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Notation

@ 0,7,v,6 range over {0, 1,1 }<% (partial binary valued functions with
finite domain).

o We write ¢ < 7 if 7 extends ¢ and ¢ < X if ¢ is extended by the
characteristic function of X.

@ Omeets"'C {0,1,1}°? (8I=T) if (36 € (0 > o) and O strongly
avoids T (6 I- =T) if some (3 < O)(Vo € D)(z £ 7).

o [ € w® dominates g € »” (f > g) if (V'x € ®)(f(x) > g(x)).
o fis A?Hl escaping if f isn't dominated by any g <t 0"
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a-REA Sets

The i-th hop is 1; (A) £ A @ WA
@ REA sets are the result of iterating the Hop operation on @.
@ The 1-REA sets are just the r.e. sets.

@ The 2-REA sets are sets of the form W, & VVJ.Wi
See Jockusch and Shore [2] for a more explicit definition.
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@ For this talk we only care about n-REA sets up to Turing degree.

o Useful to identify the components of n-REA sets with their columns.

VVi

Wo o Wi

W w, Oyt
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Genericity

@ In this talk we only consider the (standard) forcing relation on 2<%

G is n-generic (n >0 ) if G I ¢ or G I+ ¢ for all $9¢ sentences.

Equivalently, G is n-generic if G meets or strongly avoids every 22
subset of 2<“ (equivalently {0, 1,1 }<¢)

I c2<”is dense if (V1 €2<*)(Foc €t <0

G is weakly n-generic if G meets every dense 22 subset of 2<¢
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Computing Weak 1-Generics

If few?is Aol escaping then f computes a weak 1-generic

e WLOG f is monotonicly increasing and let U; be i-th r.e. subset of
2<%,

e Build G =1lim,_, o, 7,, 79 = (), Tpy1 > Ty

o Let 7, > 7, bein U, s,y for least i <n or 7, if no such i exists.

Peter M. Gerdes 3-REA No Generic Chicago, 2023 10/ 40



Verifying Weak 1-Generic

@ Suppose U, is dense but G doesn't meet U,.

o Let n> 0 large enough that 7, meets every U;,j <i G will ever meet.

@ Suppose we can compute a bound /,, > |z,,| for m > n.

@ Let h(m) be the least stage s such that U, ;,, includes an extension
of every string of length /,,.

e If f(m) > h(m),m > n then t,, meets U,.

e We compute /,, by assuming f(x) < h(x) for n < x < m.
Can't extend to 1-generics because we can’t guarantee number of stages

needed to find an extension in a non-dense U, is computably bounded.
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R.E. Sets Compute 1-generics

If A £7 0 is r.e. then A computes a 1-generic

@ The modulus for A (m(n) % ut (A,l,11= Al )) is Aol escaping.

@ But we can compute full 1-generic by using the computable
approximation to A.

@ Same construction as before but we use stagewise approximations and
allow restraint.

@ Now, if we extend 7, ; to 7,,;; to meet U; then we preserve 7,
from changes trying to meet U;, j > i
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Constructing 1-generic Below R.E.

m(n)def (A rn+1=A rn+1)
r(t)defmax{n|n<s/\(36>r )(T sIEU; IAO'II—U[’S_I)}

r (z) maxr ()

l.* def mln _|(T ”_ Ui,mv(n)) A (36 > Tn’s) (O- ”_ Ui,my(""'l))

n+l,s
() ifs<nvs=0vn=0
o gt s unless m(n+ 1) > myy (n)
, Th,s—1 if I‘S(IZ’S) >n
c o.w. where ¢ is least witness for i, |

G¥ lim lim 7,
n—oo s—>oco

Note that 7, ., = 7, yn) S0 G <1 A
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Verifying R.E. Sets Compute 1-generics

@ Suppose i is least s.t. G= I+ U; A G— I+ =U;. We show that A is
computable.

Let n large enough that n > 7 (i) (exists by fact i least) and for all
j<it,I=U;Vvz,I--U; and t large enough that 7,, = 7,,.

If there are n’ > n,s > max(¢,n’),6 > 7,/ i, 0 I U, ; then m(n") <'s.
But, by assumption, there must be infinitetly many such m, s showing
m ST 0

. 1
Otherwise we'd preserve 7,/ ; and have 7,/ .,

@ Contradiction.
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Computing Weak 1-Generics

Theorem (Andrews, Gerdes and Miller)

If few’is A02 escaping then f computes a weak 2-generic

@ Proved in [1]. Won't prove it here.
@ Idea is to try and extend to meet Eg sets U; by favoring those o for
which (Ax)(Vy)¢(o, x, y) appears true with least max(|o|, x).
Hypothesis
If A £y 0" is 2-REA then A computes a 2-generic
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Pattern Ends at n =3

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect w-branching tree T C »~“,T <p 0" such that
if f € [T] then f doesn’t compute a weak 3-generic.

vertex Node with multiple successors (6~ (i), 6~ (j) € T,i # j).
w-branching Every vertex has infinitely many immediate successors.
pruned No terminal nodes (all nodes extend to paths)

perfect Every node is extended by a vertex.
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Pattern Ends at n =3

Theorem (Andrews, Gerdes and Miller)

There is a (pruned) perfect w-branching tree T C o~®,T <y 0" such that
if f € [T] then f doesn’t compute a weak 3-generic.

@ No amount of (countable) non-domination suffices to compute a
weak 3-generic, e.g., g1, € .
e View T as function on @w® by defining T[h] to be the path taking the
h(n)-th option at the n-th vertex.
o Let f =T[h] with h(k) picked large enough that
T[h](n) > gj(nk),j < k where T[h] [nk is the k-th vertex along T'[h]

@ Note that if f is monotonic and A‘LH,

TIf1 <t 0" is as well .
o If g>> T[f] then g*(k) = g(n,) satisfies g > f,g* <r g®0”

n > 0 escaping then
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Intuition Behind Failure

What prevents the pattern from continuing indefinitely?

Pattern worked because more non-domination strength gave us more
computational power (guessing at membership in 2(1) sets then 2(2)
sets).

But, a computable reduction can’t hope to always distinguish 0" big
and 0% pig.

Given finitely many potential values of <I>e<0'/\(n)>, 0” can figure out
which value is compatible with infinitely many n.

Allows us to limit ®,(f) to a narrow range of options (while allowing
f to take arbitrarily large values).

Can build U, C 2<* a dense 2(3) set ®,(f) can't meet by enumerating
strings outside that narrow range.
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Suppose for infinitely many | € w, 0" can enumerate k > 0,

m €2 i< 2k~ 1, |g| 214k Iff €[TIA®(/)l = ®,(f) > n,; then
®,(f) isn't weakly 3-generic for any f € [T].

For each ¢ with |o| = I there are 2F strings 7 > o of length I + k. At least
one of those strings 7, must be incompatible with #;,i < 2% — 1.

For each such I > 0 and ¢ with || = enumerate 7, into U,. U, is a
dense 2(3) set that isn't met by ®,(f) for any f € [T].

[m] = = =

E DA
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Building T

e A finite set V, of vertexes ()
@ For each o € V, an infinite r.e. set of strings
2(0) C {O’A<H>AT |ln€ew,re 2<“’}

@ 0¢:2°” > 2°?U{1},e € w such that ifc € V,7 € £,(c) then
®,(7) > 0% (6) (where that means ®,(f)1 if f > 7 if 05 (c) =1 )

V,: Nodes we commit to making w-branching vertexes in T.
Y (0): Possible (i.e. not in V) branches extending o.

¢ (0): Specifies initial segment of ®,(r) agreed on by all 7 € X (o)
(or that all such 7 force partiality)
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Building T

e A finite set V, of vertexes ()

@ For each o € V, an infinite r.e. set of strings
Y.(0) C {GA<H>AT |ln€w,te 2<“’}

@ 02: 2% 52U {1 },e € wsuch that ifc € V, T € £,(0) then
®,(7) > 0% (0) (where that means ®,(f)1 if f > 7 if 0 (o) =1 )

e Vp={()}ifs=0vVegV,vVe>sthen Z(0)= {oA(n)} and
05 (o) = ().

o V., =V, U {’L'o. | o € VS} where 7, € 2 (o) with 7,(|c]) large.
(Hence |V,| = 2°).

@ X . (0) CXZ(o) and 9§+1 (0) > 0¢ (o) (where 1 is considered >
maximal).

@ We ensure that if e < 5,0 € V then |65 (6)] > 25 + 1
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Zo(()

e Every o; € Z4(()) has @,(a;) > 65 (())




@ Add new vertex in X () for each 7 € V.

= « =)



()

@ Prune and extend (e.g. replace o; with an extension) so

0, €Z,()) = d)e(a,-) > 607 () (now longer) and CI)e(o-Ol-) > 0] (0'0)
<Or <Fr <= <2» DA
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@ Extend each vertex with a node from allowed branches.
«Or «Fr < DA™
~ PeterM.Gerdes @ 3REANoGeneric  Chicago, 2023 23/40
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o If If £ €[T] then @,(f) > 67 ({)) or ®,(f) > 65 (0'0) or
D,(f) > 65 (03) or @,(f) > 65 (609)
«Or «Fr AEr «Er» E VDACE
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Verifying Construction

To complete proof we must only show that we can always construct
2 1(7) from X (7) that makes 6§+1 (1) sufficently long.

But given the length 0” can ask if there are infinitely many elements
o € Z,(r) that can be extended to ¢’ with @,(c”) of sufficent length.

If not remove the finitely many elements that allow convergence.

If so 0” can determine which of the finitely many options for X (7)
permits X, ;(7) to be infinite.

Repeat for eache < s+ 1 and 7 € V.
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Genericity From 3-REA Sets

If A 410" is 3-REA does A compute a (weak) 3-generic?

@ A computes a A03 escaping function m[3](x) (where m["+1](x) is
modulus of A" over Al") but that's not enough.
@ But several reasons to think that 3-REA sets have extra power to
compute generics.
o We get mB, m, m1 with m" A°, 1 < n < 3 escaping. Modifications
even ensure all three functions simultaneously escape a tuple
hl ST 0’ h2 ST 0,,1’13 ST 0”
e Our ability to effectively approximate A offers additional power

(remember non-trivial r.e. sets compute 1-generics not just weak
1-generics).

o Approach used to build T doesn't directly translate.
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Isolating Large Values

@ When we built T functionals ®,(f) had to meet U, using only one

large value.
o IfoeV,e<s,x €w we could wait until we found 7 > aA(n) with
®,(7; x) converging before choosing the next large value.

@ Given A £1 0”,3-REA, k > 1 and h <y 0" there are infinitely many
tuples xo < x1, <, ..., < x; < mm(xo) such that mB(x,) > h(x,),i < k.

@ So, infinitely often, ®,(A; x) can consult k large values before trying
to meet U,.

Peter M. Gerdes 3-REA No Generic Chicago, 2023 28 /40



@ Notation & Definitions

© Background
@ Weak 1-genericity
@ R.E. Sets and 1-genericity
@ 2-genericity
@ 3-genericity

© 3-REA Sets
o Differences From AO3 Escaping Functions
@ Main Result ‘
@ Naive Strategies
@ Complications

«Or «Fr «=» «=)» Ay



Ultimately Insufficent

There is a 3-REA set A £y 0" that doesn’t compute a weak 3-generic.

@ We know A computes a weak 2-generic

@ By result in [1] every AO3 escaping function computes a 2-generic.

@ Thus, result is sharp.
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Requirements

Requirements

P AP # lim lim p,(c’, 5,1)
§—00 I—00
Qup: Xl = [Fr>0l(reU, AT £X,)

X, 2 ®,(4) L d,(A) U, : 29(0”) subset of 2<°

2. Ensures that A £1 0"
@, , Builds dense U, avoiding X, (no other additions)

Peter M. Gerdes 3-REA No Generic Chicago, 2023 31/40



(Alt) Requirements

Requirements

P APl £ lim lim p,(c®,s,1)
§—00 =00

Qpo: Xgl = [Fr>0l(r €U, AT £X,)

X, 20,4 L, (4) U, : 2(0”) subset of 2<°

a

P, Ensures that A £ 0"
Q. Builds dense 2, avoiding X, (no other additions)

o We'll want to break these requirements up into Hg subrequirements
(to use tree method and let 0” see outcome).
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Strategy for &,

Requirement

2. ABl(c®) # lim pl(c%s) where ph(c s) ¥ lim p,(c”.s.1)
S—>00 — 00

Sub-requirements

Pk breA? = [{t|p(c®D}=1]>k

o Place ¢* € APV iff (k) (b7 ¢ A1)

@ At stage s place b, into APV if it's not currently in and
{1 | pa(c®1,9)} = 1| > k.

o We remove b, at s; > s (by enumerating into Al if
{1 (Vs" € [s.51]) (po(c® 2,8 = 1)} <k

o ¢ ¢ ABVif lim,_  pl(c%s)is 1 or DNE
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First Attempt At @, ,

@ Let’s try same approach as constructing T, ensure that all ‘options’
for A agree on ‘alot’ of ®,(A).

@ But 0” can't determine if ¢* € AP!. But we can accomodate both
options by agreeing on sufficently long initial segments.

@ Harder problem is ensuring that ®,(A) takes the same value no
matter what value we get for k* & puk (bz ¢ A[3]).

@ This is analog of allowing f(x) to take on infinitely many values in
construction of T.
o (Up to 0” equivalence) k* measures stage at c* enters Al*!
o Effectively, we need to accomodate infinitely many options for m!®!(¢%).
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Ensuring ®,(A) > 7

e Satisfy &, allowing 0” to determine
7, |t| =2 with ®,(A) > 7 assuming
€ AP

@ Try 7 = (00) with highest priority, then
(01),(10) and then (11)

@ 0” would find some other long 7 if
c® ¢ APl Easy (can only happen one
way).

@ Remember, elements can be removed
from Al by enumeration into Al!

o Like a AOZ construction for AP but stays
out if removed infinitely many times.

A2 @ For simplicity assume totality (0" will
be able to check)
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.

e Satisfy &, allowing 0” to determine

7,|7| =2 with ®,(A) > 7 assuming
c® e AP

e Try = = (00) with highest priority, then
(01), (10) and then (11)

° @, (A) > (11).

Al
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Al

e Satisfy &, allowing 0” to determine
7, || =2 with ®,(A) > 7 assuming
¢ e AP

e Try = (00) with highest priority, then
(01),(10) and then (11)

e Enumerate b,.
° ®,(A,) > (00).
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Ensuring ®,(A) > 7

e Satisfy &, allowing 0” to determine
7, || =2 with ®,(A) > 7 assuming
c® e AP

e Try = = (00) with highest priority, then
(01),(10) and then (11)

@ Enumerate b,.

o @,(A) > (00).

@ Preserve higher priority string.

X @ Cancelation can only happen at b,
Al2] removing b, and all larger
enumerations.
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.

e Satisfy &, allowing 0” to determine

7,|7| =2 with ®,(A) > 7 assuming
c® e AP

e Try = = (00) with highest priority, then
(01),(10) and then (11)
@ Enumerate b,.

° ®,(A,) > (10).

Al
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e Satisfy &, allowing 0” to determine
7, |t| = 2 with ®,(A) > 7 assuming
¢ € AP

e Try = = (00) with highest priority, then
(01),(10) and then (11)

@ Enumerate b,.

° ®,(A,) > (01).

by — x
by — x
X
Al
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Ensuring ®,(A) > 7

e Satisfy &, allowing 0” to determine
7,|7| =2 with ®,(A) > 7 assuming
¢ € AP

e Try = = (00) with highest priority, then
(01),(10) and then (11)

@ Enumerate b,.

by — | o @,(A,) > (01).
x
b @ Preserve higher priority string.
1 —1 X
X @ But don't restrain/move b, because
Al2) that belongs to higher priority string

(00) .
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e Satisfy &, allowing 0” to determine
7, |7| = 2 with ®,(A) > 7 assuming
c® e AP

e Try 7 = (00) with highest priority, then
(01), (10) and then (11)

@ Enumerate b,.

o @, (A) > (00).

by — x
X
by — x
X
Al2]
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Ensuring ®,(A) > 7

e Satisfy &, allowing 0” to determine
7, |7| =2 with ®,(A) > 7 assuming
e AP

@ Try 7 = (00) with highest priority, then
(01), (10) and then (11)

@ Enumerate b,.
o @,(A,) > (00).
by, — @ Preserve higher priority string.
x @ Don't restrain/move b; because it
X belongs to same string (00).
by — x
X
A2
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Ensuring ®,(A) > 7

Peter M. Gerdes

Al

e Satisfy &, allowing 0” to determine
7, || =2 with ®,(A) > 7 assuming
c® e AP

e Try = (00) with highest priority, then
(01),(10) and then (11)
@ Later we may need to cancel b;

@ But this restores state we had at earlier
(00) stage so CI)e(AS) > (00).
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Ensuring ®,(A) > 7

e Satisfy &, allowing 0” to determine
7, || =2 with ®,(A) > 7 assuming
¢® e AP

e Try = (00) with highest priority, then
(01),(10) and then (11)

o If c® € AP then ®,(A) extends highest
priority 7, |t] = 2 seen infinitely.

e Critically 0” can determine what
would be if ¢* € AP,

@ Doesn't affect whether (eventually) all
by —+ b, stay in ABI

Al

Peter M. Gerdes 3-REA No Generic Chicago, 2023 35/40



@ Notation & Definitions

© Background
@ Weak 1-genericity
@ R.E. Sets and 1-genericity
@ 2-genericity
@ 3-genericity

© 3-REA Sets
o Differences From AO3 Escaping Functions
@ Main Result ;
@ Naive Strategies
@ Complications

«Or «Fr «=» «=)» Ay



Limit May Not Exist

e Fortunately (for me), the method derived from T isn't enough.

o If the limit DNE then 0” never gets confirmation that ¢* ¢ A
@ So, unlike T, we can't wait to see how %, is met before starting on
Fy.
o Requirements guessing that k* = n (i.e. each way ¢* € A[B]) can
execute on cancelation of b, (e.g. they get to know how &, is met)
o But % - which guesses that ¢* ¢ AP~ can't wait.

o If guess ¢* ¢ APl we do know how @, is met but must work on T
allowing for possibility ¢* € AP! with really large k®

@ This is the concrete instantiation of fact that ®,(A) can wait to see
multiple large values before commiting.
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Interference Finding 7 < ®,(A)

@ Trick to let 0” determine common 7 < ®,(A) above can't respect
both &%, and F; simultaneously.

@ Jyis guessing c¢* € AP 5o even if bfn is cancelled infinitely often that
must not cancel any b; infinitely many times.

@ Has consequence that we can't ensure that cancelling bf,, doesn’t
return us to a lower priority option for .
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Final Trick

Instead of ensuring that if b} gets cancelled we restore ®,(A) > 7
instead ensure that if b7 cancelled we restore ®,(A) > o-A(OO ---0)
where [(00 --- 0)| =i.

@ 0” can tell if we eventually succeed at this for infinitely many i.

o If this succeeds we can (at stages we see progress) then go ahead and
try to meet , (where i’ guesses this succeeds) certain that when

0” finds out that b* € A® we can conclude ®@,(A4) > ¢ (00 - 0).

o This means that even if 0” never sees exactly how &, is satisfied we
can enumerate a dense set of strings that ®,(A) avoids if ¢* € AP

e OTOH, if this fails we 0” discovers a string ¢ (00 -+ 0) that d,(A)
avoids.

e We can try this again and again for different ¢ and interleave (in
priority) with g’ﬁk meaning each g’ﬂk is only injured finitely many times.
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