Low levels of the arithmetical hierarchy and computable reductions on ω

Uri Andrews

University of Wisconsin

 $\begin{array}{c} {\rm Nov~2022} \\ {\rm Surveying~results~of~many~people.} \end{array}$

Ceers $(\Sigma_1^0$ equivalence relations)

A lot of work has been focused on the structure of ceers, including:

- There is a universal degree, which apears naturally: Provable equivalence in PA, isomorphism of finite presentations of groups, word problems of some groups, equivalence relations where the classes are uniformly effectively inseparable.
- Ceers with finitely many classes form an initial segment \mathcal{I} .
- There are ceers which are not above $=^{\omega}$ (usually called Id). We call these dark. This is a failure of the analog of Silver's theorem.
- There are infinitely many ceers which are minimal over \mathcal{I} .
- We have some descriptions of when pairs of ceers have (or don't have) a join or a meet.
- Every degree has a strong minimal cover (some only 1, some countably many)

More ceers facts

- $\omega^{<\omega}$ embeds as an initial segment of the degrees (sending the empty string to Id).
- The degree structure of Ceers interprets $(\mathbb{N}, +, \cdot)$ and so the theory is as complicated as possible. Also, the degree structure of the Light ceers, also the degree structure of the Dark ceers. Also, each of these $/\mathcal{I}$.
- The collection of 1-dimensional ceers R_X for $X \subseteq \omega$ embeds the 1-degrees of (infinite) c.e. sets.

Definition (The Halting Jump operator on ceers)

Given a ceer X, define X' by i X' j if and only if $\phi_i(i) \downarrow X \phi_j(j) \downarrow$.

- X' > X for all X.
- X' > Y' iff X > Y.
- $X' \equiv X$ if and only if X if universal.
- $X' \leq A \oplus B$ implies $X' \leq A$ or $X' \leq B$.

Co-ceers (Π_1^0 -equivalence relations)

- There is a universal co-ceer π .
- The only ceer which is below a co-ceer is Id, and the ones with finitely many classes.
- Every co-ceer is light (i.e. above Id).

Everything about ceers relativizes (some care needed: Relativizations include 0'-reductions).

- There is universal Σ_2^0 -equivalence relation.
- There are dark ones.
- There are the 1-dimensional ones (closed downwards)

We haven't really considered what the halting jump looks like here. e.g., What are there other fixed points besides the universal ceer degree and the universal Σ_2^0 -degree?

For any Δ_2^0 -degree **d**, the complete **d**-ceer is a fixed-point. Are there any others? Is the universal ceer least among the fixed points?

Very little independent investigation here.

$\overline{\Pi_n^0}$ for $n \ge 2$

Many natural examples of things that correspond to ERs on 2^{ω} restricted to CE: $=^{ce} \equiv \operatorname{Id}^{+} \in \Pi_{2}^{0}, E_{set}^{ce} \equiv \operatorname{Id}^{++} \in \Pi_{4}^{0}, E_{3}^{ce} \in \Pi_{4}^{0}$

Definition

For any E, let $iE^{\dagger}j$ if and only if $[W_i]_E = [W_j]_E$.

Theorem

There is NO universal Π_n^0 -equivalence relation.

In fact, for every Π_n^0 -equivalence relation X, there is some Δ_n^0 -equivalence relation which is not below X.

This is a constant foot-gun. The temptation to say that $=^{ce}$ is Π_2^0 -universal is overpowering at times. Resist.

Why not?!?

Theorem

If X is a Π_2^0 -equivalence relation, then there is some $Y \in \Delta_2^0$ so that $i \mid X \mid j$ iff $Y^{[i]} = Y^{[j]}$.

that these are co-final among Δ_2^0 -equivalence relations.

Aside on $=^{\Sigma_n^0}$ and $\dot{+}$

Relativizing at higher levels, that same hierarchy looks like: $=\Sigma_3^0 < = d-\Sigma_3^0 < \cdots$

Theorem

$$\mathrm{Id}^{\dot{+}n} \equiv =^{\Sigma_{2n-1}^0}.$$

Corollary

Every Σ_{2n-1}^0 or Π_{2n-1}^0 equivalence relation reduces to Id^{+n} .

Proof.

If X is Σ_{2n-1}^0 , we provide a reduction of X to $=^{\Sigma_{2n-1}^0}$. Send n to $[n]_X$.

If X is Π_{2n-1}^0 , send n to $\omega \setminus [n]_X$.

Question

Is
$$\pi^{\dotplus} \equiv =^{\Sigma_2^0}$$
?

Aside on $=^{\Sigma_n^0}$ and $\dotplus 2$

 \dotplus doesn't preserve these difference hierarchies:

Question

For any Π_n^0 -equivalence relation $X, X^{\dagger} \leq =^{\Sigma_{n+1}^0}$.

Proof.

Send i to $[W_i]_X$.

Question

We can ask about what the high Π_n^0 -equivalence relations are. This has been looked at for the ceers with some surprising answers, but not even at Π_1^0 .

Is $=^{ce}$ the least Π_2^0 -equivalence relation X so that $X^{+} \equiv =^{\Sigma_3^0}$? Do they all have that jump?

So why is there a Π_1^0 -universal?

Theorem

For every Π_1^0 relation (not assumed transitive) E, there is a Δ_1^0 set X and a partial computable function f so that if E is an equivalence relation, then i E j iff $X^{[f(i)]} = X^{[f(j)]}$.

Proof.

At every s, we determine $X(\langle n,m\rangle)$ for $n,m\leq s$. Let $t_0=0$ and let t_{n+1} be the first stage $>t_n$ where E looks transitive on [0,n+1]. If E is transitive, then this is an infinite sequence of stages, and $f:n\mapsto t_n$ will be our reduction. When s is not a t_n -stage for some n, we do nothing much in coding X – make no differences. Put 0 on all new inputs.

Otherwise, code the highest-priority split – use transitivity to make all the coding columns look okay.

We could do this for Π_2^0 -relations, but the reduction function f would also be Δ_2^0 , so we wouldn't get computable reduction.

Σ_3^0 -ERs

Here lie some natural ERs on c.e. sets:

$$E_0^{ce} \equiv E_1^{ce} \equiv E_2^{ce} \equiv$$
 the Σ_3^0 -universal degree

Definition

$$iE_0^{ce}j$$
 iff $W_i=^*W_j$ $iE_1^{ce}j$ iff for all but finitely many $n,\ W_i^[n]=W_j^[n]$ $iE_2^{ce}j$ iff $\Sigma_{n\in A\triangle B}\frac{1}{n}<\infty$

The pattern seems to be that almost any "natural" Σ_n^0 -equivalence relation will collapse to being universal. Obviously, this doesn't happen at Π -levels.

Some classes within Σ_3^0 -ERs, including the following two attempts to "effectivize" the class of countable borel equivalence relations (cbers).

Countable Borel equivalence relations?

Definition (Coskey, Hamkins, R. Miller (2012))

• The action of a computable group G acting on CE is computable in indices if there is computable α so that

$$W_{\alpha(g,e)} = g \cdot W_e.$$

The induced orbit equivalence relation is denoted E_G^{ce} .

• E^{ce} is enumerable in indices if there is computable α so that, for all $i \in \omega$,

$$e E^{ce} i \Leftrightarrow (\exists n)(W_{\alpha(e,n)} = W_i).$$

The first here was a natural attempt to use the Feldman-Moore theorem to bring the idea of cbers to ERs on **CE**. The second attempt is similar, but using the Luzin-Novikov theorem.

Dichotomy for groups

Theorem

If G is a computable group acting on **CE** computably in indices, then either $E_G^{ce} \equiv E_0^{ce}$ or $E_G^{ce} \equiv =^{ce}$

First, we showed that any group acting on **CE** computably in indices is actually acting via a permutation on ω . Still, there are several computable subgroups of S_{∞} to consider.

The prototypical examples to consider come down to the following cases:

- Let G be all finite permutations of ω .
- Let \mathbb{Z} act on ω by shifting.
- Let G be generated by $(0,1)(2,3,4)(5,6,7,8)\cdots$

Having shown these were all Σ_3^0 -complete, we realized that we had enough tricks to prove the same for any infinite $G \subseteq S_{\infty}$.

Non-dichotomy for enumerations

Theorem

There are infinite chains and antichains of ERs which are enumerable in indices between $=^{ce}$ and E_0^{ce} .

For $X \subseteq \omega$, let F(X) be the least element in X^c .

properly Σ_2^0 -classes, you can show $R_{n+1} \not\leq R_n$.

Simple construction for chains.

Let $iR_n j$ if and only if $W_i = W_j$ or $0 \in W_i \cap W_j$ and $F(W_i) \equiv F(W_j) \mod n$. Note that $=^{ce}$ reduces to R_n by sending W_i to $W_i + 1$. Among c.e. sets which contain 0, there are n + 1 classes depending $F(W_i) \mod n$ OR $F(W_i) = \infty$. The last one is Π_2^0 -complete,

while the others are Σ_2^0 -complete. By counting the number of

Some questions about enumerable in indices ERs

Our examples are all Δ_3^0 . Can there be a properly Σ_3^0 , but not universal, ER which is enumerable in indices?

Also, there is a Δ_2^0 enumerable in indices ER: E_{min} , and a Π_2^0 which is below $=^{ce}$: E_{max} .

Can there be a Σ_2^0 one which is not Δ_2^0 . More generally, can there be any Σ_2^0 quotient of $=^{ce}$ which is not Δ_2^0 ?

Uniform enumeration in indices

Can the Lusin-Novikov direction be salvaged by demanding more uniformity from the enumerations?

Definition

 E^{ce} is uniformly enumerable in indices if there is a computable α so that for all $i \in \omega$,

$$e E^{ce} i \Leftrightarrow (\exists n)(W_{\alpha(e,n)} = W_i).$$

and whenever $W_e = W_i$, $W_{\alpha(e,n)} = W_{\alpha(i,n)}$.

Note that you expect this if the operation $W_i \mapsto W_{\alpha(i,n)}$ is really an operation on sets (i.e., is independent of the enumeration).

Observation

 E^{ce} is uniformly enumerable in indices if and only if it is the orbit equivalence of a computable action of a monoid M on **CE**.

Thank you

for your attention, comments and contributions! $\,$