Geometric triviality in differentially closed fields

Ronnie Nagloo

Logic Seminar University of Wisconsin-Madison Madison WI 26 January 2023

This work is partially supported by NSF grants DMS-2054471.

Ronnie Nagloo

Geometric triviality in DCF

The aim of this talk is to:

- Describe the most important open problem in the study of the theory DCF₀.
- Recall the ω -categoricity conjecture of D. Lascar and the corresponding counterexample of J. Freitag and T. Scanlon
- Describe recent developments around work placing their counterexample into a larger context.
- Point out the main open questions.

1. Refresher on DCF_0 .

 The Trichotomy Theorem is arguably the deepest result in the study of DCF₀.

Zilber's Principle holds in *DCF*₀ (Hrushovski-Sokolovic, 1994)

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- (Field-like) *Y* is non-orthogonal to the algebraically closed subfield of constants $C_{\mathcal{U}} = \{y \in \mathcal{U} : D(y) = 0\}$; or
- **2** (Group-like) Y is non-orthogonal to a very special strongly minimal subgroup of an abelian variety not defined over $C_{\mathcal{U}}$; or

Y is (geometrically) trivial.

 Except for (3), this gives a full classification of strongly minimal sets in DCF₀.

- We work in the language $L_D = (0, 1, +, \times, D)$ of differential rings.
- DF_0 denotes the theory of differential fields of characteristic zero:

A differential field (K, D) is a field K equipped with a derivation $D: K \rightarrow K$, i.e. an additive group homomorphism satisfying the Leibniz rule

$$D(x + y) = D(x) + D(y).$$
$$D(xy) = xD(y) + yD(x).$$

$$\left(\left(\left(t \right), \frac{d}{dt} \right) \right)$$

- We work in the language $L_D = (0, 1, +, \times, D)$ of differential rings.
- DF_0 denotes the theory of differential fields of characteristic zero:

A differential field (K, D) is a field K equipped with a derivation $D: K \rightarrow K$, i.e. an additive group homomorphism satisfying the Leibniz rule

$$D(x + y) = D(x) + D(y).$$
$$D(xy) = xD(y) + yD(x).$$

- This theory can be quite wild: (Q, 0, 1, +, ×, D = 0) is an example of a differential field and so one gets non-computable definable sets.
- We look at existentially closed models.

• For each $m \in \mathbb{N}_{>0}$, associated with a differential field (K, D), is the ring of differential polynomials in *m* differential variables,

$$K{\overline{X}} = K[\overline{X}, \overline{X}', \dots, \overline{X}^{(n)}, \dots].$$

$$\overline{X} = (X_{1}, \dots, X_{m})$$

$$X' = D \times$$

$$D \overline{X} = (D X_{1}, \dots, D \times n)$$

• For each $m \in \mathbb{N}_{>0}$, associated with a differential field (K, D), is the ring of differential polynomials in *m* differential variables,

$$K{\overline{X}} = K[\overline{X}, \overline{X}', \dots, \overline{X}^{(n)}, \dots].$$

- If $f \in K{\overline{X}}$ is a differential polynomial, then the order of f, denoted ord(f), is the largest n such that for some i, $X_i^{(n)}$ occurs in f.
- **Example:** $f(X) = (X')^2 4X^3 tX$ is an example of a differential polynomial in $\mathbb{C}(t)\{X\}$ and ord(f) = 1.
- The analogue of algebraically closed fields in the differential context is defined as follows

Definition (Blum Axioms, 1968)

A differential field (K, D) is said to be differentially closed if for every $f, g \in K\{X\}$ such that ord(f) > ord(g), there is $a \in K$ such that f(a) = 0 and $g(a) \neq 0$.

• DCF_0 is the theory obtained by adding to DF_0 , the L_D -sentences describing that a differential field is differentially closed.

It is a very tame theory.

Theorem (Blum, 1968)

The theory DCF₀ is complete & ω -stable; and has QE & EI.

• We fix throughout $(\mathcal{U}, D) \models DCF_0$ a saturated model.

Definition

A definable set $Y \subset U^n$ is strongly minimal if Y is infinite and for every definable $X \subset Y$ either X or $Y \setminus X$ is finite.

 In DCF₀ strongly minimal sets determine, in a precise manner, the structure of all definable sets of finite Morley rank.

- In DCF₀, the model theoretic algebraic closure has the following nice characterization:
 - acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by A.

$$= \mathbb{Q}(a, a', a'', \ldots : a \in A)^{alg}.$$

Fact

If Y is a strongly minimal set, then (Y, acl_Y) forms a pregeometry.

 $ac|_{V}(A) = ac|(A) \cap Y$

 In DCF₀, the model theoretic algebraic closure has the following nice characterization:

acl(A) = the <u>field theoretic</u> algebraic closure of the differential field generated by A.

$$= \mathbb{Q}(a, a', a'', \ldots : a \in A)^{alg}.$$

Fact

If Y is a strongly minimal set, then (Y, acl_Y) forms a pregeometry.

General examples

- ACF_p : acl = field theoretic algebraic closure.
- Vector spaces over a fixed field K: acl = K-span.
- The Trichotomy classifies non-trivial strongly minimal sets as essentially the above.

Ronnie Nagloo

2. Trivial Pursuits

Definition

Let Y be a strongly minimal set. (Y, acl_Y) is (geometrically) trivial if for any $A \subset \mathcal{P}(Y)$ we have that

$$acl_Y(A) = \bigcup_{a \in A} acl_Y(a).$$

Trivial strongly minimal sets have at most "binary structures", indeed

$$a \in acl_Y(A) \implies a \in acl_Y(b)$$
 for some $b \in A$

• **Open problem:** Can trivial strongly minimal sets be classified?

- If there were a strong structure theory, some of the strategy laid out by Hrushovki for certain diophantine problems might be possible.
- Work on this problem has also lead to proof of important theorems in number theory/functional transcendence in a different direction.
- New work of Rémi Jaoui that there is an abundance of such strongly minimal sets.

Ronnie Nagloo

- Unfortunately, there is no general strategy to tackle the above problem.
- Can there even be a differential equation whose solution set has at most a "rich binary structure"?

Definition

A trivial strongly minimal set Y is ω -categorical if for any $y \in Y$ the set $acl_Y(y)$ is finite.

Old Conjecture (Lascar, 1976)

In DCF₀, geometric triviality $\implies \omega$ -categoricity.

• Was there any evidence?

Theorem (Hrushovki, 1995)

The order 1 trivial strongly minimal sets are ω -categorical.

Conjecture (Sadly NOT True)

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or
- **3** Y has no or little structure, i.e, is ω -categorical.
- We now know from the work of Freitag and Scanlon that the conjecture is false.
- However, it is still possible that the conjecture is true for order 2 definable sets.

Indeed, all known examples of order 2 trivial strongly minimal sets in DCF_0 are ω -categorical.

3. Freitag-Scanlon counterexample

 One would like to find a differential equation for which the solutions (a meromorphic function) satisfy rich binary algebraic relations!

Riemann Mapping Theorem

Let $D \subset \mathbb{C}$ be a simply connected domain that is not \mathbb{C} . Then there is a biholomorphic mapping $f : D \to \mathbb{H}$, where $\mathbb{H} = \{z \in \mathbb{C} \mid Im(z) > 0\}$ is the complex upper half plane.

Recall that we have SL₂(ℝ) = {A ∈ Mat₂(ℝ) : det(A) = 1} and its action on ℍ by linear fractional transformation

$$egin{pmatrix} \pmb{a} & \pmb{b} \ \pmb{c} & \pmb{d} \end{pmatrix} \cdot \tau = rac{\pmb{a} au + \pmb{b}}{\pmb{c} au + \pmb{d}} \in \mathbb{H}$$

where $A \in SL_2(\mathbb{R})$ and $\tau \in \mathbb{H}$.

52,(2)/1-1

• The Freitag-Scanlon example focuses on the subgroup $SL_2(\mathbb{Z})$. In this case one has that the fundamental domain of action is

RMT $j: D \rightarrow H$ • The Freitag-Scanlon example focuses on the subgroup $SL_2(\mathbb{Z})$. In this case one has that the fundamental domain of action is

• We want to apply the RMT to the fundamental half domain.

$$\begin{array}{lll} \mathsf{RMT} & \Longrightarrow & \exists & j: D \to \mathbb{H} \\ & \downarrow & \\ & \Longrightarrow & j: SL_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C} \\ & \downarrow & \\ & \Longrightarrow & j: \mathbb{H} \to \mathbb{C} \text{ is } SL_2(\mathbb{Z})\text{-automorphic,} \\ & & \text{ so } j(g \cdot t) = j(t) \text{ where } g \in SL_2(\mathbb{Z}) \end{array}$$

• The function *j* is called the modular *j*-function.

It satisfies the 3rd order algebraic differential equation

$$\left(\frac{y''}{y'}\right)' - \frac{1}{2}\left(\frac{y''}{y'}\right)^2 + \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2} \cdot (y')^2 = 0 \quad (\star_j)$$

Ronnie Nagloo

Theorem (Freitag-Scanlon, 2018)

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

- They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.
- Other ingredients
 - ① Any solution can be taken to be of the form $j(g \cdot t)$ for $g \in \mathcal{C}_2(\mathbb{R})$.

2 For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

$$\alpha(j(t)) \ni j(N,t)$$

Theorem (Freitag-Scanlon, 2018)

The set defined by the differential equation (\star_j) is strongly minimal, geometrically trivial BUT not ω -categorical.

- They use a deep theorem of Pila in functional transcendence theory called the Modular Ax-Lindemann-Weierstrass Theorem.
- Other ingredients
 - ① Any solution can be taken to be of the form $j(g \cdot t)$ for $g \in SL_2(\mathbb{R})$.
 - 2 For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

 $\Phi_N(j(t),j(N\cdot t))=0.$

- For a while this seemed to have shut the door on the possible classification of trivial strongly minimal sets.
- Main question: Is there a way to explain the existence of the modular polynomials?

3. The main results: the general context

•
$$SL_2(\mathbb{Z})$$

• $\Gamma CSL_2(\mathbb{R})$ discrete = fuchsion
 gp .
• Γ is of first kind & genus O
 $\downarrow \downarrow \downarrow \downarrow$
• f is of first kind & genus O
 $\downarrow \downarrow \downarrow \downarrow$
• f is Γ is Γ invariant
 f invariant
 f is $H \rightarrow C$ invariant
 f is $H \rightarrow C$ invariant
 f is f is f is f invariant
 f is f i

• The function j_{Γ} satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2} \sum_{i=1}^{r} \frac{1 - \alpha_i^2}{(y - a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y - a_i} \cdot (y')^2 = 0 \qquad (\star_{j_{\Gamma}})$$

• We denote by X_{Γ} the set defined in \mathcal{U} by equation $(\star_{j_{\Gamma}})$.

As before, any solution in X_{Γ} can be taken to be of the form $j_{\Gamma}(g \cdot t)$.

$$X_{p} = \lambda j(gt): g \in GL_{2}(\mathbb{R}^{2})$$

• The function j_{Γ} satisfies an order 3 ADE of Schwarzian type

$$S_{\frac{d}{dt}}(y) + \frac{1}{2} \sum_{i=1}^{r} \frac{1 - \alpha_i^2}{(y - a_i)^2} + \sum_{i=1}^{r} \frac{A_i}{y - a_i} \cdot (y')^2 = 0 \qquad (\star_{j_{\Gamma}})$$

• We denote by X_{Γ} the set defined in \mathcal{U} by equation $(\star_{j_{\Gamma}})$.

As before, any solution in X_{Γ} can be taken to be of the form $j_{\Gamma}(g \cdot t)$.

Theorem (Casale-Freitag-N, 2020)

The definable set X_{Γ} is strongly minimal and geometrically trivial

- This amounts to a proof of an old conjecture of Painlevé (1895) about the irreducibility of equation (*_{jr}).
- Our proof is general and only depends on Γ (not on j_{Γ}) and in particular gives a new proof for $SL_2(\mathbb{Z})$.
- What about ω -categoricity?

Arithmeticity: An important dividing line in group theory.
 Given any finite dimensional linear representation

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$.

• **Arithmeticity**: An important dividing line in group theory.

Given any finite dimensional linear representation

 $\rho: SL_2(\mathbb{R}) \to GL_n(\mathbb{R}).$

Let $G = \rho(SL_2(\mathbb{R})) \cap GL_n(\mathbb{Z})$. Then $\Gamma = \rho^{-1}(G)$ is a Fuchsian group.

Definition

All subgroups of $SL_2(\mathbb{R})$ obtained this way and their subgroups of finite index are called arithmetic Fuchsian groups.

• Arithmetic Fuchsian groups play an important role in number theory and the quotients $\Gamma \setminus \mathbb{H}$ are known as (genus 0) Shimura Curves.

Theorem (Casale-Freitag-N, 2020)

The set X_{Γ} is not ω -categorical if and only if Γ is arithmetic.

Arithmeticity
$$\Rightarrow$$
 rich binary structure: fix $\Gamma < sL_2(R)$
Theorem (Poincaré): If $j_1 & j_2$ two outbourphic uniformizer
for $\Pi \Rightarrow j_1, j_2$ are alg dependent/ C
(Fact: If $\Pi_1 \subset \Gamma$ is of finite index then j_1 is also
Uniformizer for Γ_1
 \Rightarrow IF $gesL_2(R)$ s-t $\Gamma_g = \Gamma n (g \Gamma_g^{-1})$ has finite index
in both
 \Rightarrow $j(t) \notin j(g^{-t})$ uniformizer for Γ_g
 \Rightarrow alg dependent over G
 $\Gamma \subset Comm(\Gamma) = fgesL_1(R) : \Gamma_g$ has finite index in Γ_g
Thm (Murgalis): Π is arithmetic if Γ has infinite
index in Comm(Γ).

Major Challenge

In DCF_0 , does every non- ω -categorical strongly minimal set "arise" from an arithmetic Fuchsian group?

 In other words, is the following restatement of Lascar's Conjecture true?

Conjecture

Let Y be a strongly minimal set in $(U, D) \models DCF_0$. Then exactly one of the following holds:

- Y is Field-like; or
- Y is Group-like; or
- 3 Y arise from an arithmetic Fuchsian group; or
 - Y has no or little structure, i.e, is ω -categorical.

Theorem (Freitag-Scanlon, 2018)

The set defined by the differential equation for the *j*-function is strongly minimal, geometrically trivial BUT not ω -categorical.

• Recall that we obtain non- ω -categoricity because: For $N \in \mathbb{N}$, there exist a modular polynomial $\Phi_N \in \mathbb{C}[X, Y]$ such that

$$\Phi_N(j(t),j(N\cdot t))=0.$$

- The only method we have to detect the modular polynomial is via Seidenberg's Embedding theorem.
- The same is true for the other Fuchsian groups.
- Interesting question: Is there a proof of non-ω-categoricity of these equations "algebraically"?

Thank you very much for your attention.

