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Today’s menu

• Opening
• Borel and computable reductions

• Developing a computable analog of the Borel theory
• Dichotomies
• Orbit equivalence relations
• Isomorphism relations
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Reductions between equivalence relations

A reduction of an equivalence relation E on X to an
equivalence relation F on Y is a function f : X → Y such that

x E y ⇔ f (x) F f (y).

That is, f pushes down to an injective map on the quotient
spaces, X/E → Y/F .

By the Axiom of Choice, it suffices that the E-classes are no
more than the F-classes to conclude that E reduces to F.
Things become much more interesting if we impose
definitional or algorithmic requirements on the spaces and
functions. In the literature, there are two main interpretations
for this reducibility.
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Borel reductions

Borel reducibility, denoted ≤B, is defined by assuming that X
and Y are Polish spaces and f is Borel. If E and F are Borel
bi-reducible, we write E ∼B F.

Borel reducibility was defined, independently (but with the exact
same notation and terminology),

• by H. Friedman and Stanley (1989), with the goal of evaluating
the complexity of familiar isomorphism relations

• and by Harrington, Kechris, and Louveau (1990), with the goal of
extending the Glimm-Effros dichotomy to arbitrary Borel
equivalence relations.

Since then, Borel reductions have been widely explored, showing
deep connections with topology, group theory, combinatorics, model
theory, and ergodic theory – to name a few. 4



Computable reductions

Computable reducibility, denoted ≤c, is defined by assuming
that X and Y coincide with ω (or sometimes that X, Y ⊆ ω) and f
is computable. If E and F are computably bi-reducible, we write
E ∼c F.

The history of ≤c is intricate. Despite being introduced in the 1970s
(hence, even before ≤B) and being examined, among others, by
Ershov in the East and Lachlan in the West, it was forgotten and
rediscovered multiple times, often reappearing under a different
name.

Computable reductions found remarkable applications in various
fields, including the theory of numberings, proof theory, computable
structure theory, combinatorial algebra, and theoretical computer
science. But a systematic study of ≤c has really begun to take off
only recently.
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Developing a computable analog
of the Borel theory
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Silver’s dichotomy

The simplest Borel equivalence relations are the identities. It
is immediate to see that Id(ω) <B Id(2ω). The next classic
result implies that Id(2ω) reduces to any Borel (in fact, to any
co-analytic) equivalence relation with uncountably many
classes.

Silver’s dichotomy:

Let E be a Borel equivalence relation on a standard Borel
space. Then, exactly one the following holds:

1. E ≤B Id(ω),
2. Id(2ω) ≤B E.

So, Id(2ω) is the successor to Id(ω) in the Borel hierarchy. Is
there a successor to Id(2ω)? Strikingly, there is.
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A glance to E0 and beyond, I

Glimm-Effros dichotomy (Harrington, Kechris, Louveau):

Denote by E0 the relation of eventual agreement on 2ω . Let E be
a Borel equivalence relation on a standard Borel space. Then,
exactly one of the following holds:

1. E ≤B Id(2ω),
2. E0 ≤B E.

Beyond E0, the landscape is much wilder. Say that a E is a node
if it is ≤B-comparable with any Borel equivalence relation:

• No Borel equivalence relation E >B E0 is a node.
Kechris, Louveau (1997)

• There is an embedding from 〈P(ω),⊆∗〉 into the Borel hierarchy.
Louveau, Velickovic (1994)
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A glance to E0 and beyond, II

Yet, local dichotomies still emerge. Let E1 be the relation of
eventual agreement on sequences of reals.

Theorem (Kechris, Louveau)

E1 is minimal above E0. In fact, let E ≤B E1. Then, exactly one of
the following holds:

1. E ≤B E0,
2. E1 ≤B E.
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From Borel to computable, I

Let us now move to the computable setting, with the goal of
building an effective counterpart to the Borel theory. In the
(standard) computable setting, all equivalence relations are to
be defined on ω. This is not an issue for Id(ω). But how to deal
with, e.g., Id(2ω) or E0?

Following Coskey, Hamkins, and R. Miller (2012), we adapt
benchmark relations from the Borel theory by restricting them
to the c.e. sets. This naturally give rise to equivalence relations
on the natural numbers. Indeed, if E is on the c.e. sets, then we
let, for all e, i ∈ ω,

e Ece i⇔ We EWi.
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From Borel to computable, II

So, Id(2ω) translates to the equality of c.e. sets, given by

e =ce i⇔ We = Wi.

Similarly, we let

e Ece0 i⇔ We4Wi is finite.

Ece1 is defined by regarding at c.e. sets as subsets of ω × ω.
Formally, let W[n]

e := {〈x,n〉 ∈ We : x ∈ ω} be the nth column of
We. Then,

e Ece1 i⇔ (∀∞n)(W[n]
e = W[n]

i ).
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Reductions between Ece’s, I

Theorem (Coskey, Hamkins, R. Miller)

Id(ω) <c=
ce<c Ece0 .

Proof idea: The reductions closely resemble the Borel ones.
Nonreductions are far easier to get than in the Borel
framework. Calculating the complexity of the relations involved
(as set of pairs) suffices:

• Id(ω) is ∆0
1 ,

• =ce is Π02 ,
• Ece0 is Σ03 .
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Reductions between Ece’s, II

Theorem (Coskey, Hamkins, R. Miller)

Ece0 ∼c Ece1 .

That Ece1 reduces to Ece0 is surprising and it breaks with the Borel
theory. In fact, it turns out that Ece0 is as complex as possible:

Theorem (Ianovski, R. Miller, Ng, Nies)

Ece0 is Σ03 universal.
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Silver’s dichotomy fails for computable reducibility

There is no analog of Silver’s dichotomy for ≤c. For all e, i ∈ ω,
define

• e Emin i⇔ (minWe = minWi),
• e Emax i⇔ (maxWe = maxWi or |We| = |Wi| = ∞).

Theorem (Coskey, Hamkins, R. Miller)

Emin and Emax are c-incomparable and they both reduce to =ce.

Other dichotomies fail as well (stay tuned). However, the
failure of dichotomies is to be expected: first, contrary to ≤B,
computable reducibility is sensible to the complexity of
relations/classes involved; secondly, controlling fixed points
given by the recursion theorem is a formidable tool for
diagonalizing.
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Orbit equivalence relations
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Countable Borel equivalence relations

A fundamental subclass of Borel equivalence relations, named
countable Borel equivalence relations (cbers), consists of
those with countable equivalence classes. This study is
intertwined with that of the equivalence relations which can be
realized by Borel actions of countable groups.

Let G be a group acting on a standard Borel space. Then the
orbit equivalence relation EG is given by

x EG y ⇔ (∃γ ∈ G)(γ · x = y).
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Group actions

For example,

• The action of Z on 2ω induced by the odometer map (i.e.,
+1mod 2 with right carry) produces an equivalence
relation which almost coincides with E0, but it glues [1∞]E0
with [0∞]E0 .

• For each countable group G, the shift action of G on the
space 2G is given by

(g · p)h = pg−1h,

for g,h ∈ G and p ∈ 2G. (If G = Z, this corresponds to left
shift of doubly-infinite binary sequences).
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Realizing cbers by group actions

Theorem (Feldman, Moore)

If E is a cber on a standard Borel space X, then there is a
countable group G and a Borel action of G on X such that
E = EG.

The proof relies on Luzin-Novikov Uniformization, which
ensures that every countable Borel equivalence relation has a
uniform Borel enumeration of each class.

The hierarchy of cbers is rich and complicated. However, it has
a top element. Denote by E∞ the shift action F2 (the free group
with 2-generators) on 2F2 .

Theorem (Dougherty, Jackson, Kechris)

E∞ is a universal cber (that is, E ≤B E∞ for all cbers E).
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Orbit equivalence relations under computable lenses

Denote by CE, the collection of c.e. sets (to be understood
extensionally, i.e., as just subsets of ω).

Coskey, Hamkins, R. Miller (2012):

• The action of a computable group G acting on CE is
computable in indices if there is computable α so that

Wα(g,e) = g ·We.

The induced orbit equivalence relation is denoted EceG .
• Ece is enumerable in indices if there is computable α so
that, for all i ∈ ω,

e Ece i⇔ (∃n)(Wα(e,n) = Wi).
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Realizing Ece0 via a group action, I

Is there an effective analog of Feldman-Moore? That is, is it the
case that any Ece enumerable in indices is the orbit relation of
an action computable in the indices? The answer is (again): no.

Theorem (Coskey, Hamkins, R. Miller)

Ece0 is enumerable in indices but there is no group action G
computable in the indices so that Ece0 = EceG .

One way to see this is by using the following lemma. Say that a
given EceG is permutation induced if there is a computable
subgroup H of S∞ so that

x EceG y ⇔ (∃π ∈ H)(Wy = {π(n) : n ∈ Wx}).
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Realizing Ece0 via a group action, II

Lemma (Andrews, S.)

Every orbit relation of a group action computable in indices is
permutation induced.

So, when dealing with EceG , we shall assume that G is a subgroup
of S∞ whose action on the c.e. sets is given, for all π ∈ G, by

π ·Wx = {π(n) : n ∈ Wx}.

From the lemma, it immediately follows that no EceG glues c.e.
sets of different size. So, e.g., neither Ece0 nor Ece1 can be
realized by group actions computable in indices. To overcome
this limitation, it is natural to relax the notion of realizability
and reasoning up to ≤c. Then, the next question arises:

Is there G so that Ece0 ∼c EceG ?
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Realizing Ece0 via a group action, III

Since Ece0 is Σ03 universal, then all EceG reduce to it. So, the
question is really whether Ece0 can be encoded into some EceG .

Let P be the subgroup of S∞ generated by all permutations
with finite support (i.e., those that move only finitely many
elements).

Theorem (Andrews, S.)

Ece0 ∼c EP.

The proof is a priority construction dealing with Σ03
approximations. Yet, note that EP is, in a sense, the closest you
may get to Ece0 by using permutations. Indeed, i EP j if and only
if there is n so that:

• |Wi ∩ [0,n]| = |Wj ∩ [0,n]|,
• and Wi r [0,n] = Wj r [0,n]. 20



A new dichotomy

At this point, one may suspect that “few” orbit relations would
be of the highest complexity (i.e., that of Ece0 ). This is not the
case.

In fact, we have obtained the following neat – and quite
unexpected – dichotomy:

Theorem (Andrews, S.)

For all groups G acting computably in indices,

• If G has finitely many actions, then EceG ∼c=
ce,

• If G has infinitely many actions, then EceG ∼c Ece0 .

Hence, Ece∞ has many natural realizations.
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Failures of Feldman-Moore and Glimm-Effros

Anyway, the analog of Feldman-Moore theorem fails also
working up to ≤c, e.g., Emin and Emax are enumerable indices
but, being stricly below =ce, they cannot be equivalent to any
EceG . In fact,

Theorem (Andrews, S.)

1. There is an infinite chain of equivalence relations which
are enumerable in the indices between =ce and Ece0 .

2. There is an infinite antichain of equivalence relations
enumerable in indices between =ce and E0.

Thus, there is no computable analog of Glimm-Effros
dichotomy.
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Isomorphism relations
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Isomorphism relations, I

To introduce the next topic, let’s briefly go back to the Borel
theory.

If one considers Borel actions of uncountable groups, many
more orbit relations arise. A notable example is given by
isomorphism relations.

• For a countable language L, let Mod(L) denote the
collection of all countable L-models with universe ω. Each
element of Mod(L) can be viewed as an element of the
product space

XL :=
∏
i∈I

2ω
ni ,

which is homeomorphic to the Cantor space.

23



Isomorphism relations, II

• The logic action of S∞ on XL is given as follows:

π ·M |= R(x0, . . . , xi)

if and only if

M |= R(π−1(x0), . . . , π−1(xi)).

This action is continuous and the resulting orbit relation is
just the isomorphism relation on Mod(L), denoted ∼=L.

• If an L-formula ϕ is Lω1ω , then Mod(ϕ) ⊆ Mod(L) is
standard Borel. Then, the logic action on Mod(ϕ)

generates ∼=ϕ. This allows to use Borel technology to
assess the complexity of natural classes of countable
structures.
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The most complex classes of countable structures, I

Say that a class K of countable structures is on top for ≤B if,
for all countable languages L, ∼=L Borel reduces to ∼=K. (This is
the same of asking that every S∞-relation reduces to ∼=K).

It turns out that many familiar classes are on top, including:

• Undirected graphs, trees, linear orders, nilpotent groups,
fields;
H. Friedman, Stanley (1989)

• Boolean algebras;
Camerlo, Gao (2001)

• Torsion-free abelian groups.
Paolini, Shelah (preprint)
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The most complex classes of countable structures, II

H. Friedman and Stanley named the property of being on top
“Borel completeness”. But this may be misleading:

1. Classes on top are not Borel (but analytic);
2. There are Borel equivalence relations which don’t admit a
classification by countable structures, e.g., Kechris and
Louveau showed that E1 is not Borel reducible to the
isomorphism of countable graphs.
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Isomorphism relations under computable lenses, I

Computable reductions are well-suited for assessing the
complexity of the isomorphism problem between computable
structures.

Recall that structure with universe ω is computable if its
relations and functions are computable, thus such structures
can be identified with a natural number. For a class K,
I(K) ⊆ ω denotes the collection of indices of computable
structures from K.

Then, to compare isomorphism relations on computable
structures, one considers partial computable reductions with
domain containing the relevant set I(K).
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Isomorphism relations under computable lenses, II

Theorem (Fokina, Sy Friedman, Harizanov, Knight, McCoy,
Montalbán)

Isomorphism relations on the following classes of computable
structures are Σ11 universal:

• Trees, undirected graphs, nilpotent groups, fields (as for
≤B);

• But also torsion-free abelian groups and torsion abelian
groups.

Hence, this contrasts with the Borel theory in two ways:

1. Every hyperarimetic relation (on ω) admits a classification by
computable structures;

2. Torsion abelian groups are not on top for ≤B, but computable
torsion abelian groups are on top for ≤c. 28



The Friedman-Stanley jump

To gauge the complexity of Borel isomorphism relations,
H. Friedman and Stanley introduced the following jump
operator:

• Let E be on a standard Borel space X. The FS-jump of E,
denoted E+, is the equivalence relation on Xω given by

(xn) E+(yn) ⇔ {[xn]E : n ∈ ω} = {[yn]E : n ∈ ω}.

This jump is proper on Borel equivalence relations:

Theorem (H. Friedman, Stanley)

If E is a Borel and it has more than one class, then E <B E+.
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The computable FS-jump

Clemens, Coskey, and Krakoff (2022) introduced a natural
computable analog of the FS-jump:

• For E on ω, E+ is given by

xE+y ⇔ [Wx]E = [Wy]E.

That is, intuitively Wx and Wy are E+-equivalent if they list the
same E-classes. Note that Id(ω)+ ∼c=

ce.

Theorem (Clemens, Coskey, Krakoff)

• If E is universal Σ11, then E ∼c E+.
• If E is hyperarithmetic, then E <c E+.
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On the computable FS-tower, I

The Friedman-Stanley tower is obtained by starting with the
identity on a standard Borel space and then iterating the
FS-jump transfinitely, along the countable ordinals.
H. Friedman and Stanley proved that the FS-tower is cofinal for
all Borel isomorphism relations.

In the computable setting, the transfinite jump hierarchy is
similarly defined along the computable ordinals.

Formally, for a ∈ O and E an equivalence relation, E+a is
defined by induction as follows:

• If a = 2b then E+a = (E+b)+;
• If a = 3 · 5e, then E+a =

⊕
i E+ϕe(i).
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On the computable FS-tower, II

Theorem (Andrews, S.)

Let E on ω be hyperarithmetic. Then, there exists a notation
a ∈ O such that

E ≤c Id(ω)
+a.

Let’s close this topic by mentioning that the computable
FS-jump is notation dependant:

Theorem (Andrews, S.)

• Let a,b ∈ O be notations for α < ω2. Then, E+a ∼c E+b for
all E.

• There are two notations a,b ∈ O for ω2 so that Id(ω)+a

and Id(ω)+b are incomparable.
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Thank you!
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