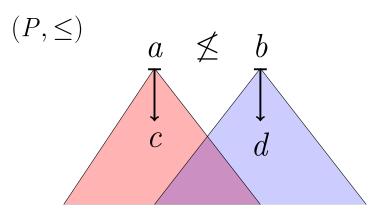
The first-order part of computational problems

Manlio Valenti
manliovalenti@gmail.com
Joint work with Giovanni Soldà

Midwest Computability Seminar 01 Nov 2022

Motivation



If c and d are maxima (in the resp. lower cones) satisfying some property φ then

$$c \not\leq d \Rightarrow a \not\leq b$$

Weihrauch reducibility

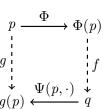
Computational problem: partial multi-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ input: any $x \in \text{dom}(f)$

output: any $y \in f(x)$

More general spaces can be considered, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study Weihrauch degrees.

 $g \leq_{\mathbf{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ s.t.

- Given $p \in \text{dom}(g)$, $\Phi(p) \in \text{dom}(f)$
- Given $q \in f(\Phi(p)), \ \Psi(p,q) \in g(p)$



 $g \leq_{\mathrm{sW}} f :\iff g \leq_{\mathrm{W}} f$ and Ψ does not depend on p.

First-order problems

A computational problem $f:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ can be identified with the problem $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

$$\begin{array}{ccc} p & \mapsto \{q \in \mathbb{N}^{\mathbb{N}} \,:\, q(0) \in f(p)\} \\ & & \text{dom}(f) \end{array}$$

If g has codomain Y and there is a computable injection $Y \to \mathbb{N}$ with computable inverse we say that it is first-order.

The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{W}} \{g : \subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N} : g \leq_{W} f \}$ is well-defined.

Proof.

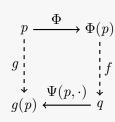
Assume $g : \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $g \leq_{\mathbf{W}} f$ via Φ, Ψ .

 Φ maps $p \in \text{dom}(q)$ to an input for f.

Given p, we can uniformly compute an index $w \in \mathbb{N}^{\mathbb{N}}$ for the map $q \mapsto \Psi(p, q)$.

$$g(p) \subset \mathbb{N}$$
, hence for every $q \in f(\Phi(p))$,

$$\Phi_w(q)(0) = \Psi(p,q)(0) \downarrow \in g(p)$$



The first-order part of a problem

Theorem (Dzhafarov, Solomon, Yokoyama)

For every f, $\max_{\leq_{\mathbf{W}}} \{g \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N} : g \leq_{\mathbf{W}} f\}$ is well-defined.

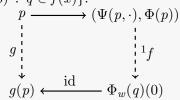
Proof.

Define ${}^1f:\subseteq \mathbb{N}^{\mathbb{N}}\times\mathbb{N}^{\mathbb{N}} \Longrightarrow \mathbb{N}$ as

$$^{1}f(w,x) := \{\Phi_{w}(q)(0) : q \in f(x)\}.$$

Intuitively: ${}^{1}f$ behaves just like f but stops at the first digit!

It follows that $g \leq_{\mathbf{W}} {}^{1}f \leq_{\mathbf{W}} f$.



The first-order part of a problem

For $f:\subset \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, we define ${}^1f:\subset \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ as:

input : (w, x) s.t. $x \in dom(f)$ and, for every solution $q \in f(x), \Phi_w(q)(0) \downarrow$

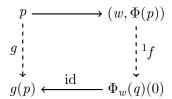
output: any n s.t. $\Phi_w(q)(0) = n$ for some $q \in f(x)$

- $^{1}(\cdot)$ is an interior operator:
 - ${}^{1}({}^{1}f) \equiv_{W} {}^{1}f <_{W} f$
 - $f <_{\mathbf{W}} q \Rightarrow {}^{1}f <_{\mathbf{W}} {}^{1}q$

In particular, ${}^1f \not\equiv_{\mathrm{W}} {}^1q \Rightarrow f \not\equiv_{\mathrm{W}} q$.

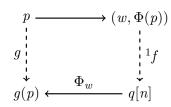
Computing prefixes

 ^{1}f computes "sufficiently long" prefixes of solutions.



By the continuity of $\Phi_w = \Psi(p, \cdot)$, only a prefix of q is needed to solve g.

q[n] is sufficiently long so that Φ_w converges on 0.



A few benchmarks

Choice problems are pivotal in the Weihrauch lattice.

Given $A \neq \emptyset$ (with some properties), find $x \in A$.

 C_k : given a sequence in $(k+1)^{\mathbb{N}}$, find a number that is not enumerated.

 $C_{\mathbb{N}}$: same as C_k but with no bound.

 $\mathsf{C}_{2^{\mathbb{N}}}$: given a tree $T \subset 2^{<\mathbb{N}}$, find a path $p \in [T]$ (WKL).

 $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$: given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, find a path $p \in [T]$.

 Σ_1^1 - $C_{\mathbb{N}}$: given a list of subtrees of $\mathbb{N}^{<\mathbb{N}}$, find the index of an ill-founded one.

Manlio Valenti

Operations on problems

```
f \times q: solve f and q in parallel
     : solve finitely many instances of f in parallel
        : solve infinitely many instances of f in parallel
f * q: solve q, apply some computable functional, then solve f
        : jump in the Weihrauch lattice
            name of input: a sequence (p_n)_{n\in\mathbb{N}} in \mathbb{N}^{\mathbb{N}} s.t.
            \lim_{n} p_n is a name for an instance x of f;
            output : f(x)
```

Examples

- (Brattka, Pauly) if f is densely realized (for every p, f(p) is dense) then ${}^1f \leq_{\mathbf{W}}$ id. Examples: "given p, produce q which is non-computable/non-hyp/ML-random relative to p".
- (Brattka, Gherardi, Marcone) 1 lim $\equiv_W \mathsf{C}_{\mathbb{N}}$:

Given $(p_n)_{n\in\mathbb{N}}$, for each i we can compute $\lim_n p_n(i)$ with finitely many mind changes.

Being $\leq_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}$ corresponds to being uniformly computable with finitely many mind changes, hence ${}^{1}\mathsf{lim} \leq_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}$. The other reduction follows from $\mathsf{lim} \equiv_{\mathrm{W}} \widehat{\mathsf{C}_{\mathbb{N}}}$.

Examples

- (Dzhafarov, Solomon, Yokoyama) 1 WWKL $\equiv_W ^1$ WKL $\equiv_W ^2$: exploits the compactness of $2^{\mathbb{N}}$.
- (Goh, Pauly, V.) ${}^1\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} \equiv_{\mathrm{W}} \Sigma^1_1\text{-}\mathsf{C}_{\mathbb{N}}$:

Given a tree $T \subset \mathbb{N}^{<\mathbb{N}}$, we look for a sufficiently long σ that extends to a path in T ($\Sigma_1^{1,T}$ condition).

How about Π_1^1 -CA $\equiv_W \widehat{WF}$?

Is there a general rule?

FOP and parallelization

Assume $f = \hat{g}$ for some first-order g.

Can we characterize ${}^{1}f$ in terms of g?

$$\begin{split} & \lim \equiv_W \widehat{\mathsf{C}_{\mathbb{N}}} -\!\!\!\!\!--\!\!\!\!\!--\!\!\!\!\!> {}^1 \text{lim} \equiv_W \mathsf{C}_{\mathbb{N}} \equiv_W \mathsf{C}_{\mathbb{N}}^* \\ & \mathsf{WKL} \equiv_W \widehat{\mathsf{C}_2} -\!\!\!\!\!\!\!--\!\!\!\!\!\!--\!\!\!\!\!> {}^1 \mathsf{WKL} \equiv_W \mathsf{C}_2^* \end{split}$$

Guess: ${}^{1}f \equiv_{\mathbf{W}} g^{*}$

This doesn't quite work: consider

"Given a sequence of trees in $\mathbb{N}^{<\mathbb{N}}$, return 0 if they are all well-founded, or return i+1 s.t. the i-th tree is ill-founded"

 Π_1^1 -CA can solve it, but WF* cannot.

The unbounded-* operator

We define the unbounded finite parallelization. Intuitively: just like $(\cdot)^*$, but with no commitment to the number of instances.

For
$$f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$$

 $f^{u*} :\subseteq \mathbb{N}^{\mathbb{N}} \times (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \rightrightarrows (\mathbb{N}^{\mathbb{N}})^{<\mathbb{N}}$ is the following problem:
 $(w, (x_n)_{n \in \mathbb{N}}) \mapsto \{(y_n)_{n < k} : (\forall n < k)(y_n \in f(x_n)) \text{ and } \Phi_w(\langle y_n \rangle_{n < k})(0) \downarrow \}$

 $(\cdot)^{u*}$ is a closure operator:

- $f <_{\mathbf{W}} f^{u*} \equiv_{\mathbf{W}} (f^{u*})^{u*}$
- $f \leq_{\mathbf{W}} q \Rightarrow f^{u*} \leq_{\mathbf{W}} q^{u*}$

Moreover $f^* \leq_{\mathbf{W}} f^{u*} \leq_{\mathbf{W}} \widehat{f}$

FOP and parallelization

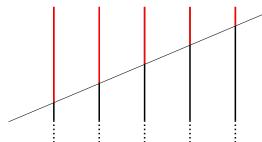
```
Theorem (Soldà, V.)
```

For every
$$f$$
, $^{1}(\widehat{f}) \equiv_{\mathbf{W}} ^{1}(f^{u*})$.

Proof (Sketch):
$${}^{1}(f^{u*}) \leq_{\mathbf{W}} {}^{1}(\widehat{f})$$
 is easy as $f^{u*} \leq_{\mathbf{W}} \widehat{f}$.

$$^{1}(\widehat{f}) \leq_{\mathbf{W}} ^{1}(f^{u*})$$
: let $(w,(x_{n})_{n})$ be an input for $^{1}(\widehat{f})$.

$$f(x_0) \quad f(x_1) \quad f(x_2) \quad f(x_3) \quad f(x_4) \qquad \dots$$



 Φ_w selects a prefix of a solution.

This corresponds to selecting finitely many columns.

FOP and parallelization

Theorem (Soldà, V.)

For every f, if $f \equiv_{\mathbf{W}} \widehat{g}$ for some first-order g, then

$$^{1}f \equiv_{\mathbf{W}} ^{1}(g^{u*}) \equiv_{\mathbf{W}} (^{1}g)^{u*} \equiv_{\mathbf{W}} g^{u*}$$

If $id \leq_{sW} f$ then this lifts to jumps: for every n

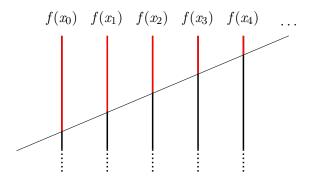
$$^{1}(f^{(n)}) \equiv_{sW} (g^{u*})^{(n)}$$

In other words: $^{1}(\cdot)$ and $(\cdot)^{u*}$ commute for first-order problems.

Is this peculiar of first-order problems?

FOP and unbounded-*

Remark: let $(w,(x_n)_n)$ be an input for ${}^1(\widehat{f})$.



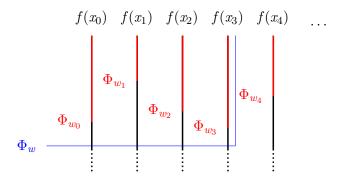
 Φ_w selects a prefix of a solution.

The prefix of $f(x_i)$ may depend on the solution to x_i .

FOP and unbounded-*

On the other hand, an input for $({}^1f)^{u*}$ is $(w, (w_n, x_n)_n)$ s.t.

- for every n, Φ_{w_n} selects a prefix of $f(x_n)$
- Φ_w selects "finitely many prefixes"



The prefix of $f(x_i)$ is independent of the solution of x_i .

FOP and unbounded-*

In some cases, we have a work around. E.g. if $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is finitely valued (for every $p \in \text{dom}(f)$, $|f(p)| < \infty$) then

$$^{1}(\widehat{f}) \equiv_{\mathbf{W}} (^{1}f)^{u*}.$$

Proposition (Soldà, V.)

There is f s.t. $^{1}(\widehat{f}) \not\leq_{\mathbf{W}} (^{1}f)^{u*}$.

Lemma

There are two sequences $(A_n)_{n\in\mathbb{N}}$ and $(B_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{N} s.t.

- for every n, $\emptyset' \not\leq_T A_n$, $\emptyset' \not\leq_T B_n$, but $\emptyset' \leq_T A_n \oplus B_n$;
- for every n and every computable functional Ψ s.t. $\emptyset' = \Psi(\langle A_i \rangle, B_n)$, the map sending x to the prefix of B_n used in the computation of $\emptyset'(x)$ is not B_n -computable.

Applications

• $\lim_{W} \widehat{C_{\mathbb{N}}} \equiv_{W} \widehat{\mathsf{LPO}}$. Since $\mathsf{C}_{\mathbb{N}} \equiv_{W} \mathsf{C}_{\mathbb{N}}^{u*}$ (Neumann, Pauly) ${}^{1}(\lim) \equiv_{W} \mathsf{C}_{\mathbb{N}} \equiv_{W} \mathsf{LPO}^{u*}$

This lifts to jumps: for every n

$$^{1}(\mathsf{lim}^{(n)}) \equiv_{\mathrm{W}} \mathsf{C}_{\mathbb{N}}^{(n)} \equiv_{\mathrm{W}} (\mathsf{LPO}^{(n)})^{u*}$$

• Π_1^1 -CA $\equiv_W \widehat{WF}$, hence ${}^1\Pi_1^1$ -CA $\equiv_W WF^{u*}$.

The diamond operator

(Neumann, Pauly) f^{\diamond} (roughly): "computation using f as oracle"

(Hirschfeldt, Jockusch): define the game $G(f \rightarrow q)$

$$p \in \text{dom}(g)$$
 p -computable $q \in g(p)$ and wins OR p -computable $x_1 \in \text{dom}(f)$ $y_1 \in f(x_1)$ $\langle p, y_1 \rangle$ -computable $q \in g(p)$ and wins OR $\langle p, y_1 \rangle$ -computable $x_2 \in \text{dom}(f)$.

Player 2 wins if he declares victory. Otherwise Player 1 wins.

 $q \leq_{\mathrm{W}} f^{\diamond}$ iff Player 2 has a computable winning strategy for $G(f \to q)$

unbounded-* and diamond

The diamond is essentially an "unbounded compositional product".

What is the relation between f^{u*} and f^{\diamond} ?

Observation: for every f we have $f^{u*} \leq_{\mathbf{W}} f^{\diamond}$

Can we have $f^{u*} \equiv_{\mathbf{W}} f^{\diamond}$?

Theorem (Soldà, V.)

If $f: \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}$ is s.t. $\{(x, n) : n \in f(x)\} \in \Pi_1^0$ then $f^{u*} \equiv_{\mathbb{W}} f^{\diamond}$. Besides, if $\operatorname{ran}(f) = k$ then $f^* \equiv_{\mathbb{W}} f^{\diamond}$.

Idea: we guess the possible answers to the oracle calls and use the effective closedness of Graph(f) to discard wrong guesses.

Examples: C_k for every $k \in \mathbb{N}$.

unbounded-* and diamond

(Brattka, Gherardi) The completion of a represented space \boldsymbol{X} is

$$\overline{X} := X \cup \{\bot\}$$

Intuitively, we have the possibility to postponing information about $x \in X$. Doing so indefinitely results in a name of \bot .

Using the completion $\overline{f} \colon \overline{X} \rightrightarrows \overline{Y}$ of f:

Theorem (Soldà, V.)

For every complete $f :\subseteq X \Rightarrow \mathbb{N}$, $f^{u*} \equiv_{\mathbf{W}} f^{\diamond}$

Examples: LPO, WF.

Question: can we do better?

Applications

• WKL $\equiv_W \widehat{\mathsf{C}_2}$:

$$^{1}(\mathsf{WKL}) \equiv_{W} (\mathsf{C}_{2})^{u*} \equiv_{W} \mathsf{C}_{2}^{*}$$

 \bullet This lifts to jumps: $\mathsf{WKL}^{(n)} \equiv_{\mathsf{W}} \widehat{\mathsf{C}_2^{(n)}}$

$$^{1}(\mathsf{WKL}^{(n)}) \equiv_{\mathsf{W}} (\mathsf{C}_{2}^{(n)})^{u*} \equiv_{\mathsf{W}} (\mathsf{C}_{2}^{*})^{(n)}$$

• Π^1_1 -CA $\equiv_W \widehat{WF}$:

$$\mathsf{WF}^* <_{\mathrm{W}} \mathsf{WF}^{u*} \equiv_{\mathrm{W}} \mathsf{WF}^{\diamond} \equiv_{\mathrm{W}} {}^1\Pi^1_{\mathsf{1}}\text{-CA}$$

Ramsey's theorem

Theorem (Brattka, Rakotoniaina)

For every
$$n > 1$$
 and $k \ge 2$, $C_k^{(n)} \le_{\mathrm{W}} \widehat{\mathsf{SRT}_k^n} \le_{\mathrm{W}} \widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$

Corollary (Soldà, V.)

For every
$$n > 1$$
 and $k \ge 2$, $C_k^{(n)} <_W {}^1\mathsf{SRT}_k^n \le_W {}^1\mathsf{RT}_k^n \le_W (C_2^*)^{(n)}$

The first reduction is strict as witnessed by $C_{\mathbb{N}}$.

Are the last two reductions strict?

Ramsey's theorem

Open question (Brattka, Rakotoniaina): $C'_{\mathbb{N}} \leq_{\mathbf{W}} RT_2^2$?

Theorem (Soldà, V.)

For every n and k > 1, $\mathsf{C}_{\mathbb{N}}^{(n)} \not\leq_{\mathsf{W}} \mathsf{RT}_{k}^{n+1}$.

In particular, for $n=2,\ ^1\mathsf{SRT}_2^2<_{\mathsf{W}}\ ^1\mathsf{RT}_2^2$ (Brattka, Rakotoniaina), hence

Theorem (Soldà, V.)

 $C_2'' <_W {}^1\mathsf{SRT}_2^2 <_W {}^1\mathsf{RT}_2^2 <_W (C_2^*)'' \equiv_W {}^1(\mathsf{WKL}'')$

Can we fully characterize ${}^{1}RT_{\nu}^{n}$?

References

- Brattka, V. and Gherardi, G., Completion of Choice, Annals of Pure and Applied Logic 172 (2021), no. 3, 102914.
- Dzhafarov, D., Solomon, R., and Yokoyama, K., On the first-order parts of Weihrauch degrees, In preparation, 2019.
- Goh, J. L., Pauly, A., and Valenti, M., Finding descending sequences through ill-founded linear orders, The Journal of Symbolic Logic 86 (2021), no. 2, 817–854.
- Hirschfeldt, D. and Jockusch, C., On notions of computability-theoretic reduction between Π_2^1 principles, Journal of Mathematical Logic **16** (2016), no. 01.
- Neumann, E. and Pauly, A., A topological view on algebraic computation models, Journal of Complexity 44 (2018), 1–22.
- Soldà, G. and Valenti, M., Algebraic properties of the first-order part of a problem, available at arxiv.org/abs/2203.16298.