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Muchnik reducibility between structures

Definition
If A and B are countable structures, then A is Muchnik reducible to B
(written A ďw B) if every ω-copy of B computes an ω-copy of A.

§ A ďw B can be interpreted as saying that B is intrinsically at
least as complicated as A.

§ This is a special case of Muchnik reducibility; it might be more
precise to say that the problem of presenting the structure A is
Muchnik reducible to the problem of presenting B.

§ Muchnik reducibility doesn’t apply to uncountable structures.

Various approaches have been used to extend computable structure
theory beyond the countable:

§ Computability on admissible ordinals (aka α-recursion theory),
§ Computability on separable structures, as in computable analysis,
§ . . .
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Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures
(see Knight, Montalbán, and Schweber [2016]):

Definition (Schweber)
If A and B are (possibly uncountable) structures, then A is generically
Muchnik reducible to B (written A ď˚w B) if A ďw B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik
reducibility is robust.

Lemma (Schweber)
If A ď˚w B, then A ďw B in every forcing extension that makes A
and B countable.

In particular, for countable structures, A ď˚w B ðñ A ďw B.
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Collapsing the continuum

Goal. Understand the generic Muchnik degrees of (expansions of)
Cantor space C, Baire space B, and the field of real numbers pR,`, ¨q.

Consider a forcing extension that makes these structures countable.
Let I be the the ground model’s copy of 2ω “ Ppωq.

By absoluteness, I is closed under
§ Turing reduction,
§ join,
§ the Turing jump,
§ . . . and much more.

So I is (at least) a countable jump ideal in the Turing degrees.

Notation. We say that a function f P ωω is in I if it is computable
from an element of I. We do the same for other countable objects,
like trees T Ď ωăω and real numbers.
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Enumerations of ideals

Definition
An enumeration of a countable family of sets S Ď 2ω is a sequence
tXnunPω of sets such that

S “ tXn : n P ωu.

The enumeration is injective if all of the Xn are distinct.

Lemma (folklore)
Let I be a countable ideal. Every enumeration of I computes an
injective enumeration of I.

§ This is proved by a simple finite injury argument.

§ We can define an enumeration of a countable family of functions
in the same way. The lemma also holds for the family of
functions in a countable ideal I.
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Initial example

Definition (Cantor space)
Let C be the structure with universe 2ω and predicates PnpXq that
hold if and only if Xpnq “ 1.

Observation (Knight, Montalbán, Schweber [2016])
C ď˚w pR,`, ¨q.

To understand this, take a forcing extension that collapses the
continuum and let I be the ground model’s version of 2ω.

Let RI be the real numbers in I and let CI denote the restriction of C
to sets in I.

In other words, RI is the ground model’s version of R and CI is the
ground model’s version of C.
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Initial example

Facts
§ From a copy of pRI ,`,ăq, we can compute an (injective)

enumeration of I.

§ A degree d computes a copy of CI iff it computes an (injective)
enumeration of I.

This shows that CI ďw pRI ,`,ăq. It is even easier to see that
pRI ,`,ăq ďw pRI ,`, ¨q.

Therefore, C ď˚w pR,`,ăq ď˚w pR,`, ¨q.

Question (KMS [2016]). Is pR,`, ¨q ď˚w C?

This was answered by Igusa and Knight [2017], and independently
(though later) by Downey, Greenberg, and M [2016].
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First question

Is pR,`, ¨q ď˚w C?



Downey, Greenberg, and M.’s solution

Definition (Baire space)
Let B be the structure with universe ωω and, for each finite string
σ P ωăω, a predicate Pσpfq that holds if and only if σ ă f .

§ From a copy of pRI ,`, ¨q, or even pRI ,`,ăq, we can compute an
(injective) enumeration of the functions in I.

§ A degree d computes a copy of BI iff it computes an (injective)
enumeration of the functions in I.

As before, we have B ď˚w pR,`,ăq ď˚w pR,`, ¨q.

Theorem (DGM [2016])
Let I be a countable Scott ideal. There is an enumeration of I that
does not compute an enumeration of the functions in I.

This implies that BI ęw CI , so B ę˚w C.

Theorem. pR,`, ¨q ę˚w C.
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Many structures are equivalent (to B)

Perhaps surprisingly, what makes pR,`, ¨q more complicated than C
has little to do with the field structure.

Theorem (DGM [2016]). B ”˚w pR,`,ăq ”˚w pR,`, ¨q.
From an enumeration of the functions in a countable ideal I, we build
a copy of pRI ,`, ¨q. We use quantifier elimination and decidability for
real closed fields.

Around the same time (and still independently):

Theorem (Igusa, Knight, Schweber [2017])
pR,`,ăq ”˚w pR,`, ¨q ”˚w pR,`, ¨, exq.

They use the o-minimality of pR,`, ¨, exq and the fact that its theory
is in the ground model.

In both cases, tameness is used to recover from injury in the
construction. Is it necessary?
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Is o-minimality essential?

Summary
C ă˚w B ”˚w pR,`,ăq ”˚w pR,`, ¨q ”˚w pR,`, ¨, exq.

Going further, by the same method that they used for ex:

Theorem (Igusa, Knight, Schweber [2017])
§ If pR,`, ¨, fq is o-minimal, then pR,`, ¨q ”˚w pR,`, ¨, fq.
§ pR,`, ¨q ”˚w pR,`, ¨, sinq.

Although pR,`, ¨, sinq is not o-minimal, pR,`, ¨, sinær0, π{2sq is, and
these structures are ”˚w.

Question (Igusa, Knight, Schweber [2017])
Is there a continuous function f : RÑ R such that

pR,`, ¨q ă˚w pR,`, ¨, fq?

We will see that the answer is no.
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Second question

Is there a continuous function f : RÑ R s.t.

pR,`, ¨q ă˚w pR,`, ¨, fq?

(Joint work with Andrews, Knight, Kuyper, Lempp, and M. Soskova)



Enumeration with the running jump

When building a structure over I, it would be very helpful to have
access to the jump. Our main lemma gives us that.

Definition. Let tXnunPω be an enumeration of sets. The
corresponding running jump is the sequence

#

´

à

iďn

Xi

¯1

+

nPω

.

Note that computing the running jump is equivalent to uniformly
being able to compute the jump of any join of members of the
enumeration.

Lemma (AKKMS)
Let I be a countable jump ideal. Every enumeration of the functions
in I computes an enumeration of I along with the running jump.

The proof is a delicate finite injury construction.
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Enumeration with the running jump

Lemma (AKKMS). Let I be a countable jump ideal. Every
enumeration of the functions in I computes an enumeration of the
sets in I along with the running jump.

Main ideas
§ To compute the next set in the running jump, we guess a

function in I that majorizes the corresponding settling-time
function. If we are wrong, there is an injury (and a new guess).

§ When an injury occurs, we use the low basis theorem to “patch
up” the enumeration consistently and keep control of the jumps.

Warnings
§ We need to start with an enumeration of the functions in I so

that we can search for settling-time functions.

§ We can only hope to produce an enumeration of the sets in I.
(We can’t use the low basis theorem in Baire space.)
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Continuous expansions of the reals

We can now expand the reals by continuous functions.

Theorem (AKKMS). Let f1, f2, . . . be continuous functions (of
any arities) on R. Then pR,`, ¨, tfiuiPωq ”˚w pR,`, ¨q ”˚w B.

Proof sketch.
Let P P 2ω be a parameter coding tfiuiPω. Let I be a countable jump
ideal including P . From any copy of pRI ,`, ¨q, we can enumerate I
along with the running jump.

For X P 2ω, let 0.X denote the real number in r0, 1s with binary
expansion X. For z P Z, let z.X denote z` 0.X. Using pX0‘X1q

1, we
can check if z0.X0 “ z1.X1. Using pP ‘X0 ‘ ¨ ¨ ¨ ‘Xnq

1, we can check
if fipz0.X0, . . . , zn´1.Xn´1q “ zn.Xn. Similarly, we can check ` and ¨.

Therefore, we can build a copy of pRI ,`, ¨, tfiuiPωq.

Note that the construction has no injury. We have moved all of the
injury into building the enumeration of sets with the running jump.
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Continuous expansions of Cantor space

The running jump lemma can also be used to build continuous
expansions of C.

Theorem (AKKMS)
Any expansion of C by countably many continuous functions is ď˚w B.

Some natural expansions of C turn out to be equivalent to B.

Let σ : ωω Ñ ωω denote the shift: i.e., σpn0n1n2n3 ¨ ¨ ¨ q “ n1n2n3 ¨ ¨ ¨ .
Let ‘ : ωω ˆ ωω Ñ ωω denote the join. Both are continuous and both
restrict to functions on 2ω.

Proposition (AKKMS). pC, σq ”˚w pC,‘q ”˚w B.

In both cases, we can recognize the finite sets in a c.e. way, allowing a
copy of pCI , σq or pCI ,‘q to enumerate the infinite sets (hence
functions) in I.
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Continuous expansions of Baire space

It turns out that continuous expansions of Baire space can be more
complex than Baire space.

Note that
Z “ tpf ‘ gq ‘ h : h is the settling-time function for f 1 and g “ f 1u

is a closed subset of ωω (in fact, a Π0
1 class). Let F be a continuous

function on ωω such that Z “ F´1p0ωq.

Proposition (AKKMS). Let I be a countable jump ideal. Any
copy of pBI ,‘, F q computes an enumeration of the functions in I
along with join and jump as functions on indices of the enumeration.

Proof idea.
A copy A of pBI ,‘, F q gives us a natural enumeration tfnunPω of I
such that ‘A is exactly a function that takes two indices to the index
of the join. To find the jump of fn, search for m, j P ω such that
FAppn‘A mq ‘A jq is the index of 0ω. Then fm “ f 1n.
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Hyper-Scott ideals

Corollary. pC,‘, 1q ď˚w pB,‘, 1q ď˚w pB,‘, F q.

We want to prove that pC,‘, 1q ę˚w B. (Note that although ‘ is
continuous, 1 is not; it is Baire class 1.)

Definition
An ideal I is a hyper-Scott ideal if whenever a tree T Ď ωăω in I has
an infinite path, it has an infinite path in I. (Mention β-models.)

Fact. If I is the ground model’s version of 2ω, then it is a
hyper-Scott ideal.

Proof.
(This is Shoenfield absoluteness in its simplest form.) If T Ď ωăω is a
tree in the ground model with no path, then in the ground model
there is a rank function ρ : T Ñ ω1 witnessing that T is well-founded.
But ρ also witnesses that T is well-founded in the extension.
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Beyond the degree of Baire space

Theorem (AKKMS). Assume that I is a countable hyper-Scott
ideal. There is an enumeration of the functions in I that does not
compute an enumeration of the functions in I along with join and
jump as functions on indices.

Corollary. pC,‘, 1q, pB,‘, 1q ę˚w B.

Corollary. There is an expansion of B by continuous functions that
is strictly above B in the generic Muchnik degrees.

In particular, pB,‘, F q ę˚w B.

It turns out that pB,‘, F q ”˚w pB,‘, 1q ”˚w pC,‘, 1q. We have seen
one direction; the other follows from the fact that pC,‘, 1q is above all
Borel structures.
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Borel structures

Definition
A Borel structure has a presentation of the form pD,E, f1, f2, . . . q
where D Ď ωω is Borel, E is a Borel equivalence relation on D, and
f1, f2, . . . are Borel functions (of any arities) on D that are
compatible with E. (The domain of the structure is D{E.)

Examples
§ Every structure we’ve talked about today,

§ The Turing degrees with join and jump,

§ The automorphism group of any countable structure,

§ All Büchi automatic structures (Hjorth, Khoussainov,
Montalbán, and Nies [2008]).

Theorem (AKKMS). Every Borel structure is ď˚w pC,‘, 1q.
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Borel structures

Theorem (AKKMS). Every Borel structure is ď˚w pC,‘, 1q.

Proof idea.
Let I be a countable hyper-Scott ideal. From pCI ,‘, 1q we can
enumerate the functions in I along with join and jump as functions on
indices.

For simplicity, we restrict our attention to a single Borel relation
R Ď ωω. We may assume that R has a code c P I. Since R is ∆1

1rcs,
there are trees T, S Ď ωăω, both in I, such that

f P R ðñ pDhq f ‘ h P rT s ðñ p@hq f ‘ h R rSs.

Using the enumeration of I, and the fact that f ‘ h P rT s can be
checked using pf ‘ h‘ T q1, we can computably determine if Rpfq
holds for any function f P I.
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The story so far

pC,‘, 1q

B

C

Borel expansions of B

Continuous/closed expansions of C

§ B ”˚w any continuous/closed expansion of pR,`, ¨q.
§ In terms of the jumps of these structures:

§ C1 ”˚w B, and
§ B1 ”˚w pC,‘, 1q.

Question
Is there a generic Muchnik degree strictly between C and B? (Yes!)
Can it be the degree of a continuous expansion of C? (No!)
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Third question

Is there a generic Muchnik degree
strictly between C and B?

(Joint work with Andrews, Schweber, and M. Soskova)



Definability and post-extension complexity

It is going to be important to understand the complexity of definable
sets both before and after the forcing extension.

Definition
We say that a relation R on a structure M is ΣcnpMq if it is definable
by a computable Σn Lω1ω formula with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)
If M is countable, then R is ΣcnpMq if and only if it is relatively
intrinsically Σ0

n, i.e., its image in any ω-copy of M is Σ0
n relative to

that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary. A relation R is ΣcnpMq if and only if it is relatively
intrinsically Σ0

n in any/every forcing extension making M countable.
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Definability and pre-extension complexity

In structures like C and B, we can also measure the complexity of
ΣcnpMq relations in the projective hierarchy.

The “complexity profile” depends on the structure:

Σc2 Σc3 Σc4 Σc5 Σc6 . . .
B Σ1

1 Σ1
2 Σ1

3 Σ1
4 Σ1

5 . . .
C Σ0

2 Σ1
1 Σ1

2 Σ1
3 Σ1

4 . . .

§ These bounds are sharp, e.g., every Σ1
1 relation on B is Σc2pBq.

§ The “lost quantifiers” correspond to the first order quantifiers
needed in the normal form for Σ1

n relations with function/set
quantifiers.

§ This gives us an easy (and essentially different) separation
between the generic Muchnik degrees of C and B.
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Differentiating C and B with a linear order

Lemma (AMSS)
There is a linear order L such that L ď˚w B but L ę˚w C.

Proof Idea
For X Ď C, we define a linear order LX that codes X. It is essentially
a shuffle sum of delimited ζ-representations of all elements of Cantor
space along with markers for the sequences not in X.

It is designed so that:
§ If X is Πc

3pBq, then LX ď˚w B,
§ If LX ď˚w C, then X is Σc4pCq.

Now take X Ď C to be Π1
2 but not Σ1

2. By the analysis on the
previous slide:

§ X is Πc
3pBq, so LX ď˚w B,

§ X is not Σc4pCq, so LX ę˚w C.
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A degree strictly between C and B

Lemma (AMSS)
There is a linear order L such that L ď˚w B but L ę˚w C.

But linear orders are bad at coding:
Lemma (AMSS). If L is a linear order, then B ę˚w C \ L.

This can be proved by showing that C and C \ L have the same ∆c
2

definable subsets of C. The key fact used about linear orders is that
their „2-equivalence classes are tame (Knight 1986).

Now let M “ C \ L, where L is the linear order from the first lemma.

Corollary (AMSS). There is an M such that C ă˚w M ă˚w B.

Great! But. . . not the most satisfying example.
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What kind of example would we like?

The initial attempts to find an intermediate degree involved natural
expansions of C, but without success. For example:

§ pC,‘q ”˚w pC, σq ”˚w B, where σ is the shift operator on 2ω.

§ pC,Ďq ”˚w pC,4q ”˚w C.

Another approach would be to expand C with sufficiently generic
relations. Greenberg, Igusa, Turetsky, and Westrick tried a version of
this that involved adding infinitely many unary relations.

In both cases, we considered expansions of C.

Open Question
Is there an expansion of C that is strictly between C and B?
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Fourth question

Is there an expansion of C that is
strictly between C and B?

(More joint work with Andrews, Schweber, and M. Soskova)



Expansions of C above B

Let M “ pC,Stuffq be an expansion of C. First, we want a criterion
that guarantees that M ě˚w B.

§ If the set F Ă 2ω of sequences with finitely many ones is ∆c
1pMq,

i.e., computable in every ω-copy of M, then M ě˚w B.
§ Why? There is a natural bijection between B and C r F .

§ If F is ∆c
2pMq, then M ě˚w B.

§ Add a little injury.
§ This is how we show, for example, that pC,‘q ě˚w B.

§ If any countable dense set is ∆c
2pMq, then M ě˚w B.

§ If there is a perfect set P Ď C with a countable dense Q Ă P that
is ∆c

2pMq, then M ě˚w B.
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Expansions of C above B

§ If there is a perfect set P Ď C with a countable dense Q Ă P that
is ∆c

2pMq, then M ě˚w B.

Lemma (AMSS)
If M ď˚w B and R Ď C is ∆c

2pMq, then it is ∆c
2pBq, i.e., Borel.

Lemma (Hurewicz)
If R Ď C is Borel but not ∆0

2, then there is a perfect set P Ď C such
that either P XR or P rR is countable and dense in P.

Putting it all together (and noting that arity doesn’t matter here):

Lemma (AMSS). If M ď˚w B is an expansion of C and R Ď Cn is
∆c

2pMq but not ∆0
2, then M ě˚w B.
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Tameness and dichotomy

In the contrapositive (and using the fact that ∆0
2 “ ∆c

2pCq):

Tameness Lemma (AMSS)
If M ă˚w B is an expansion of C, then ∆c

2pMq “ ∆c
2pCq.

Dichotomy Theorem for Closed Expansions (AMSS)
If M ď˚w B is an expansion of C by closed relations (and/or
continuous functions), then either M ”˚w C or M ”˚w B.

Proof Idea
For a tuple X Ă C, let ppXq be the (code for the) complete positive
Σ1pMq type of X. The relation that holds only on tuples of the form
pX, ppXqq is ∆c

2pMq.

If it is not ∆c
2pCq, then M ě˚w B.

If it is ∆c
2pCq, then a delicate injury argument can be used to prove

that M ď˚w C.
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Another dichotomy result

Combined with work of Greenberg, Igusa, Turetsky, and Westrick:

Dichotomy Theorem for Unary Expansions
If M ď˚w B is an expansion of C by countably many unary relations,
then either M ”˚w C or M ”˚w B.

§ If M is an expansion of C by finitely many ∆0
2 unary relations,

then M ď˚w C. This is a fairly simple finite injury argument.

§ Expansions by infinitely many closed unary relations need not be
below C: For σ P 2ăω, let Uσ hold only on σ0ω. Then the set of
sequences with finitely many ones is Σc1pC, tUσuσP2ăω q.

§ Greenberg, et al. supplied the right condition distinguishing the
cases, and one direction of the proof.

The dichotomy results kill off a lot of possible natural (and many
unnatural) examples of expansions.
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Final comments

1. We still don’t know if an expansion of C can be strictly between C
and B. (In particular, the non-unary ∆0

2 case is open.)

2. (Gura) There is a chain C ă˚w ¨ ¨ ¨ ă˚w M4 ă
˚
w M3 ă

˚
w M2 ă

˚
w B.

(AMSS) There is also an M8 with the same complexity profile
as C and such that C ă˚w M8 ă

˚
w B.

3. Are there incomparable degrees between C and B?

4. This talk has focused on the interval between C and B. For the
interval between B and pC,‘, 1q, we have proved all of the
analogous results (assuming ∆1

2 Wadge determinacy)
. . . and the analogous questions are open.
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Thank You!


