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Represented spaces and problems

We briefly recall the main definitions that we need.

A represented space is a pair X = (X,δX ) such that X is a set and
δX :⊆ NN→ X is a partial surjection. For x ∈ X, p ∈ NN with
δX (p) = x is said to be a name of x.

Let X and Y be represented spaces. A relation f ⊆ X×Y is called a
partial multifunction, or problem, between X and Y . dom f and
f (x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

RT2
2

Input: a coloring c : [N]2→ 2
Output: an infinite c-homogeneous set H
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Represented spaces and problems

We briefly recall the main definitions that we need.

A represented space is a pair X = (X,δX ) such that X is a set and
δX :⊆ NN→ X is a partial surjection. For x ∈ X, p ∈ NN with
δX (p) = x is said to be a name of x.
Let X and Y be represented spaces. A relation f ⊆ X×Y is called a
partial multifunction, or problem, between X and Y . dom f and
f (x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.
Let f :⊆ X⇒ Y be a partial multifunction between X and Y . A
function F :⊆ NN→ NN is a realizer for f (written F ` f ) if,
intuitively, the following diagram commutes:

NN NN

X Y
f

δX δY

F
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Represented spaces and problems

We briefly recall the main definitions that we need.

A represented space is a pair X = (X,δX ) such that X is a set and
δX :⊆ NN→ X is a partial surjection. For x ∈ X, p ∈ NN with
δX (p) = x is said to be a name of x.

Let X and Y be represented spaces. A relation f ⊆ X×Y is called a
partial multifunction, or problem, between X and Y . dom f and
f (x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

Let f :⊆ X⇒ Y be a partial multifunction between X and Y . A
function F :⊆ NN→ NN is a realizer for f (written F ` f ) if for every
q ∈ dom(f ◦δX ), it holds that δY (F(q)) ∈ f (δX (q)).
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Represented spaces and problems

We briefly recall the main definitions that we need.

A represented space is a pair X = (X,δX ) such that X is a set and
δX :⊆ NN→ X is a partial surjection. For x ∈ X, p ∈ NN with
δX (p) = x is said to be a name of x.

Let X and Y be represented spaces. A relation f ⊆ X×Y is called a
partial multifunction, or problem, between X and Y . dom f and
f (x) are defined in the obvious way. We describe problems in terms of
their inputs and their corresponding outputs.

Let f :⊆ X⇒ Y be a partial multifunction between X and Y . A
function F :⊆ NN→ NN is a realizer for f (written F ` f ) if for every
q ∈ dom(f ◦δX ), it holds that δY (F(q)) ∈ f (δX (q)).

This perspective makes it possible to define operations on problems.
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Weihrauch reducibility

Recall: we say that H :⊆ NN→ NN is a Turing functional if there is a
computable H∗ : N<N→ N<N that approximates H.
f Weihrauch reduces to g (f ≤W g) if there are Turing functionals H,K
such that the functional p 7→ K(〈p,G(H(p))〉 ` f whenever G is a realizer
for g. Intuitively

dom(f ) H g K f (x)x y K(x,y)

Similarly, f strongly Weihrauch reduces to g if there are Turing functionals H,K as
above, except that K does not depend on x.

f ≡W g if f ≤W g and g≤W f . Since this is an equivalence relation, we can
define the lattice W of the Weihrauch degrees of problems.
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Ramsey theorem over Q

There are several ways to extend Ramsey theorem to the rationals. It is
important (and easy) to note that not all of them hold. E.g., η −→ (η)1

<∞

holds, but it is not true that η −→ (η)2
2.

Consider

c(x,y) =

{
0 if eQ(x)< eQ(y)
1 otherwise.
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Ramsey theorem over Q

There are several ways to extend Ramsey theorem to the rationals. It is
important (and easy) to note that not all of them hold. E.g., η −→ (η)1

<∞

holds, but it is not true that η −→ (η)2
2.

But it holds that η −→ (ℵ0,η)2
2: see [FP17] for a reverse mathematical analysis

of theses principles.
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Ramsey theorem over Q

There are several ways to extend Ramsey theorem to the rationals. It is
important (and easy) to note that not all of them hold. E.g., η −→ (η)1

<∞

holds, but it is not true that η −→ (η)2
2.

For us, the following will be relevant.

Given a coloring c : [Q]n→ k, we say that ]x,y[⊆Q is a c-shuffle if there
exists a finite partition ]x,y[=

⋃
i<m Hi into dense subsets such that every Hi

is c-homogeneous.

Lemma

RCA0 + IΣ0
2 ` for every n and every coloring c : Q→ n, there is a c-shuffle

]x,y[, and this (clearly) implies η −→ (η)1
<∞.

Shuffle
Input: a pair (k,c) such that c : Q→ k
Output: (C,(x,y)) such that ]x,y[ is a c-shuffle with colors C.
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Ordered and additive Ramsey theorem for Q

Given a finite poset (P,<P) and a coloring c : [Q]2→ P, we say that c is
ordered if x′ ≤ x < y≤ y′ implies c(x,y)≤P c(x′,y′).

ORTQ
Input: a pair ((P,≤P),c) such that c : [Q]2→ P is ordered
Output: (C,(x,y)) such that ]x,y[ is c-homogeneous for C.

Given a finite semigroup (S, ·) and a coloring c : [Q]2→ S, we say that c is
additive if, for every x < y < z ∈Q, c(x,z) = c(x,y) · c(y,z).

ARTQ
Input: a pair ((S, ·),c) such that c : [Q]2→ S is additive
Output: (C,(x,y)) such that ]x,y[ is c-shuffle for C ⊆ S

Given a coloring c : [Q]n→ k, we say that ]x,y[⊆Q is a c-shuffle if there exists a
finite partition ]x,y[=

⋃
i<m Hi into dense subsets such that every Hi is

c-homogeneous.
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Ordered and additive Ramsey theorem for N

Given a finite poset (P,<P) and a coloring c : [N]2→ P, we say that c is
right-ordered if x < y≤ y′ implies c(x,y)≤P c(x,y′).

Notice: we could have defined “ordered” and “right-ordered” colorings for an arbitrary linear order (X,<X ). In this case, notice
that c ordered implies c right-ordered.

ORTN
Input: a pair ((P,≤P),c) such that c : [N]2→ P is ordered
Output: H ⊆ N such that H is infinite c-homogeneous.

Given a finite semigroup (S, ·) and a coloring c : [N]2→ S, we say that c is
additive if, for every x < y < z ∈ N, c(x,z) = c(x,y) · c(y,z).

ARTN
Input: a pair ((S, ·),c) such that c : [N]2→ S is additive
Output: H ⊆ N such that H is infinite c-homogeneous

Although ARTN seems rather boring (i.e., very trivial consequence of RTn), we remark
that it could be generalized to arbitrary limit ordinals ([She75]): namely, for every limit
δ , every semigroup S with |S|< cofδ and every additive c : [δ ]2→ S, there is a
c-homogeneous H unbounded in δ .
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A bit of history

These principles come from the study of MSO for the structure (Q,<):

ARTQ was first proved by Shelah ([She75]) to show that MSO for
(Q,<) is decidable.

ARTN (or rather, its generalization) was proved by Shelah ([She75])
to show decidability of MSO for countable ordinals.

Shuffle was introduced by Carton, Colcombet and Puppis ([CCP11])
to show a more general result.

Theorem (Kolodziejczyk and Pradic [Pra20])

RCA0 ` ORTQ. Moreover,
RCA0 ` Shuffle↔ ARTN↔ ARTQ↔ ORTN↔ IΣ0

2.

Today, we will analyze their strength in the uniform setting.
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Benchmark principles

CN
Input: a sequence e : N→ N∪{−1} such that N 6⊆ rane
Output: n ∈ N\ rane

We will mostly use the total continuation of CN.

TCN
Input: any closed set of N (i.e., any e : N→ N∪{−1})
Output: n 6∈ rane if there is one, any n ∈ N otherwise

TCN was shown to be strongly related to IΣ0
2.

ECT
Input: (k, f ) such that f : N→ k
Output: any b ∈ N such that ∀x > b∃y > x(f (x) = f (y))

Theorem ([Dav+20])

ECT≡W TC∗N

RCA0 ` ECT↔ IΣ0
2
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Benchmark principles (cont.)

LPO
Input: a sequence p ∈ 2N

Output: 0 if p = 0N, 1 otherwise

We will be chiefly interested in LPO′.

f ′
Input: a sequence (xi)i∈N converging to x ∈ dom f
Output: an f -solution to x

An alternative formulation of LPO′ will prove to be useful.

Lemma

LPO′ ≡sW IsFinite

where

IsFinite
Input: A sequence p ∈ 2N

Output: 0 if for finitely many i p(i) = 0, 1 otherwise
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Relationship between LPO′ and TCN

It is easy to see that

LPO′ 6≤W TC∗N by straightforward diagonalization.

CN 6≤W (LPO′)∗, essentially because CN is not computed by problems with finite

codomain, hence TCN 6≤W (LPO′)∗.

Lemma

For every a,b ∈ N and every single-valued P :⊆ NN→ NN with P≤W CN,
we have that

(TCa
N× (LPO′)b)?P≤W (TCa

N× (LPO′)b)×P

Q?P
Input: a pair (e,x), where e ∈ NN and x ∈ domP
Output: (z,y) such that y ∈ P(x) and z ∈Q(Φe(P(x)))

The main point of the proof is that LPO′(x) = LPO(wax) for every w ∈ N∗, and similarly
for TCN (not really, but almost: more on this later): P is solved by a finite-mind-changes
computation, and by single-valuedness we know that TCN and LPO′ are looking at the
same solution.
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The case of Q: relationship between Shuffle and ARTQ

Shuffle
Input: a pair (k,c) such that c : Q→ k
Output: (C,(x,y)) such that ]x,y[ is a c-shuffle with colors C.

ARTQ
Input: a pair ((S, ·),c) such that c : [Q]2→ S is additive
Output: (C,(x,y)) such that ]x,y[ is c-shuffle for C ⊆ S

It is immediate that Shuffle≤sW ARTQ

Sketch of the proof: suppose we are given c : Q→ k, we define fc : [Q]2→ (k, ·k) by
setting fc(x,y) = c(x) for every x < y, and a ·k b = a for every a,b < k.

But it is not immediate to see whether ARTQ ≤W Shuffle.

But notice that it is if (S, ·) is a group: we fix u < v ∈Q and define the coloring
c̃ :]u,v[→ S such that c̃(z) = c(z,v). Apply Shuffle to find ]x,y[ that is c̃-shuffle. Then
]x,y[ is a c-shuffle as well: if c̃(w) = c̃(z), notice that

c(w,z) · c(z,v) = c(w,v) = c(z,v)→ c(w,z) = 1S.
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Intervals and colors

Spoiler alert: Shuffle≡W ARTQ ≡ TC∗N× (LPO′)∗

It is practical to divide the problems Shuffle and ARTQ into their color
part and their interval part.

Recall that Shuffle
Input: a pair (k,c) such that c : Q→ k
Output: (C,(x,y)) such that ]x,y[ is a c-shuffle with colors C.

Lemma

cShuffle≡W cARTQ ≡W (LPO′)∗

iShuffle≡W iARTQ ≡W TC∗N

Although it is not immediately obvious that Shuffle≤W cShuffle× iShuffle
(color and interval may refer to different solutions), one can combine the
proofs above to obtain the Theorem.
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cShuffle

Lemma

IsFinite∗ ≤W cShuffle∗

Sketch of the proof: clearly, cShuffle× cShuffle≤W cShuffle, hence it suffices to show
that IsFinite≤W cShuffle.
Given p ∈ dom IsFinite, define cp : Q→ 2 as follows: cp

( a
b
)
= p(b). Then, 0 ∈ cShuffle(cp)

if and only if p(b) = 0 for infintely many b.

For the other direction, we give a finer analysis.

Lemma

Let cShufflen be the restriction of cShuffle to colorings with exactly n
colors. Then, cShufflen ≤W (IsFinite)2n−1.

Sketch of the proof: the main idea is to use one instance pC of IsFinite for every
non-empty C ⊆ n. We scan all the intervals Ij ⊂Q, recording with pC(s) = 0 if we need
to change inteval at step s. Since for at least one C IsFinite(pC) = 0, a valid solution is a
⊆-minimal such C.
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 0
I0
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 0
I0

e(0) = {〈0,a〉 : a 6= 0}

q0
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 1
I0

e(1) = {〈1,a〉 : a 6= 0}

q0 q1
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 2
I0

e(1) = {〈1,a〉 : a 6= 0}

q0 q1q2
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 2
I1

e(2) = {〈0,0〉,〈1,0〉}
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:

s = 3
I1

e(3) = {〈2,a〉 : a 6= 1}

q0
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iShuffle

Lemma

Let ECTn be the restriction of ECT to colorings with exactly n colors.
Then, ECTn ≤W iShufflen.

Sketch of the proof: we use the fact that there is a computable order-preserving
bijection between the dyadic numbers and Q. Given f : N→ n, we define cf : Q→ n by
c
( a

2h

)
= f (h). Then, the diameter of the shuffle gives the bound b for f .

Lemma

iShufflen ≤W TCn−1
N

Case of n = 2:
Sketch of a sketch of the proof: we use the ith instance of TCN to check if the inteval Ij
contains n− (i+1) many colors. A valid answer will be given by checking the longest
chain of inclusion of intervals.

Together with known results, we thus get

ECTn ≡W iShufflen ≡W TCn−1
N and hence TC∗N ≡W iShuffle
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Shuffle: putting it all together

From the previous slides, we have⊔
n∈N IsFiniten ≡W

⊔
n∈N cShufflen, so cShuffle≡W (LPO′)∗⊔

n∈N ECTn ≡W
⊔

n∈N iShufflen, so iShuffle≡W TC∗N

Since cShuffle× iShuffle≤W Shuffle, it immediately follows that
(LPO′)∗×TC∗N ≤W Shuffle.

Moreover, One can intertwine the proofs above to get that
Shufflen ≤W (LPO′×TCN)

2n−1.

This suffices to show that

Shuffle≡W (LPO′)∗×TC∗N,

as we wanted.
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The case of ARTQ

It is easy to see that Shuffle≤W ARTQ, hence (LPO′)∗×TC∗N ≤W ARTQ.

The other direction is more complicated: the rough idea is to go back to
the case of groups via Green theory.

For a semigroup (S, ·), define the Green preorders as follows:

• s≤R t if and only if s = t or s ∈ tS = {ta : a ∈ S} (suffix order)

• s≤L t if and only if s = t or s ∈ St = {at : a ∈ S} (prefix order)

• s≤H t if and only if s≤R t and s≤L t
• s≤J t if and only if s≤R t or s≤L t or s ∈ StS = {atb : (a,b) ∈ S2}

(infix order)

The associated equivalence relations are written R, L , H , J .

If (S, ·) is a finite semigroup, H ⊆ S an H -class, and some a,b ∈ H satisfy
a ·b ∈ H then, for some e ∈ H, (H, ·,e) is a group.

For x,y ∈ S, if x≤R y and x,y J -equivalent, then x,y are R-equivalent.

Same thing but with L .
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The case of ARTQ (cont.)

Notice: given c : [Q]2→ S, the map cJ : [Q]2→J -classes is ordered.

So, with an application of ORTQ, we move to an interval ]u,v[ where all
elements are in the same J -class.

We apply iShuffle to c′ :]u,v[→ S2, where c′(x) = (c(u,x),c(x,v)), finding
]a,b[. We claim that it is a valid solution to iARTQ. Let x < y ∈]a,b[ with
c′(x) = c′(y) = (l,r). Then

r = c(x,y) · r, so r ≤R c(x,y); but c(x,y) J r implies c(x,y) R r.

l = l · c(x,y), so l≤R c(x,y); but c(x,y) J r implies c(x,y) L l.

Hence, c′(x) = c′(y) implies c(x,y) in the same H -class, and we can deal with
them as in the case of groups.

So, iARTQ ≤ iShuffle?ORTQ.

Lemma

ORTQ ≡W LPO∗ ≤W CN. Hence, iARTQ ≤W TC∗N. Similarly for the others.
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More on colors

Notice that in the previous slide the argument was somewhat delicate: we
needed that iARTQ,n ≤W iShufflen2 ?ORTQ in order to eliminate ORTQ.
Indeed, in general, it would not hold that TC∗N ?CN ≤W TC∗N×CN.

A Weihrauch degree is a fractal if it contains F :⊆ NN⇒ NN such
that for every w ∈ N∗, either [w]∩domF = /0, or F�[w] ≡W F.

It is a closed fractal if there is a total such F.

The elimination of ?CN was related to the fact that we were working with
closed fractals: in general, this is why we choose to code instances the way
we did. E.g. Shuffle≡W

⊔
n∈N Shufflen is not even a fractal.

There would be another option: removing the set of colors from the input,
and only promising that it is finite. This gives rise to fractals instead of
closed fractals (e.g., RT1

N vs
⊔

n∈N RT1
n).
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ORTN and ARTN

Spoiler alert: we have that ORTN ≡W ARTN ≡W TC∗N× (LPO′)∗.

The case for N is somewhat more complicated: if nothing else, by the way
we formulated them, it is not even clear why the principles should be
first-order.

iORTN
Input: ((S, ·),c) such that c : [N]2→ S is right-ordered
Output: n0 such that there is H i.h. with |H∩ [0,n0]| ≥ 1

iARTN
Input: ((S, ·),c) such that c : [N]2→ S is additive
Output: n0 such that there is H i.h. with |H∩ [0,n0]| ≥ 2

cORTN and cARTN are defined in the obvious way.

Easy to see that ECTn ≤W iORTN,2n by considering (P(n),⊆) (and
ECTn ≤W iARTN,2n by considering (P(n),∪)). Even easier to see that
IsFinite≤W cORTN and IsFinite≤W cARTN.
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ORTN

We deal with ORTN, the case of ARTN being similar but more complicated (i.e. it
requires some more Green theory magic).

Morally: an ORTN-solution to c : [N]2→ P is given by a color p ∈ P ≤P

maximal such that an infinite c-homogeneous set for p exists and an n1
such that ∀n1 < x < y, c(x,y) 6>P p.

If we have these two numers, we can build a solution recursively as follows:
suppose Hn is given with n1 < minHn, look for the smallest m > maxHn such that
c(Hn,m) = p and there is m′ > m with c(m,m′) = p. Let Hn+1 = Hn∪{m}.

It can be shown that p and n1 can be found using (LPO′)∗×TC∗N, and
moreover that cORTN ≤W (LPO′)∗ and iORTN ≤W ECT.
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Conclusions

Summary of results:

iARTQ ≡W iShuffle≡W iARTN ≡W iORTN ≡W TC∗N

cARTQ ≡W cShuffle≡W cARTN ≡W cORTN ≡W (LPO′)∗

ARTQ ≡W Shuffle≡W ARTN ≡W ORTN ≡W (LPO′)∗×TCN

ORTQ ≡W LPO∗

Moreover, we could have shown (see [PPS23]) that

(η −→ (η)1
<∞)≡W i(η −→ (η)1

<∞)≡W TC∗N

c(η −→ (η)1
<∞)≡W RT1

+

In a way, this work can be seen as a contribution to the study of the
correspondence between combinatorial systems from reverse mathematics
and Weihrauch degrees (see [BR17] for many other results in this
direction).
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