A computably small set that is not intrivalcally small
Uniform MWC-stochasticity O Uniform KL-stoch O
(Joint with Justin Miller)
Consider infinite, variant of Minty Hall Proplem.
· Infinite doors in a now
0 1 2 3
· Host hides goat (car behind each door (v) (1)
· Interritely many doors hide Cars
contens to droves int many doors to open
$f(0), f(i), \dots$
Contestant behave like Turing Madrine + \$ \$
o Contestant wins it selected doors have vonzen density of cars.
donation of cars-

Type of contistants

- Disorderly or orderly.

Dis orderly f may drose door i after door j>i.

- Adaptive US non-adaptive

Non-adaptive: Next door picked does not deput on earlier outcomes

Dependency diagram for set A (for N=0) (KL-stochasticity 0) Best odaptive, disorderly Reat non-adapt (intrivately disordaly Small) (with KL-stock) Beat non-adapt (computably orderly small) (Unif MWC-stoch) Open Q Does & also hold for degrees? Remarks Other variations of this set-up have been considered

- Allow contestants to ket diff \$ on different doors (Martingale)
- · Host declares they have IX density of cons. Contestant wirs if selected doors give different density.

(intrinsic density X comportable — X)

Lenna (Justin) Diagram holdsalso

Thm [Astor 208] Degrees that contain intrinsically small sets are exactly the high or DNC ones.

Open Q Do we get some characterization for degrees that contain computably small sets?

Notations

$$\frac{\text{Def}}{g(\sigma) := \frac{1 \cdot \text{En} : \sigma(n) = (3)}{n}}$$

$$\frac{g(\sigma) := \frac{1 \cdot \text{En} : \sigma(n) = (3)}{n}}{\text{liminf}}$$

$$\frac{g(A) := \frac{1 \cdot \text{En} : \sigma(n) = (3)}{n}}{\text{limsup}}$$

$$\frac{g(A) := g(A) :+ g(A) = \overline{g}(A)}{\text{limsup}}$$

Want
$$A \subseteq W$$
, injective $g \leq \beta$ st. $g(g'(A)) > 0$
and Y increases $f \leq \beta$, $g(f'(A)) = 0$

Want $A \subseteq W$, injective $q \leq \phi$ st. $p(q^{\dagger}(A)) > 0$ and \forall increases $f \in \emptyset$, $\overline{p}(f^{-1}(A)) = 0$

Beat single + W

- of disordered DB
- · Each DB is permutation with
 - starts as increasing function
 - blocks to fill gaps

increasing function

3 gaps

Let A be gaps between increased pent

let A be the brage of inc.

Beat to, fr Nest disordered block DB structure DB2 Increasing F Increasing

To head single f

To heart to , f,

To beat n-many f's, Use n-nested (DBn)

To beat all f's, let g
be series of increasingly nested
DB's.