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Represented spaces and problems

We briefly recall the main definitions that we need.

e A represented space is a pair 2" = (X,82) such that X is a set and
84 :C NN — X is a partial surjection. For x € X, p € NN with
02 (p) = x is said to be a name of x.

o Let 2" and % be represented spaces. A relation f C X x Y is called a
partial multifunction, or problem, between 2" and . domf and
f(x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

Input: a coloring ¢ : [N]> — 2

RT3 oo
2 OQutput: an infinite c-homogeneous set H
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Represented spaces and problems

We briefly recall the main definitions that we need.

e A represented space is a pair 2" = (X,82) such that X is a set and
89 :C NN = X is a partial surjection. For x € X, p € NN with
02 (p) = x is said to be a name of x.

o Let 2" and % be represented spaces. A relation f C X x Y is called a
partial multifunction, or problem, between 2" and #'. domf and
f(x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

o Let f:C X ==Y be a partial multifunction between 2" and Z". A
function F:C NN — NN is a realizer for f (written F f) if,
intuitively, the following diagram commutes:

NN —F
2 7%
x—L 5y
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Represented spaces and problems

We briefly recall the main definitions that we need.

e A represented space is a pair 2" = (X,82) such that X is a set and
84 :C NN — X is a partial surjection. For x € X, p € NN with
02 (p) = x is said to be a name of x.

o Let 2" and % be represented spaces. A relation f C X x Y is called a
partial multifunction, or problem, between 2" and . domf and
f(x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

@ Let f:C X =37 be a partial multifunction between 2" and Z'. A
function F:C NN — NN is a realizer for f (written F - f) if for every
g € dom(fod2), it holds that 84 (F(q)) € f(82°(q)).
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Represented spaces and problems

We briefly recall the main definitions that we need.

e A represented space is a pair 2" = (X,82) such that X is a set and
84 :C NN — X is a partial surjection. For x € X, p € NN with
02 (p) = x is said to be a name of x.

o Let 2" and % be represented spaces. A relation f C X x Y is called a
partial multifunction, or problem, between 2" and . domf and
f(x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

@ Let f:C X =37 be a partial multifunction between 2" and Z'. A
function F:C NN — NN is a realizer for f (written F - f) if for every
q € dom(fody), it holds that oz (F(q)) €f(82(q)).

This perspective makes it possible to define operations on problems.
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Weihrauch reducibility

Recall: we say that H:C NN — N is a Turing functional if there is a
computable H* : N<N — N<N that approximates H.

f Weihrauch reduces to g (f <w g) if there are Turing functionals H,K
such that the functional p — K({(p,G(H(p))) F-f whenever G is a realizer
for g. Intuitively

dom(f) — H gk K(x.y) f(x)

Similarly, f strongly Weihrauch reduces to g if there are Turing functionals H,K as
above, except that K does not depend on x.

f=wegiff <wgand g <wf. Since this is an equivalence relation, we can
define the lattice W of the Weihrauch degrees of problems.
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Ramsey theorem over QQ

There are several ways to extend Ramsey theorem to the rationals. It is
important (and easy) to note that not all of them hold. E.g., n — (1)L,
holds, but it is not true that 1 — (1)3.

Consider

c(ry) = {O if eq(x) < eq(y)

1  otherwise.
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Ramsey theorem over QQ

There are several ways to extend Ramsey theorem to the rationals. It is

important (and easy) to note that not all of them hold. E.g., n — (1)L,
holds, but it is not true that 1 — (1)3.

But it holds that 7 — (X¢,7)3: see [FP17] for a reverse mathematical analysis
of theses principles.
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Ramsey theorem over QQ

There are several ways to extend Ramsey theorem to the rationals. It is

important (and easy) to note that not all of them hold. E.g., n — (1)L,
holds, but it is not true that 1 — (1)3.
For us, the following will be relevant.

@ Given a coloring ¢ : [Q]" — k, we say that |x,y[C Q is a c-shuffle if there

exists a finite partition |x,y[= U;,, H; into dense subsets such that every H;
is c-homogeneous.

Lemma

RCA( + IZg t for every n and every coloring ¢ : Q — n, there is a c-shuffle
Jx,y[, and this (clearly) implies 1 — (n)L...

Shuffle Input: a pair (k,c) such that ¢: Q — k
Output: (C,(x,y)) such that ]x,y[ is a c-shuffle with colors C.
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Ordered and additive Ramsey theorem for Q

@ Given a finite poset (P,<p) and a coloring c: [Q]> — P, we say that ¢ is
ordered if X' <x <y <y implies c(x,y) <p c(x,y).

Input: a pair ((P,<p),c) such that c: [Q]*> — P is ordered

ORTg Output: (C,(x,y)) such that ]x,y[ is c-homogeneous for C.

@ Given a finite semigroup (S,-) and a coloring ¢ : [Q]? — S, we say that c is
additive if, for every x <y <z € Q, c(x,2) = c(x,y) - c(y,2).

Input: a pair ((S,-),c) such that c: [Q]*> — S is additive

ARTo Output: (C,(x,y)) such that ]x,y[ is c-shuffle for CC S

@ Given a coloring ¢: [Q]" — k, we say that |x,y[C Q is a c-shuffle if there exists a
finite partition |x,y[= U;.,, H; into dense subsets such that every H; is
c-homogeneous.
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Ordered and additive Ramsey theorem for N

@ Given a finite poset (P,<p) and a coloring ¢ : [N]> — P, we say that c is
right-ordered if x <y <y implies c(x,y) <p c(x,y’).

Notice: we could have defined “ordered” and “right-ordered” colorings for an arbitrary linear order (X, <y). In this case, notice
that ¢ ordered implies ¢ right-ordered.

Input: a pair ((P,<p),c) such that c: [N]?> — P is ordered

ORT Output: H C N such that H is infinite c-homogeneous.

@ Given a finite semigroup (S,-) and a coloring ¢ : [N]> — S, we say that c is
additive if, for every x <y <z €N, c(x,z) = c(x,y) - c(y,2).

Input: a pair ((S,-),c) such that c: [N]?> — S is additive

ART e
N Output: H C N such that H is infinite c-homogeneous

Although ARTy seems rather boring (i.e., very trivial consequence of RT"), we remark
that it could be generalized to arbitrary limit ordinals ([She75]): namely, for every limit
8, every semigroup S with |S| < cof § and every additive ¢ : [§]> — S, there is a
c-homogeneous H unbounded in §.
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A bit of history

These principles come from the study of MSO for the structure (Q, <):
e ARTq was first proved by Shelah ([She75]) to show that MSO for
(Q, <) is decidable.

e ARTy (or rather, its generalization) was proved by Shelah ([She75])
to show decidability of MSO for countable ordinals.

o Shuffle was introduced by Carton, Colcombet and Puppis ([CCP11])
to show a more general result.

Theorem (Kolodziejczyk and Pradic [Pra20])

RCAo - ORTgq. Moreover,
RCA( I Shuffle <+ ARTy <> ARTg <> ORTy «> I):g.

Today, we will analyze their strength in the uniform setting.
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Benchmark principles

Input: a sequence e: N — NU{—1} such that N Z rane
N OQutput: n e N\ rane

We will mostly use the total continuation of Cy.

Input: any closed set of N (i.e., any e : N — NU{—1})
N Output: n & rane if there is one, any n € N otherwise

TCy was shown to be strongly related to IZS.

ECT Input: (k,f) such that f: N — k&
Output: any b € N such that Vx > b3y > x(f(x) =£(y))

Theorem ([Dav+20])
o ECT =y TC}
o RCAyF ECT ¢ X9
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Benchmark principles (cont.)

Input: a sequence p € 2N
LPO . N :
Output: 0 if p =0", 1 otherwise

We will be chiefly interested in LPO’.

y Input: a sequence (x;);en converging to x € domf
Output: an f-solution to x

An alternative formulation of LPO’ will prove to be useful.

Lemma
LPO’ = IsFinite J
where
: N
IsFinite Input: A sequence p € 2

Output: 0 if for finitely many i p(i) =0, 1 otherwise
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Relationship between LPO’ and TCx

It is easy to see that
o LPO' £w TCy by straightforward diagonalization.

@ Cy %w (LPO')*, essentially because Cy is not computed by problems with finite

codomain, hence TCy Lw (LPO')*.

Lemma

For every a,b € N and every single-valued P :C NN — NN with P <y Cy,
we have that

(TCE x (LPO")?) P <w (TC4 x (LPO")?) x P

QxP Input: a pair (e,x), where e € NN and x € domP
* Output: (z,y) such that y € P(x) and z € Q(®P¢(P(x)))

The main point of the proof is that LPO’(x) = LPO(w"x) for every w € N*, and similarly
for TCy (not really, but almost: more on this later): P is solved by a finite-mind-changes
computation, and by single-valuedness we know that TCy and LPO’ are looking at the
same solution.
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The case of Q: relationship between Shuffle and ARTq

Input: a pair (k,c) such that ¢: Q — k

Shuffle Output: (C,(x,y)) such that Jx,y[ is a c-shuffle with colors C.
ART Input: a pair ((S,-),c) such that c: [Q]> — S is additive
Q@ Qutput: (C,(x,y)) such that ]x,y[ is c-shuffle for CC §

It is immediate that Shuffle <;w ARTg

Sketch of the proof: suppose we are given ¢ : Q — k, we define f; : [Q]* — (k, ) by
setting f.(x,y) = c(x) for every x <y, and a- b = a for every a,b < k.

But it is not immediate to see whether ARTg <w Shuffle.

But notice that it is if (S,-) is a group: we fix u <v € Q and define the coloring
¢ :Ju,v[— S such that ¢(z) = c(z,v). Apply Shuffle to find ]x,y[ that is ¢-shuffle. Then
Jx,y[ is a c-shuffle as well: if ¢(w) =¢(z), notice that

c(w,z)-c(z,v) = c(w,v) = c(z,v) = c(w,2) = lg.
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Intervals and colors

Spoiler alert: Shuffle =w ARTg = TC{ x (LPO")*
It is practical to divide the problems Shuffle and ARTg into their color
part and their interval part.

Input: a pair (k,c) such that ¢: Q — k
Recall that Shuffle Output: (C,(x,y)) such that |x,y[ is a c-shuffle with colors C.

Lemma

e cShuffle =w cARTg =w (LPO')*
o iShuffle =w iARTg =w TCy

Although it is not immediately obvious that Shuffle <y cShuffle x iShuffle

(color and interval may refer to different solutions), one can combine the
proofs above to obtain the Theorem.
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cShuffle

Lemma
IsFinite™ <w cShuffle* J

Sketch of the proof: clearly, cShuffle x cShuffle <y cShuffle, hence it suffices to show
that IsFinite <w cShuffle.

Given p € domlsFinite, define ¢, : Q — 2 as follows: ¢, (%) =p(b). Then, 0 € cShuffle(c,)
if and only if p(b) = 0 for infintely many b.

For the other direction, we give a finer analysis.

Lemma

Let cShuffle, be the restriction of cShuffle to colorings with exactly n
colors. Then, cShuffle, <w (IsFinite)?~!.

Sketch of the proof: the main idea is to use one instance p¢ of IsFinite for every
non-empty C C n. We scan all the intervals I; C Q, recording with pc(s) = 0 if we need
to change inteval at step s. Since for at least one C IsFinite(pc) =0, a valid solution is a
C-minimal such C.

Giovanni Solda — Ghent Weirauch degree of ART February 21, 2023 13 / 22



iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J
Case of n=2:
s=0 i i
Iy
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J
Case of n=2:
q0
s=0 - | e(0) = {(0,a) : a # 0}
Iy
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J
Case of n=2:
40 q1
s=1 % @ @ % e(l)={(1,a) :a #0}
Iy
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J
Case of n=2:
q0 92 41
s=2 %—H%—‘i e(l)={(1,a) :a #0}
Iy
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J

Case of n=2:

s=2 % % e(2) ={(0,0),(1,0)}
I
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢y : Q — n by
c(%) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TCL! J
Case of n=2:
q0
s=3 | o] e(3)={(2,a):a#1}
I
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iIShuffle

Lemma

Let ECT,, be the restriction of ECT to colorings with exactly n colors.
Then, ECT,, <w iShuffle,.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f: N — n, we define ¢; : Q — n by
¢(37) =f(h). Then, the diameter of the shuffle gives the bound b for f.

Lemma
iShuffle, <w TC}™! J
Case of n=2:

Sketch of a sketch of the proof: we use the it instance of TCy to check if the inteval I;
contains n— (i+1) many colors. A valid answer will be given by checking the longest
chain of inclusion of intervals.

Together with known results, we thus get
ECT, =w iShuffle, =w TCQ1 and hence TCy =w iShuffle
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Shuffle: putting it all together

From the previous slides, we have
@ | | en IsFinite” =w |,y cShuffle,, so cShuffle =w (LPO’)*
o | ,enECT, =w ,eniShuffle,, so iShuffle =w TCy

Since cShuffle x iShuffle <w Shuffle, it immediately follows that
(LPO")* x TCY <w Shuffle.

Moreover, One can intertwine the proofs above to get that
Shuffle, <w (LPO’ x TCy)*'~ 1.

This suffices to show that
Shuffle =w (LPO’)* x TC},,

as we wanted.
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The case of ARTq

It is easy to see that Shuffle <w ARTg, hence (LPO')* x TC} <w ARTg.

The other direction is more complicated: the rough idea is to go back to
the case of groups via Green theory.

For a semigroup (S,-), define the Green preorders as follows:

s<gpt ifandonly if s=rorse€tS={ta :a€S} (suffix order)
s<gt ifandonlyif s=torseSt={at:acS} (prefix order)

s<pt ifandonlyif s<ptands<gt
s< gt ifand only if s<gptors<gtorscStS={ath : (a,b) € §?}

(infix order)

The associated equivalence relations are written Z, £, €, 7.

o If (S,-) is a finite semigroup, H C S an J#-class, and some a,b € H satisfy
a-b € H then, for some e € H, (H,-,e) is a group.

@ Forx,ye S, ifx<gyandxy #-equivalent, then x,y are Z-equivalent.

@ Same thing but with .Z.
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The case of ARTg (cont.)

Notice: given ¢ : [Q]* — S, the map ¢ 4 : [Q]* — _#-classes is ordered.

So, with an application of ORTg, we move to an interval Ju,v] where all
elements are in the same _¢#-class.

We apply iShuffle to ¢’ :Ju,v[— S?, where ¢/(x) = (c(u,x),c(x,v)), finding
la,b[. We claim that it is a valid solution to iARTq. Let x <y €a,b[ with
d(x)=c(y)=(l,r). Then

@ r=c(x,y)-r, sor<gc(x,y); but c(x,y) # r implies c(x,y) Zr.
@ I=1-c(x,y), so Il <z c(x,y); but c(x,y) Z r implies c(x,y) Z L.

Hence, ¢/(x) = ¢/(y) implies ¢(x,y) in the same J#-class, and we can deal with
them as in the case of groups.

So, iARTq < iShufflex ORTg.

Lemma
ORTg =w LPO* <w Cy. Hence, iARTq <w TCy. Similarly for the others. J
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More on colors

Notice that in the previous slide the argument was somewhat delicate: we
needed that iARTqg , <w iShuffle,, x ORTg in order to eliminate ORTg.
Indeed, in general, it would not hold that TCx* Cy <w TCgx x Cx.

o A Weihrauch degree is a fractal if it contains F :C NN = NN such
that for every w € N*, either [w|NdomF =0, or F[j,) =w F.
o It is a closed fractal if there is a total such F.

The elimination of xCy was related to the fact that we were working with
closed fractals: in general, this is why we choose to code instances the way
we did. E.g. Shuffle =w | ],cn Shuffle, is not even a fractal.

There would be another option: removing the set of colors from the input,
and only promising that it is finite. This gives rise to fractals instead of
closed fractals (e.g., RTY vs Ll,en RT).
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ORTy and ARTy

Spoiler alert: we have that ORTy =w ARTy =w TCj x (LPO')*.

The case for N is somewhat more complicated: if nothing else, by the way
we formulated them, it is not even clear why the principles should be
first-order.

ORT Input: ((S,-),c) such that c: [N]> = S is right-ordered
I N OQutput: ng such that there is H i.h. with |[HN[0,n0]| > 1

ART Input: ((S,-),c) such that c: [N]> = S is additive
N Qutput: ng such that there is H i.h. with |[HN[0,n0]| > 2
cORTy and cARTy are defined in the obvious way.

Easy to see that ECT, <w iORTy » by considering (?(n),C) (and
ECT, <w iARTy »» by considering (£(n),U)). Even easier to see that
IsFinite <w cORTy and IsFinite <w cARTy.
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ORTy

We deal with ORTY, the case of ARTy being similar but more complicated (i.e. it
requires some more Green theory magic).

Morally: an ORTy-solution to ¢ : [N]?> — P is given by a color p € P <p
maximal such that an infinite c-homogeneous set for p exists and an n
such that Vi <x <y, c(x,y) #pp.

If we have these two numers, we can build a solution recursively as follows:
suppose H,, is given with n; < minH,, look for the smallest m > max H,, such that
c(Hy,m) = p and there is m' > m with c¢(m,m’) =p. Let H,1 = H,U{m}.

It can be shown that p and n; can be found using (LPO")* x TCy;, and
moreover that cORTy <w (LPO’)* and iORTy <w ECT.
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Conclusions

Summary of results:
e iARTg =w iShuffle =w iARTy =w iORTy =w TCy
e cARTg =w cShuffle =w cARTy =w cORTy =w (LPO')*
e ARTg =w Shuffle =y ARTy =w ORTy =w (LPO')* x TCy
e ORTg =w LPO*
Moreover, we could have shown (see [PPS23]) that
o (N — (M)i) =wi(n — (M)ie) =w TGy
o c(n — (n)L.) =wRT}
In a way, this work can be seen as a contribution to the study of the
correspondence between combinatorial systems from reverse mathematics

and Weihrauch degrees (see [BR17] for many other results in this
direction).
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