noah Schweber extended Muchnik reducibility to arbitrary structures (see Knight, Montalbán, and Schweber [2016]): ### Definition (Schweber) If \mathcal{A} and \mathcal{B} are (possibly uncountable) structures, then \mathcal{A} is *generically Muchnik reducible* to \mathcal{B} (written $\mathcal{A} \leq_w^* \mathcal{B}$) if $\mathcal{A} \leq_w \mathcal{B}$ in some forcing extension of the universe in which \mathcal{A} and \mathcal{B} are countable. It follows from Shoenfield absoluteness that generic Muchnik reducibility is robust. ### Lemma (Schweber) If $A \leq_w^* \mathcal{B}$, then $A \leq_w \mathcal{B}$ in every forcing extension that makes A and \mathcal{B} countable. In particular, for countable structures, $A \leq_w^* B \iff A \leq_w B$. # Collapsing the continuum Goal. Understand the generic Muchnik degrees of (expansions of) Cantor space C, Baire space B, and the field of real numbers $(\mathbb{R}, +, \cdot)$. Consider a forcing extension that makes these structures countable. Let I be the ground model's copy of $2^{\omega} = \mathcal{P}(\omega)$. By absoluteness, I is closed under - ▶ Turing reduction, - ▶ join, - the Turing jump, - ... and much more. So I is (at least) a countable jump ideal in the Turing degrees. Notation. We say that a function $f \in \omega^{\omega}$ is *in* I if it is computable from an element of I. We do the same for other countable objects, like trees $T \subseteq \omega^{<\omega}$ and real numbers. ### Enumerations of ideals #### Definition An enumeration of a countable family of sets $S \subseteq 2^{\omega}$ is a sequence $\{X_n\}_{n \in \omega}$ of sets such that $$S = \{X_n \colon n \in \omega\}.$$ The enumeration is *injective* if all of the X_n are distinct. ### Lemma (folklore) Let I be a countable ideal. Every enumeration of I computes an injective enumeration of I. - ▶ This is proved by a simple finite injury argument. - We can define an enumeration of a countable family of functions in the same way. The lemma also holds for the family of functions in a countable ideal I. ## Initial example ### Definition (Cantor space) Let \mathcal{C} be the structure with universe 2^{ω} and predicates $P_n(X)$ that hold if and only if X(n) = 1. $$\mathcal{C} \leqslant_w^* (\mathbb{R}, +, \cdot).$$ To understand this, take a forcing extension that collapses the continuum and let I be the ground model's version of 2^{ω} . Let \mathbb{R}_I be the real numbers in I and let \mathcal{C}_I denote the restriction of \mathcal{C} to sets in I. In other words, \mathbb{R}_I is the ground model's version of \mathbb{R} and \mathcal{C}_I is the ground model's version of \mathcal{C} . # Initial example #### Facts - ▶ From a copy of $(\mathbb{R}_I, +, <)$, we can compute an (injective) enumeration of I. - A degree **d** computes a copy of C_I iff it computes an (injective) enumeration of I. This shows that $C_I \leq_w (\mathbb{R}_I, +, <)$. It is even easier to see that $(\mathbb{R}_I, +, <) \leq_w (\mathbb{R}_I, +, \cdot)$. Therefore, $C \leq_w^* (\mathbb{R}, +, <) \leq_w^* (\mathbb{R}, +, \cdot)$. ### Question (KMS [2016]). Is $(\mathbb{R}, +, \cdot) \leq_w^* \mathcal{C}$? This was answered by Igusa and Knight [2017], and independently (though later) by Downey, Greenberg, and M [2016]. ## First question Is $$(\mathbb{R}, +, \cdot) \leq_w^* C$$? # Downey, Greenberg, and M.'s solution ### Definition (Baire space) Let \mathcal{B} be the structure with universe ω^{ω} and, for each finite string $\sigma \in \omega^{<\omega}$, a predicate $P_{\sigma}(f)$ that holds if and only if $\sigma < f$. - From a copy of $(\mathbb{R}_I, +, \cdot)$, or even $(\mathbb{R}_I, +, <)$, we can compute an (injective) enumeration of the functions in I. - A degree **d** computes a copy of \mathcal{B}_I iff it computes an (injective) enumeration of the functions in I. As before, we have $\mathcal{B} \leq_w^* (\mathbb{R}, +, <) \leq_w^* (\mathbb{R}, +, \cdot)$. ### Theorem (DGM [2016]) Let I be a countable Scott ideal. There is an enumeration of I that does not compute an enumeration of the functions in I. This implies that $\mathcal{B}_I \leqslant_w \mathcal{C}_I$, so $\mathcal{B} \leqslant_w^* \mathcal{C}$. Theorem. $(\mathbb{R}, +, \cdot) \leqslant_{m}^{*} \mathcal{C}$. # Many structures are equivalent (to \mathcal{B}) Perhaps surprisingly, what makes $(\mathbb{R}, +, \cdot)$ more complicated than \mathcal{C} has little to do with the field structure. Theorem (DGM [2016]). $$\mathcal{B} \equiv_w^* (\mathbb{R}, +, <) \equiv_w^* (\mathbb{R}, +, \cdot)$$. From an enumeration of the functions in a countable ideal I, we build a copy of $(\mathbb{R}_I, +, \cdot)$. We use quantifier elimination and decidability for real closed fields. Around the same time (and still independently): Theorem (Igusa, Knight, Schweber [2017]) $$(\mathbb{R}, +, <) \equiv_w^* (\mathbb{R}, +, \cdot) \equiv_w^* (\mathbb{R}, +, \cdot, e^x).$$ They use the o-minimality of $(\mathbb{R}, +, \cdot, e^x)$ and the fact that its theory is in the ground model. In both cases, tameness is used to recover from injury in the construction. Is it necessary? # Is o-minimality essential? ### Summary $$\mathcal{C} \qquad <_w^* \qquad \mathcal{B} \equiv_w^* (\mathbb{R}, +, <) \equiv_w^* (\mathbb{R}, +, \cdot) \equiv_w^* (\mathbb{R}, +, \cdot, e^x).$$ Going further, by the same method that they used for e^x : ### Theorem (Igusa, Knight, Schweber [2017]) - ▶ If $(\mathbb{R}, +, \cdot, f)$ is o-minimal, then $(\mathbb{R}, +, \cdot) \equiv_w^* (\mathbb{R}, +, \cdot, f)$. - $(\mathbb{R}, +, \cdot) \equiv_w^* (\mathbb{R}, +, \cdot, \sin).$ Although $(\mathbb{R}, +, \cdot, \sin)$ is not o-minimal, $(\mathbb{R}, +, \cdot, \sin \upharpoonright [0, \pi/2])$ is, and these structures are \equiv_m^* . ### Question (Igusa, Knight, Schweber [2017]) Is there a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $(\mathbb{R}, +, \cdot) <_w^* (\mathbb{R}, +, \cdot, f)$? We will see that the answer is no. ## Second question Is there a continuous function $f: \mathbb{R} \to \mathbb{R}$ s.t. $(\mathbb{R}, +, \cdot) <_{w}^{*} (\mathbb{R}, +, \cdot, f)$? (Joint work with Andrews, Knight, Kuyper, Lempp, and M. Soskova) ## Enumeration with the running jump When building a structure over I, it would be very helpful to have access to the jump. Our main lemma gives us that. Definition. Let $\{X_n\}_{n\in\omega}$ be an enumeration of sets. The corresponding running jump is the sequence $$\left\{ \left(\bigoplus_{i \leqslant n} X_i \right)' \right\}_{n \in \omega}.$$ Note that computing the running jump is equivalent to uniformly being able to compute the jump of any join of members of the enumeration. ### Lemma (AKKMS) Let I be a countable jump ideal. Every enumeration of the functions in I computes an enumeration of I along with the running jump. The proof is a delicate finite injury construction. # Enumeration with the running jump Lemma (AKKMS). Let I be a countable jump ideal. Every enumeration of the functions in I computes an enumeration of the sets in I along with the running jump. #### Main ideas - ▶ To compute the next set in the running jump, we guess a function in *I* that majorizes the corresponding settling-time function. If we are wrong, there is an injury (and a new guess). - ▶ When an injury occurs, we use the low basis theorem to "patch up" the enumeration consistently and keep control of the jumps. ### Warnings - ▶ We need to start with an enumeration of the functions in *I* so that we can search for settling-time functions. - ▶ We can only hope to produce an enumeration of the sets in *I*. (We can't use the low basis theorem in Baire space.) ## Continuous expansions of the reals We can now expand the reals by continuous functions. Theorem (AKKMS). Let $f_1, f_2,...$ be continuous functions (of any arities) on \mathbb{R} . Then $(\mathbb{R}, +, \cdot, \{f_i\}_{i \in \omega}) \equiv_w^* (\mathbb{R}, +, \cdot) \equiv_w^* \mathcal{B}$. #### Proof sketch. Let $P \in 2^{\omega}$ be a parameter coding $\{f_i\}_{i \in \omega}$. Let I be a countable jump ideal including P. From any copy of $(\mathbb{R}_I, +, \cdot)$, we can enumerate I along with the running jump. For $X \in 2^{\omega}$, let 0.X denote the real number in [0,1] with binary expansion X. For $z \in \mathbb{Z}$, let z.X denote z+0.X. Using $(X_0 \oplus X_1)'$, we can check if $z_0.X_0 = z_1.X_1$. Using $(P \oplus X_0 \oplus \cdots \oplus X_n)'$, we can check if $f_i(z_0.X_0,\ldots,z_{n-1}.X_{n-1}) = z_n.X_n$. Similarly, we can check + and + Therefore, we can build a copy of $(\mathbb{R}_I, +, \cdot, \{f_i\}_{i \in \omega})$. Note that the construction has no injury. We have moved all of the injury into building the enumeration of sets with the running jump. ## Continuous expansions of Cantor space The running jump lemma can also be used to build continuous expansions of \mathcal{C} . ### Theorem (AKKMS) Any expansion of \mathcal{C} by countably many continuous functions is $\leq_w^* \mathcal{B}$. Some natural expansions of C turn out to be equivalent to B. Let $\sigma: \omega^{\omega} \to \omega^{\omega}$ denote the *shift*: i.e., $\sigma(n_0 n_1 n_2 n_3 \cdots) = n_1 n_2 n_3 \cdots$. Let $\oplus: \omega^{\omega} \times \omega^{\omega} \to \omega^{\omega}$ denote the *join*. Both are continuous and both restrict to functions on 2^{ω} . Proposition (AKKMS). $$(C, \sigma) \equiv_w^* (C, \oplus) \equiv_w^* \mathcal{B}$$. In both cases, we can recognize the finite sets in a c.e. way, allowing a copy of (C_I, σ) or (C_I, \oplus) to enumerate the infinite sets (hence functions) in I. ## Continuous expansions of Baire space It turns out that continuous expansions of Baire space can be more complex than Baire space. #### Note that $Z = \{(f \oplus g) \oplus h : h \text{ is the settling-time function for } f' \text{ and } g = f'\}$ is a closed subset of ω^{ω} (in fact, a Π_1^0 class). Let F be a continuous function on ω^{ω} such that $Z = F^{-1}(0^{\omega})$. Proposition (AKKMS). Let I be a countable jump ideal. Any copy of $(\mathcal{B}_I, \oplus, F)$ computes an enumeration of the functions in I along with join and jump as functions on indices of the enumeration. #### Proof idea. A copy \mathcal{A} of $(\mathcal{B}_I, \oplus, F)$ gives us a natural enumeration $\{f_n\}_{n \in \omega}$ of I such that $\oplus^{\mathcal{A}}$ is exactly a function that takes two indices to the index of the join. To find the jump of f_n , search for $m, j \in \omega$ such that $F^{\mathcal{A}}((n \oplus^{\mathcal{A}} m) \oplus^{\mathcal{A}} j)$ is the index of 0^{ω} . Then $f_m = f'_n$. # Hyper-Scott ideals Corollary. $(\mathcal{C}, \oplus, ') \leq_w^* (\mathcal{B}, \oplus, ') \leq_w^* (\mathcal{B}, \oplus, F)$. We want to prove that $(\mathcal{C}, \oplus, ') \leqslant_w^* \mathcal{B}$. (Note that although \oplus is continuous, ' is not; it is Baire class 1.) #### Definition An ideal I is a hyper-Scott ideal if whenever a tree $T \subseteq \omega^{<\omega}$ in I has an infinite path, it has an infinite path in I. (Mention β -models.) Fact. If I is the ground model's version of 2^{ω} , then it is a hyper-Scott ideal. #### Proof. (This is Shoenfield absoluteness in its simplest form.) If $T \subseteq \omega^{<\omega}$ is a tree in the ground model with no path, then in the ground model there is a rank function $\rho \colon T \to \omega_1$ witnessing that T is well-founded. But ρ also witnesses that T is well-founded in the extension. ## Beyond the degree of Baire space Theorem (AKKMS). Assume that I is a countable hyper-Scott ideal. There is an enumeration of the functions in I that does not compute an enumeration of the functions in I along with join and jump as functions on indices. Corollary. $$(\mathcal{C}, \oplus, '), (\mathcal{B}, \oplus, ') \leqslant_w^* \mathcal{B}.$$ Corollary. There is an expansion of \mathcal{B} by continuous functions that is strictly above \mathcal{B} in the generic Muchnik degrees. In particular, $(\mathcal{B}, \oplus, F) \leqslant_w^* \mathcal{B}$. It turns out that $(\mathcal{B}, \oplus, F) \equiv_w^* (\mathcal{B}, \oplus, ') \equiv_w^* (\mathcal{C}, \oplus, ')$. We have seen one direction; the other follows from the fact that $(\mathcal{C}, \oplus, ')$ is above all *Borel structures*. ### Borel structures #### Definition A Borel structure has a presentation of the form $(D, E, f_1, f_2, ...)$ where $D \subseteq \omega^{\omega}$ is Borel, E is a Borel equivalence relation on D, and $f_1, f_2, ...$ are Borel functions (of any arities) on D that are compatible with E. (The domain of the structure is D/E.) ### Examples - Every structure we've talked about today, - ► The Turing degrees with join and jump, - ▶ The automorphism group of any countable structure, - All Büchi automatic structures (Hjorth, Khoussainov, Montalbán, and Nies [2008]). Theorem (AKKMS). Every Borel structure is $\leq_w^* (\mathcal{C}, \oplus, ')$. ### Borel structures Theorem (AKKMS). Every Borel structure is $\leq_w^* (\mathcal{C}, \oplus, ')$. #### Proof idea. Let I be a countable hyper-Scott ideal. From $(\mathcal{C}_I, \oplus, ')$ we can enumerate the functions in I along with join and jump as functions on indices. For simplicity, we restrict our attention to a single Borel relation $R \subseteq \omega^{\omega}$. We may assume that R has a code $c \in I$. Since R is $\Delta_1^1[c]$, there are trees $T, S \subseteq \omega^{<\omega}$, both in I, such that $$f \in R \iff (\exists h) \ f \oplus h \in [T] \iff (\forall h) \ f \oplus h \notin [S].$$ Using the enumeration of I, and the fact that $f \oplus h \in [T]$ can be checked using $(f \oplus h \oplus T)'$, we can computably determine if R(f) holds for any function $f \in I$. ### The story so far $$\left. \begin{array}{c} (\mathcal{C}, \oplus, \ ') \\ \mathcal{B} \\ \\ \mathcal{C} \end{array} \right\} \begin{array}{c} \text{Borel expansions of } \mathcal{B} \\ \\ \text{Continuous/closed expansions of } \mathcal{C} \end{array}$$ - ▶ $\mathcal{B} \equiv_w^*$ any continuous/closed expansion of $(\mathbb{R}, +, \cdot)$. - ightharpoonup In terms of the *jumps* of these structures: - $\mathcal{C}' \equiv_w^* \mathcal{B}$, and ### Question Is there a generic Muchnik degree strictly between \mathcal{C} and \mathcal{B} ? (Yes!) Can it be the degree of a continuous expansion of \mathcal{C} ? (No!) # Third question Is there a generic Muchnik degree strictly between C and B? (Joint work with Andrews, Schweber, and M. Soskova) ## Definability and post-extension complexity It is going to be important to understand the complexity of definable sets both before and after the forcing extension. #### Definition We say that a relation R on a structure \mathcal{M} is $\Sigma_n^c(\mathcal{M})$ if it is definable by a computable $\Sigma_n \mathcal{L}_{\omega_1 \omega}$ formula with finitely many parameters. ### Theorem (Ash, Knight, Manasse, Slaman; Chisholm) If \mathcal{M} is countable, then R is $\Sigma_n^c(\mathcal{M})$ if and only if it is relatively intrinsically Σ_n^0 , i.e., its image in any ω -copy of \mathcal{M} is Σ_n^0 relative to that copy. Computable objects and satisfaction on a structure are absolute, so: Corollary. A relation R is $\Sigma_n^c(\mathcal{M})$ if and only if it is relatively intrinsically Σ_n^0 in any/every forcing extension making \mathcal{M} countable. ## Definability and pre-extension complexity In structures like \mathcal{C} and \mathcal{B} , we can also measure the complexity of $\Sigma_n^c(\mathcal{M})$ relations in the projective hierarchy. The "complexity profile" depends on the structure: | | Σ_2^c | Σ_3^c | Σ_4^c | Σ_5^c | Σ_6^c | | |---------------|--------------|--------------|--------------|--------------|--------------|--| | \mathcal{B} | Σ^1_1 | Σ_2^1 | Σ^1_3 | Σ_4^1 | Σ_5^1 | | | \mathcal{C} | Σ_2^0 | Σ^1_1 | Σ_2^1 | Σ_3^1 | Σ^1_4 | | - ▶ These bounds are sharp, e.g., every Σ_1^1 relation on \mathcal{B} is $\Sigma_2^c(\mathcal{B})$. - ▶ The "lost quantifiers" correspond to the first order quantifiers needed in the normal form for Σ_n^1 relations with function/set quantifiers. - This gives us an easy (and essentially different) separation between the generic Muchnik degrees of \mathcal{C} and \mathcal{B} . # Differentiating \mathcal{C} and \mathcal{B} with a linear order ### Lemma (AMSS) There is a linear order \mathcal{L} such that $\mathcal{L} \leqslant_w^* \mathcal{B}$ but $\mathcal{L} \leqslant_w^* \mathcal{C}$. #### Proof Idea For $X \subseteq \mathcal{C}$, we define a linear order \mathcal{L}_X that codes X. It is essentially a shuffle sum of delimited ζ -representations of *all* elements of Cantor space along with markers for the sequences not in X. It is designed so that: - If X is $\Pi_3^c(\mathcal{B})$, then $\mathcal{L}_X \leq_w^* \mathcal{B}$, - ▶ If $\mathcal{L}_X \leq_w^* \mathcal{C}$, then X is $\Sigma_4^c(\mathcal{C})$. Now take $X \subseteq \mathcal{C}$ to be Π_2^1 but not Σ_2^1 . By the analysis on the previous slide: - X is $\Pi_3^c(\mathcal{B})$, so $\mathcal{L}_X \leqslant_w^* \mathcal{B}$, - X is not $\Sigma_4^c(\mathcal{C})$, so $\mathcal{L}_X \leqslant_w^* \mathcal{C}$. ## A degree strictly between \mathcal{C} and \mathcal{B} ### Lemma (AMSS) There is a linear order \mathcal{L} such that $\mathcal{L} \leq_w^* \mathcal{B}$ but $\mathcal{L} \leq_w^* \mathcal{C}$. But linear orders are bad at coding: Lemma (AMSS). If \mathcal{L} is a linear order, then $\mathcal{B} \leqslant_w^* \mathcal{C} \sqcup \mathcal{L}$. This can be proved by showing that \mathcal{C} and $\mathcal{C} \sqcup \mathcal{L}$ have the same Δ_2^c definable subsets of \mathcal{C} . The key fact used about linear orders is that their \sim_2 -equivalence classes are tame (Knight 1986). Now let $\mathcal{M} = \mathcal{C} \sqcup \mathcal{L}$, where \mathcal{L} is the linear order from the first lemma. Corollary (AMSS). There is an \mathcal{M} such that $\mathcal{C} <_w^* \mathcal{M} <_w^* \mathcal{B}$. Great! But...not the most satisfying example. # What kind of example would we like? The initial attempts to find an intermediate degree involved natural expansions of C, but without success. For example: - $(\mathcal{C}, \oplus) \equiv_w^* (\mathcal{C}, \sigma) \equiv_w^* \mathcal{B}$, where σ is the shift operator on 2^{ω} . - $(\mathcal{C}, \subseteq) \equiv_w^* (\mathcal{C}, \triangle) \equiv_w^* \mathcal{C}.$ Another approach would be to expand $\mathcal C$ with sufficiently generic relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of this that involved adding infinitely many unary relations. In both cases, we considered *expansions* of C. ### Open Question Is there an expansion of C that is strictly between C and B? ## Fourth question Is there an expansion of C that is strictly between C and B? (More joint work with Andrews, Schweber, and M. Soskova) ## Expansions of \mathcal{C} above \mathcal{B} Let $\mathcal{M} = (\mathcal{C}, \text{Stuff})$ be an expansion of \mathcal{C} . First, we want a criterion that guarantees that $\mathcal{M} \geqslant_w^* \mathcal{B}$. - ▶ If the set $\mathcal{F} \subset 2^{\omega}$ of sequences with finitely many ones is $\Delta_1^c(\mathcal{M})$, i.e., computable in every ω -copy of \mathcal{M} , then $\mathcal{M} \geqslant_w^* \mathcal{B}$. - Why? There is a natural bijection between \mathcal{B} and $\mathcal{C} \setminus \mathcal{F}$. - If \mathcal{F} is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geqslant_w^* \mathcal{B}$. - Add a little injury. - ▶ This is how we show, for example, that $(\mathcal{C}, \oplus) \geqslant_w^* \mathcal{B}$. - If any countable dense set is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geqslant_w^* \mathcal{B}$. - ▶ If there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ with a countable dense $\mathcal{Q} \subset \mathcal{P}$ that is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geqslant_w^* \mathcal{B}$. ## Expansions of \mathcal{C} above \mathcal{B} ▶ If there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ with a countable dense $\mathcal{Q} \subset \mathcal{P}$ that is $\Delta_2^c(\mathcal{M})$, then $\mathcal{M} \geqslant_w^* \mathcal{B}$. ### Lemma (AMSS) If $\mathcal{M} \leq_w^* \mathcal{B}$ and $R \subseteq \mathcal{C}$ is $\Delta_2^c(\mathcal{M})$, then it is $\Delta_2^c(\mathcal{B})$, i.e., Borel. ### Lemma (Hurewicz) If $R \subseteq \mathcal{C}$ is Borel but not Δ_2^0 , then there is a perfect set $\mathcal{P} \subseteq \mathcal{C}$ such that either $\mathcal{P} \cap R$ or $\mathcal{P} \setminus R$ is countable and dense in \mathcal{P} . Putting it all together (and noting that arity doesn't matter here): Lemma (AMSS). If $\mathcal{M} \leq_w^* \mathcal{B}$ is an expansion of \mathcal{C} and $R \subseteq \mathcal{C}^n$ is $\Delta_2^c(\mathcal{M})$ but not Δ_2^0 , then $\mathcal{M} \geqslant_w^* \mathcal{B}$. ### Tameness and dichotomy In the contrapositive (and using the fact that $\Delta_2^0 = \Delta_2^c(\mathcal{C})$): ### Tameness Lemma (AMSS) If $\mathcal{M} <_w^* \mathcal{B}$ is an expansion of \mathcal{C} , then $\Delta_2^c(\mathcal{M}) = \Delta_2^c(\mathcal{C})$. ### Dichotomy Theorem for Closed Expansions (AMSS) If $\mathcal{M} \leq_w^* \mathcal{B}$ is an expansion of \mathcal{C} by closed relations (and/or continuous functions), then either $\mathcal{M} \equiv_w^* \mathcal{C}$ or $\mathcal{M} \equiv_w^* \mathcal{B}$. #### Proof Idea For a tuple $\overline{X} \subset \mathcal{C}$, let $p(\overline{X})$ be the (code for the) complete positive $\Sigma_1(\mathcal{M})$ type of \overline{X} . The relation that holds only on tuples of the form $(\overline{X}, p(\overline{X}))$ is $\Delta_2^c(\mathcal{M})$. If it is not $\Delta_2^c(\mathcal{C})$, then $\mathcal{M} \geqslant_w^* \mathcal{B}$. If it is $\Delta_2^c(\mathcal{C})$, then a delicate injury argument can be used to prove that $\mathcal{M} \leq_w^* \mathcal{C}$. ## Another dichotomy result Combined with work of Greenberg, Igusa, Turetsky, and Westrick: ### Dichotomy Theorem for Unary Expansions If $\mathcal{M} \leq_w^* \mathcal{B}$ is an expansion of \mathcal{C} by countably many unary relations, then either $\mathcal{M} \equiv_w^* \mathcal{C}$ or $\mathcal{M} \equiv_w^* \mathcal{B}$. - ▶ If \mathcal{M} is an expansion of \mathcal{C} by finitely many Δ_2^0 unary relations, then $\mathcal{M} \leq_w^* \mathcal{C}$. This is a fairly simple finite injury argument. - Expansions by infinitely many closed unary relations need not be below C: For $\sigma \in 2^{<\omega}$, let U_{σ} hold only on $\sigma 0^{\omega}$. Then the set of sequences with finitely many ones is $\Sigma_1^c(C, \{U_{\sigma}\}_{\sigma \in 2^{<\omega}})$. - Greenberg, et al. supplied the right condition distinguishing the cases, and one direction of the proof. The dichotomy results kill off a lot of possible natural (and many unnatural) examples of expansions. ### Final comments - 1. We still don't know if an expansion of \mathcal{C} can be strictly between \mathcal{C} and \mathcal{B} . (In particular, the non-unary Δ_2^0 case is open.) - 2. (Gura) There is a chain $C <_w^* \cdots <_w^* \mathcal{M}_4 <_w^* \mathcal{M}_3 <_w^* \mathcal{M}_2 <_w^* \mathcal{B}$. (AMSS) There is also an \mathcal{M}_{∞} with the same complexity profile as C and such that $C <_w^* \mathcal{M}_{\infty} <_w^* \mathcal{B}$. - 3. Are there incomparable degrees between \mathcal{C} and \mathcal{B} ? - 4. This talk has focused on the interval between $\mathcal C$ and $\mathcal B$. For the interval between $\mathcal B$ and $(\mathcal C,\oplus,{}')$, we have proved all of the analogous results (assuming Δ_2^1 Wadge determinacy) - ... and the analogous questions are open.