On the Weihrauch degrees of the additive Ramsey theorems

Giovanni Soldà Ghent University giovanni.a.solda@gmail.com

> UW Logic Seminar February 21, 2023

Joint work with Arno Pauly and Pierre Pradic

Giovanni Soldà – Ghent

We briefly recall the main definitions that we need.

- A represented space is a pair $\mathscr{X} = (X, \delta_{\mathscr{X}})$ such that X is a set and $\delta_{\mathscr{X}} :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection. For $x \in X$, $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta_{\mathscr{X}}(p) = x$ is said to be a **name** of x.
- Let X and Y be represented spaces. A relation f ⊆ X × Y is called a partial multifunction, or problem, between X and Y. domf and f(x) are defined in the obvious way. We describe problems in terms of their inputs and their corresponding outputs.

$$\mathsf{RT}_2^2 \quad \begin{array}{l} \text{Input: a coloring } c : [\mathbb{N}]^2 \to 2 \\ \text{Output: an infinite } c\text{-homogeneous set} \end{array}$$

H

We briefly recall the main definitions that we need.

- A represented space is a pair $\mathscr{X} = (X, \delta_{\mathscr{X}})$ such that X is a set and $\delta_{\mathscr{X}} :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection. For $x \in X$, $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta_{\mathscr{X}}(p) = x$ is said to be a **name** of x.
- Let X and Y be represented spaces. A relation f ⊆ X × Y is called a partial multifunction, or problem, between X and Y. domf and f(x) are defined in the obvious way. We describe problems in terms of their inputs and their corresponding outputs.
- Let f :⊆ X ⇒ Y be a partial multifunction between X and Y. A function F :⊆ N^N → N^N is a realizer for f (written F⊢f) if, intuitively, the following diagram commutes:

Weirauch degree of ART

We briefly recall the main definitions that we need.

- A represented space is a pair $\mathscr{X} = (X, \delta_{\mathscr{X}})$ such that X is a set and $\delta_{\mathscr{X}} :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection. For $x \in X$, $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta_{\mathscr{X}}(p) = x$ is said to be a **name** of x.
- Let X and Y be represented spaces. A relation f ⊆ X × Y is called a partial multifunction, or problem, between X and Y. domf and f(x) are defined in the obvious way. We describe problems in terms of their inputs and their corresponding outputs.
- Let $f :\subseteq X \Longrightarrow Y$ be a partial multifunction between \mathscr{X} and \mathscr{Y} . A function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a **realizer** for f (written $F \vdash f$) if for every $q \in \operatorname{dom}(f \circ \delta_{\mathscr{X}})$, it holds that $\delta_{\mathscr{Y}}(F(q)) \in f(\delta_{\mathscr{X}}(q))$.

We briefly recall the main definitions that we need.

- A represented space is a pair $\mathscr{X} = (X, \delta_{\mathscr{X}})$ such that X is a set and $\delta_{\mathscr{X}} :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection. For $x \in X$, $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta_{\mathscr{X}}(p) = x$ is said to be a **name** of x.
- Let X and Y be represented spaces. A relation f ⊆ X × Y is called a partial multifunction, or problem, between X and Y. domf and f(x) are defined in the obvious way. We describe problems in terms of their inputs and their corresponding outputs.
- Let $f :\subseteq X \Longrightarrow Y$ be a partial multifunction between \mathscr{X} and \mathscr{Y} . A function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a **realizer** for f (written $F \vdash f$) if for every $q \in \operatorname{dom}(f \circ \delta_{\mathscr{X}})$, it holds that $\delta_{\mathscr{Y}}(F(q)) \in f(\delta_{\mathscr{X}}(q))$.

This perspective makes it possible to define operations on problems.

Weihrauch reducibility

Recall: we say that $H :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a **Turing functional** if there is a computable $H^* : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ that approximates H.

f Weihrauch reduces to g ($f \leq_W g$) if there are Turing functionals H, K such that the functional $p \mapsto K(\langle p, G(H(p)) \rangle \vdash f$ whenever G is a realizer for g. Intuitively

$$\operatorname{dom}(f) \xrightarrow{x} H \xrightarrow{y} g \xrightarrow{y} K \xrightarrow{K(x,y)} f(x)$$

Similarly, f strongly Weihrauch reduces to g if there are Turing functionals H, K as above, except that K does not depend on x.

 $f \equiv_W g$ if $f \leq_W g$ and $g \leq_W f$. Since this is an equivalence relation, we can define the lattice \mathbb{W} of the Weihrauch degrees of problems.

Ramsey theorem over \mathbb{Q}

There are several ways to extend Ramsey theorem to the rationals. It is important (and easy) to note that not all of them hold. E.g., $\eta \longrightarrow (\eta)^1_{<\infty}$ holds, but it is not true that $\eta \longrightarrow (\eta)^2_2$. Consider

$$c(x,y) = \begin{cases} 0 & \text{ if } e_{\mathbb{Q}}(x) < e_{\mathbb{Q}}(y) \\ 1 & \text{ otherwise.} \end{cases}$$

Ramsey theorem over \mathbb{Q}

There are several ways to extend Ramsey theorem to the rationals. It is important (and easy) to note that not all of them hold. E.g., $\eta \longrightarrow (\eta)^1_{<\infty}$ holds, but it is not true that $\eta \longrightarrow (\eta)^2_2$.

But it holds that $\eta \longrightarrow (\aleph_0, \eta)_2^2$: see [FP17] for a reverse mathematical analysis of theses principles.

Ramsey theorem over $\ensuremath{\mathbb{Q}}$

There are several ways to extend Ramsey theorem to the rationals. It is important (and easy) to note that not all of them hold. E.g., $\eta \longrightarrow (\eta)^1_{<\infty}$ holds, but it is not true that $\eta \longrightarrow (\eta)^2_2$. For us, the following will be relevant.

Given a coloring c: [Q]ⁿ → k, we say that]x,y[⊆ Q is a c-shuffle if there exists a finite partition]x,y[= ∪_{i<m}H_i into dense subsets such that every H_i is c-homogeneous.

Lemma

 $\mathsf{RCA}_0 + \mathsf{I}\Sigma_2^0 \vdash$ for every n and every coloring $c : \mathbb{Q} \to n$, there is a c-shuffle]x, y[, and this (clearly) implies $\eta \longrightarrow (\eta)_{<\infty}^1$.

Shuffle Input: a pair (k,c) such that $c: \mathbb{Q} \to k$ Output: (C,(x,y)) such that]x,y[is a *c*-shuffle with colors *C*.

Ordered and additive Ramsey theorem for $\ensuremath{\mathbb{Q}}$

Given a finite poset (P, <_P) and a coloring c : [ℚ]² → P, we say that c is ordered if x' ≤ x < y ≤ y' implies c(x, y) ≤_P c(x', y').

 $\begin{array}{ll} \mathsf{ORT}_{\mathbb{Q}} & \mbox{Input: a pair } ((P,\leq_P),c) \mbox{ such that } c: [\mathbb{Q}]^2 \to P \mbox{ is ordered} \\ & \mbox{Output: } (C,(x,y)) \mbox{ such that }]x,y[\mbox{ is } c\mbox{-homogeneous for } C. \end{array}$

• Given a finite semigroup (S, \cdot) and a coloring $c : [\mathbb{Q}]^2 \to S$, we say that c is additive if, for every $x < y < z \in \mathbb{Q}$, $c(x, z) = c(x, y) \cdot c(y, z)$.

 $\begin{array}{ll} \mathsf{ART}_{\mathbb{Q}} & \operatorname{Input: a pair} ((S,\cdot),c) \text{ such that } c: [\mathbb{Q}]^2 \to S \text{ is additive} \\ \mathsf{Output: } (C,(x,y)) \text{ such that }]x,y[\text{ is } c\text{-shuffle for } C \subseteq S \end{array}$

• Given a coloring $c : [\mathbb{Q}]^n \to k$, we say that $]x, y[\subseteq \mathbb{Q}]$ is a *c*-shuffle if there exists a finite partition $]x, y[=\bigcup_{i < m} H_i$ into dense subsets such that every H_i is *c*-homogeneous.

Ordered and additive Ramsey theorem for $\ensuremath{\mathbb{N}}$

• Given a finite poset (P, \leq_P) and a coloring $c : [\mathbb{N}]^2 \to P$, we say that c is **right-ordered** if $x < y \le y'$ implies $c(x, y) \le_P c(x, y')$.

Notice: we could have defined "ordered" and "right-ordered" colorings for an arbitrary linear order $(X, <_X)$. In this case, notice that c ordered implies c right-ordered.

ORT_N Input: a pair $((P, \leq_P), c)$ such that $c : [\mathbb{N}]^2 \to P$ is ordered Output: $H \subseteq \mathbb{N}$ such that H is infinite c-homogeneous.

Given a finite semigroup (S, ·) and a coloring c : [N]² → S, we say that c is additive if, for every x < y < z ∈ N, c(x,z) = c(x,y) · c(y,z).

 $\begin{array}{ll} \mathsf{ART}_{\mathbb{N}} & \text{Input: a pair } ((S,\cdot),c) \text{ such that } c: [\mathbb{N}]^2 \to S \text{ is additive} \\ \mathsf{Output: } H \subseteq \mathbb{N} \text{ such that } H \text{ is infinite } c\text{-homogeneous} \end{array}$

Although $ART_{\mathbb{N}}$ seems rather boring (i.e., very trivial consequence of RT^n), we remark that it could be generalized to arbitrary limit ordinals ([She75]): namely, for every limit δ , every semigroup S with $|S| < \operatorname{cof} \delta$ and every additive $c : [\delta]^2 \to S$, there is a c-homogeneous H unbounded in δ .

Giovanni Soldà – Ghent

A bit of history

These principles come from the study of MSO for the structure $(\mathbb{Q}, <)$:

- $\mathsf{ART}_{\mathbb{Q}}$ was first proved by Shelah ([She75]) to show that MSO for $(\mathbb{Q},<)$ is decidable.
- ART $_{\mathbb{N}}$ (or rather, its generalization) was proved by Shelah ([She75]) to show decidability of MSO for countable ordinals.
- Shuffle was introduced by Carton, Colcombet and Puppis ([CCP11]) to show a more general result.

 $\begin{array}{l} \mbox{Theorem (Kolodziejczyk and Pradic [Pra20])} \\ \mbox{RCA}_0 \vdash \mbox{ORT}_{\mathbb{Q}}. \ \mbox{Moreover}, \\ \mbox{RCA}_0 \vdash \mbox{Shuffle} \leftrightarrow \mbox{ART}_{\mathbb{N}} \leftrightarrow \mbox{ART}_{\mathbb{Q}} \leftrightarrow \mbox{ORT}_{\mathbb{N}} \leftrightarrow \mbox{I}\Sigma_2^0. \end{array}$

Today, we will analyze their strength in the uniform setting.

Benchmark principles

 $\begin{array}{ll} \mathsf{C}_{\mathbb{N}} & \text{Input: a sequence } e: \mathbb{N} \to \mathbb{N} \cup \{-1\} \text{ such that } \mathbb{N} \not\subseteq \operatorname{ran} e \\ & \text{Output: } n \in \mathbb{N} \setminus \operatorname{ran} e \end{array}$

We will mostly use the **total continuation** of $C_{\mathbb{N}}$.

TC_N Input: **any** closed set of \mathbb{N} (i.e., any $e : \mathbb{N} \to \mathbb{N} \cup \{-1\}$) Output: $n \notin \operatorname{ran} e$ if there is one, any $n \in \mathbb{N}$ otherwise

 $\mathsf{TC}_{\mathbb{N}}$ was shown to be strongly related to $\mathsf{I}\Sigma_2^0$.

ECT Input: (k,f) such that $f : \mathbb{N} \to k$ Output: any $b \in \mathbb{N}$ such that $\forall x > b \exists y > x(f(x) = f(y))$

Theorem ([Dav+20])

- ECT $\equiv_W \mathsf{TC}^*_{\mathbb{N}}$
- $\mathsf{RCA}_0 \vdash \mathsf{ECT} \leftrightarrow \mathsf{I}\Sigma_2^0$

Benchmark principles (cont.)

LPO Input: a sequence $p \in 2^{\mathbb{N}}$ Output: 0 if $p = 0^{\mathbb{N}}$, 1 otherwise

We will be chiefly interested in LPO'.

f' Input: a sequence $(x_i)_{i \in \mathbb{N}}$ converging to $x \in \text{dom} f$ Output: an f-solution to x

An alternative formulation of LPO' will prove to be useful.

Lemma

 $\mathsf{LPO}' \equiv_{sW} \mathsf{IsFinite}$

where

IsFinite Input: A sequence
$$p \in 2^{\mathbb{N}}$$

Output: 0 if for finitely many $i \ p(i) = 0$, 1 otherwise

Giovanni Soldà – Ghent

Relationship between LPO' and $\mathsf{TC}_\mathbb{N}$

It is easy to see that

- LPO' $\not\leq_W TC^*_{\mathbb{N}}$ by straightforward diagonalization.
- $C_{\mathbb{N}} \not\leq_W (LPO')^*$, essentially because $C_{\mathbb{N}}$ is not computed by problems with finite codomain, hence $TC_{\mathbb{N}} \not\leq_W (LPO')^*$.

Lemma

For every $a, b \in \mathbb{N}$ and every single-valued $\mathsf{P} :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ with $\mathsf{P} \leq_W \mathsf{C}_{\mathbb{N}}$, we have that

$$(\mathsf{TC}^a_{\mathbb{N}} \times (\mathsf{LPO}')^b) \star \mathsf{P} \leq_{\mathrm{W}} (\mathsf{TC}^a_{\mathbb{N}} \times (\mathsf{LPO}')^b) \times \mathsf{P}$$

The main point of the proof is that LPO'(x) = LPO($w^{\sim}x$) for every $w \in \mathbb{N}^*$, and similarly for TC_N (not really, but almost: more on this later): P is solved by a finite-mind-changes computation, and by single-valuedness we know that TC_N and LPO' are looking at the same solution.

Giovanni Soldà – Ghent

The case of \mathbb{Q} : relationship between Shuffle and $\mathsf{ART}_{\mathbb{Q}}$

Shuffle Input: a pair (k,c) such that $c: \mathbb{Q} \to k$ Output: (C,(x,y)) such that [x,y] is a *c*-shuffle with colors *C*.

 $\begin{array}{ll} \mathsf{ART}_{\mathbb{Q}} & \text{Input: a pair } ((S,\cdot),c) \text{ such that } c: [\mathbb{Q}]^2 \to S \text{ is additive} \\ \mathsf{Output: } (C,(x,y)) \text{ such that }]x,y[\text{ is } c\text{-shuffle for } C \subseteq S \end{array}$

It is immediate that $\mathsf{Shuffle} \leq_{sW} \mathsf{ART}_{\mathbb{Q}}$

Sketch of the proof: suppose we are given $c : \mathbb{Q} \to k$, we define $f_c : [\mathbb{Q}]^2 \to (k, \cdot_k)$ by setting $f_c(x, y) = c(x)$ for every x < y, and $a \cdot_k b = a$ for every a, b < k.

But it is **not** immediate to see whether $\mathsf{ART}_{\mathbb{Q}} \leq_W \mathsf{Shuffle}.$

But notice that it is if (S, \cdot) is a **group**: we fix $u < v \in \mathbb{Q}$ and define the coloring $\tilde{c}:]u, v[\to S$ such that $\tilde{c}(z) = c(z, v)$. Apply Shuffle to find]x, y[that is \tilde{c} -shuffle. Then]x, y[is a *c*-shuffle as well: if $\tilde{c}(w) = \tilde{c}(z)$, notice that

$$c(w,z) \cdot c(z,v) = c(w,v) = c(z,v) \rightarrow c(w,z) = 1_S.$$

Intervals and colors

 $\mathsf{Spoiler \ alert: \ Shuffle} \equiv_W \mathsf{ART}_\mathbb{Q} \equiv \mathsf{TC}^*_\mathbb{N} \times (\mathsf{LPO}')^*$

It is practical to divide the problems Shuffle and $ART_{\mathbb{Q}}$ into their **color** part and their **interval part**.

Lemma

•
$$\mathsf{cShuffle} \equiv_{\mathrm{W}} \mathsf{cART}_{\mathbb{Q}} \equiv_{\mathrm{W}} (\mathsf{LPO}')^*$$

•
$$\mathsf{iShuffle} \equiv_{\mathrm{W}} \mathsf{iART}_{\mathbb{Q}} \equiv_{\mathrm{W}} \mathsf{TC}^*_{\mathbb{N}}$$

Although it is not immediately obvious that Shuffle \leq_W cShuffle \times iShuffle (color and interval may refer to different solutions), one can combine the proofs above to obtain the Theorem.

cShuffle

Lemma

 $\mathsf{IsFinite}^* \leq_W \mathsf{cShuffle}^*$

Sketch of the proof: clearly, cShuffle \times cShuffle \leq_W cShuffle, hence it suffices to show that IsFinite \leq_W cShuffle.

Given $p \in \text{dom}$ IsFinite, define $c_p : \mathbb{Q} \to 2$ as follows: $c_p \left(\frac{a}{b}\right) = p(b)$. Then, $0 \in \text{cShuffle}(c_p)$ if and only if p(b) = 0 for infinitely many b.

For the other direction, we give a finer analysis.

Lemma

Let $cShuffle_n$ be the restriction of cShuffle to colorings with exactly *n* colors. Then, $cShuffle_n \leq_W (IsFinite)^{2^n-1}$.

Sketch of the proof: the main idea is to use one instance p_C of IsFinite for every non-empty $C \subseteq n$. We scan all the intervals $I_j \subset \mathbb{Q}$, recording with $p_C(s) = 0$ if we need to change interval at step s. Since for at least one C IsFinite $(p_C) = 0$, a valid solution is a \subseteq -minimal such C.

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

$$s = 2$$
 $e(2) = \{\langle 0, 0 \rangle, \langle 1, 0 \rangle\}$
 I_1

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$

Lemma

Let ECT_n be the restriction of ECT to colorings with exactly *n* colors. Then, $ECT_n \leq_W iShuffle_n$.

Sketch of the proof: we use the fact that there is a computable order-preserving bijection between the dyadic numbers and \mathbb{Q} . Given $f: \mathbb{N} \to n$, we define $c_f: \mathbb{Q} \to n$ by $c\left(\frac{a}{2^h}\right) = f(h)$. Then, the diameter of the shuffle gives the bound b for f.

Lemma

 $\mathsf{iShuffle}_n \leq_{\mathrm{W}} \mathsf{TC}^{n-1}_{\mathbb{N}}$

Case of n = 2:

Sketch of a sketch of the proof: we use the i^{th} instance of $TC_{\mathbb{N}}$ to check if the inteval I_j contains n - (i+1) many colors. A valid answer will be given by checking the longest chain of inclusion of intervals.

Together with known results, we thus get

$$\mathsf{ECT}_n \equiv_{\mathbf{W}} \mathsf{iShuffle}_n \equiv_{\mathbf{W}} \mathsf{TC}_{\mathbb{N}}^{n-1}$$
 and hence $\mathsf{TC}_{\mathbb{N}}^* \equiv_{\mathbf{W}} \mathsf{iShuffle}$

Shuffle: putting it all together

From the previous slides, we have

- $\bigsqcup_{n \in \mathbb{N}} \mathsf{IsFinite}^n \equiv_W \bigsqcup_{n \in \mathbb{N}} \mathsf{cShuffle}_n$, so $\mathsf{cShuffle} \equiv_W (\mathsf{LPO}')^*$
- $\bigsqcup_{n \in \mathbb{N}} \mathsf{ECT}_n \equiv_W \bigsqcup_{n \in \mathbb{N}} \mathsf{iShuffle}_n$, so $\mathsf{iShuffle} \equiv_W \mathsf{TC}^*_{\mathbb{N}}$

Since cShuffle \times iShuffle \leq_W Shuffle, it immediately follows that $(\mathsf{LPO}')^*\times\mathsf{TC}^*_{\mathbb{N}}\leq_W$ Shuffle.

Moreover, One can intertwine the proofs above to get that $Shuffle_n \leq_W (LPO' \times TC_N)^{2^n-1}$.

This suffices to show that

 $\mathsf{Shuffle} \equiv_W (\mathsf{LPO}')^* \times \mathsf{TC}^*_{\mathbb{N}},$

as we wanted.

The case of $\mathsf{ART}_\mathbb{Q}$

It is easy to see that $Shuffle \leq_W ART_Q$, hence $(LPO')^* \times TC_N^* \leq_W ART_Q$. The other direction is more complicated: the rough idea is to go back to

the case of groups via Green theory.

For a semigroup (S, \cdot) , define the **Green preorders** as follows:

•	$s \leq_{\mathscr{R}} t$	if and only if	$s = t$ or $s \in tS = \{ta : a \in S\}$	(suffix order)
•	$s \leq_{\mathscr{L}} t$	if and only if	$s = t$ or $s \in St = \{at : a \in S\}$	(prefix order)
•	$s \leq_{\mathscr{H}} t$	if and only if	$s \leq_{\mathscr{R}} t$ and $s \leq_{\mathscr{L}} t$	
•	$s \leq \mathcal{J} t$	if and only if	$s \leq_{\mathscr{R}} t$ or $s \leq_{\mathscr{L}} t$ or $s \in StS = \{atb\}$	$: (a,b) \in S^2 \}$
	, en			(infix order)

The associated equivalence relations are written $\mathscr{R},\,\mathscr{L},\,\mathscr{H},\,\mathcal{J}$.

- If (S, \cdot) is a finite semigroup, $H \subseteq S$ an \mathscr{H} -class, and some $a, b \in H$ satisfy $a \cdot b \in H$ then, for some $e \in H$, (H, \cdot, e) is a group.
- For $x, y \in S$, if $x \leq_{\mathscr{R}} y$ and $x, y \not J$ -equivalent, then x, y are \mathscr{R} -equivalent.
- Same thing but with \mathscr{L} .

The case of $ART_{\mathbb{Q}}$ (cont.)

Notice: given $c: [\mathbb{Q}]^2 \to S$, the map $c_{\mathscr{J}}: [\mathbb{Q}]^2 \to \mathscr{J}$ -classes is ordered.

So, with an application of ORT_Q , we move to an interval]u,v[where all elements are in the same \mathscr{J} -class.

We apply iShuffle to $c':]u, v[\to S^2$, where c'(x) = (c(u,x), c(x,v)), finding]a, b[. We claim that it is a valid solution to $iART_{\mathbb{Q}}$. Let $x < y \in]a, b[$ with c'(x) = c'(y) = (l, r). Then

•
$$r = c(x,y) \cdot r$$
, so $r \leq_{\mathscr{R}} c(x,y)$; but $c(x,y) \not J r$ implies $c(x,y) \mathscr{R} r$.

•
$$l = l \cdot c(x, y)$$
, so $l \leq_{\mathscr{R}} c(x, y)$; but $c(x, y) \not \subseteq r$ implies $c(x, y) \not \subseteq l$.

Hence, c'(x) = c'(y) implies c(x, y) in the same \mathscr{H} -class, and we can deal with them as in the case of groups.

 $\mathsf{So,} \ \mathsf{iART}_\mathbb{Q} \leq \mathsf{iShuffle} \star \mathsf{ORT}_\mathbb{Q}.$

Lemma

 $ORT_{\mathbb{Q}} \equiv_W LPO^* \leq_W C_{\mathbb{N}}$. Hence, $iART_{\mathbb{Q}} \leq_W TC_{\mathbb{N}}^*$. Similarly for the others.

More on colors

Notice that in the previous slide the argument was somewhat delicate: we needed that $iART_{\mathbb{Q},n} \leq_W iShuffle_{n^2} \star ORT_{\mathbb{Q}}$ in order to eliminate $ORT_{\mathbb{Q}}$. Indeed, in general, it would not hold that $TC_{\mathbb{N}}^* \star C_{\mathbb{N}} \leq_W TC_{\mathbb{N}}^* \times C_{\mathbb{N}}$.

- A Weihrauch degree is a **fractal** if it contains $F :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ such that for every $w \in \mathbb{N}^*$, either $[w] \cap \operatorname{dom} F = \emptyset$, or $F \upharpoonright_{[w]} \equiv_{W} F$.
- It is a closed fractal if there is a total such F.

The elimination of $\star C_{\mathbb{N}}$ was related to the fact that we were working with closed fractals: in general, this is why we choose to code instances the way we did. E.g. Shuffle $\equiv_W \bigsqcup_{n \in \mathbb{N}}$ Shuffle_n is not even a fractal.

There would be another option: removing the set of colors from the input, and only promising that it is finite. This gives rise to fractals instead of closed fractals (e.g., $RT_{\mathbb{N}}^{1}$ vs $\bigsqcup_{n \in \mathbb{N}} RT_{n}^{1}$).

$\mathsf{ORT}_\mathbb{N}$ and $\mathsf{ART}_\mathbb{N}$

 ${\sf Spoiler \ alert: \ we \ have \ that \ } {\sf ORT}_{\mathbb N} \equiv_W {\sf ART}_{\mathbb N} \equiv_W {\sf TC}^*_{\mathbb N} \times ({\sf LPO'})^*.$

The case for \mathbb{N} is somewhat more complicated: if nothing else, by the way we formulated them, it is not even clear why the principles should be first-order.

 $\begin{array}{ll} \mathsf{iORT}_{\mathbb{N}} & \mbox{Input: } ((S,\cdot),c) \mbox{ such that } c: [\mathbb{N}]^2 \to S \mbox{ is right-ordered} \\ & \mbox{Output: } n_0 \mbox{ such that there is } H \mbox{ i.h. with } |H \cap [0,n_0]| \geq 1 \end{array}$

 $\begin{array}{ll} \mathsf{iART}_{\mathbb{N}} & \operatorname{Input:} \ ((S,\cdot),c) \text{ such that } c: [\mathbb{N}]^2 \to S \text{ is additive} \\ & \operatorname{Output:} \ n_0 \text{ such that there is } H \text{ i.h. with } |H \cap [0,n_0]| \geq 2 \end{array}$

 $\mathsf{cORT}_{\mathbb{N}}$ and $\mathsf{cART}_{\mathbb{N}}$ are defined in the obvious way.

Easy to see that $ECT_n \leq_W iORT_{\mathbb{N},2^n}$ by considering $(\mathscr{P}(n),\subseteq)$ (and $ECT_n \leq_W iART_{\mathbb{N},2^n}$ by considering $(\mathscr{P}(n),\cup)$). Even easier to see that IsFinite $\leq_W cORT_{\mathbb{N}}$ and IsFinite $\leq_W cART_{\mathbb{N}}$.

$\mathsf{ORT}_\mathbb{N}$

We deal with $ORT_{\mathbb{N}}$, the case of $ART_{\mathbb{N}}$ being similar but more complicated (i.e. it requires some more Green theory magic).

Morally: an ORT_N-solution to $c : [\mathbb{N}]^2 \to P$ is given by a color $p \in P \leq_P$ maximal such that an infinite *c*-homogeneous set for *p* exists and an n_1 such that $\forall n_1 < x < y$, $c(x, y) \neq_P p$.

If we have these two numers, we can build a solution recursively as follows: suppose H_n is given with $n_1 < \min H_n$, look for the smallest $m > \max H_n$ such that $c(H_n,m) = p$ and there is m' > m with c(m,m') = p. Let $H_{n+1} = H_n \cup \{m\}$.

It can be shown that p and n_1 can be found using $(LPO')^* \times TC_{\mathbb{N}}^*$, and moreover that $cORT_{\mathbb{N}} \leq_W (LPO')^*$ and $iORT_{\mathbb{N}} \leq_W ECT$.

Conclusions

Summary of results:

• $\mathsf{iART}_{\mathbb{Q}} \equiv_W \mathsf{iShuffle} \equiv_W \mathsf{iART}_{\mathbb{N}} \equiv_W \mathsf{iORT}_{\mathbb{N}} \equiv_W \mathsf{TC}_{\mathbb{N}}^*$

•
$$\mathsf{cART}_{\mathbb{Q}} \equiv_{W} \mathsf{cShuffle} \equiv_{W} \mathsf{cART}_{\mathbb{N}} \equiv_{W} \mathsf{cORT}_{\mathbb{N}} \equiv_{W} (\mathsf{LPO}')^{*}$$

• $\mathsf{ART}_{\mathbb{Q}} \equiv_W \mathsf{Shuffle} \equiv_W \mathsf{ART}_{\mathbb{N}} \equiv_W \mathsf{ORT}_{\mathbb{N}} \equiv_W (\mathsf{LPO}')^* \times \mathsf{TC}_{\mathbb{N}}$

•
$$ORT_{\mathbb{Q}} \equiv_W LPO^*$$

Moreover, we could have shown (see [PPS23]) that

•
$$(\eta \longrightarrow (\eta)^1_{<\infty}) \equiv_W i(\eta \longrightarrow (\eta)^1_{<\infty}) \equiv_W TC^*_{\mathbb{N}}$$

• $c(\eta \longrightarrow (\eta)^1_{<\infty}) \equiv_W RT^1_+$

In a way, this work can be seen as a contribution to the study of the correspondence between combinatorial systems from reverse mathematics and Weihrauch degrees (see [BR17] for many other results in this direction).

References

Vasco Brattka and Tahina Rakotoniaina. "On the uniform computational content of Ramsey's theorem". In: *The Journal of Symbolic Logic* 82.4 (Dec. 2017), pp. 1278–1316. DOI: 10.1017/jsl.2017.43. URL: https://doi.org/10.1017/jsl.2017.43.

Caleb Davis et al. "Combinatorial principles equivalent to weak induction". In: Comput. 9.3-4 (2020), pp. 219–229. DOI: 10.3233/COM-180244.

Pierre Pradic. "Some proof-theoretical approaches toMonadic Second-Order logic". PhD thesis. École Normale Supérieure de Lyon, 2020.

Saharon Shelah. "The monadic theory of order". In: Ann. of Math. (2) 102.3 (1975), pp. 379–419. ${\rm ISSN:}$ 0003-486X.

Thank you!

Weirauch degree of ART