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Notation

𝜎, 𝜏, 𝜈, 𝛿 range over {0, 1, ↑ }<𝜔 (partial binary valued functions with
finite domain).
We write 𝜎 ≺ 𝜏 if 𝜏 extends 𝜎 and 𝜎 ≺ 𝑋 if 𝜎 is extended by the
characteristic function of 𝑋.
𝜃 meets Γ ⊂ {0, 1, ↑ }<𝜔 (𝜃 ⊩ Γ) if (∃𝜎 ∈ Γ)(𝜃 ≻ 𝜎) and 𝜃 strongly
avoids Γ (𝜃 ⊩ ¬Γ) if some (∃𝜏 ≺ 𝜃)(∀𝜎 ∈ Γ)(𝜏 ⊀ 𝛾).
𝑓 ∈ 𝜔𝜔 dominates 𝑔 ∈ 𝜔𝜔 (𝑓 ≫ 𝑔) if (∀∗𝑥 ∈ 𝜔)(𝑓(𝑥) ≥ 𝑔(𝑥)).
𝑓 is Δ0

𝑛+1 escaping if 𝑓 isn’t dominated by any 𝑔 ≤𝐓 𝟎(𝑛)
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𝛼-REA Sets

The 𝑖-th hop is ℋ𝑖 (𝐴) ≝ 𝐴 ⊕ 𝑊 𝐴
𝑖 .

REA sets are the result of iterating the Hop operation on ∅.
The 1‐REA sets are just the r.e. sets.
The 2‐REA sets are sets of the form 𝑊𝑖 ⊕ 𝑊

𝑊𝑖
𝑗

See Jockusch and Shore [2] for a more explicit definition.
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Components as Columns

For this talk we only care about 𝑛‐REA sets up to Turing degree.
Useful to identify the components of 𝑛‐REA sets with their columns.

⋮

⋯

𝑊𝑖0
𝑊

𝑊𝑖0
𝑖1

𝑊
𝑊

𝑊𝑖0
𝑖1

𝑖2
⋯
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Genericity

In this talk we only consider the (standard) forcing relation on 2<𝜔

𝐺 is 𝑛-generic (𝑛 > 0 ) if 𝐺 ⊩ 𝜙 or 𝐺 ⊩ ¬𝜙 for all Σ0,𝐺
𝑛 sentences.

Equivalently, 𝐺 is 𝑛-generic if 𝐺 meets or strongly avoids every Σ0
𝑛

subset of 2<𝜔 (equivalently {0, 1, ↑ }<𝜔)
Γ ⊂ 2<𝜔 is dense if (∀𝜏 ∈ 2<𝜔)(∃𝜎 ∈ Γ)𝜏 ≺ 𝜎
𝐺 is weakly 𝑛-generic if 𝐺 meets every dense Σ0

𝑛 subset of 2<𝜔
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Computing Weak 1-Generics

Theorem
If 𝑓 ∈ 𝜔𝜔 is Δ0

1 escaping then 𝑓 computes a weak 1-generic

WLOG 𝑓 is monotonicly increasing and let 𝑈𝑖 be 𝑖-th r.e. subset of
2<𝜔.
Build 𝐺 = lim𝑛→∞ 𝜏𝑛, 𝜏0 = ⟨⟩, 𝜏𝑛+1 ≻ 𝜏𝑛.
Let 𝜏𝑛+1 ≻ 𝜏𝑛 be in 𝑈𝑖,𝑓 (𝑛+1) for least 𝑖 ≤ 𝑛 or 𝜏𝑛 if no such 𝑖 exists.
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Verifying Weak 1-Generic

Suppose 𝑈𝑖 is dense but 𝐺 doesn’t meet 𝑈𝑖.
Let 𝑛 > 0 large enough that 𝜏𝑛 meets every 𝑈𝑗, 𝑗 < 𝑖 𝐺 will ever meet.
Suppose we can compute a bound 𝑙𝑚 > |𝜏𝑚| for 𝑚 > 𝑛.
Let ℎ(𝑚) be the least stage 𝑠 such that 𝑈𝑖,ℎ(𝑚) includes an extension
of every string of length 𝑙𝑚.
If 𝑓(𝑚) ≥ ℎ(𝑚), 𝑚 > 𝑛 then 𝜏𝑚 meets 𝑈𝑖.
We compute 𝑙𝑚 by assuming 𝑓(𝑥) < ℎ(𝑥) for 𝑛 < 𝑥 < 𝑚.

Can’t extend to 1-generics because we can’t guarantee number of stages
needed to find an extension in a non-dense 𝑈𝑖 is computably bounded.
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R.E. Sets Compute 1-generics

Theorem
If 𝐴 ≰𝐓 𝟎 is r.e. then 𝐴 computes a 1-generic

The modulus for 𝐴 (𝑚(𝑛) ≝ 𝜇𝑡 (𝐴𝑡�𝑛+1 = 𝐴�𝑛+1 )) is Δ0
1 escaping.

But we can compute full 1-generic by using the computable
approximation to 𝐴.
Same construction as before but we use stagewise approximations and
allow restraint.
Now, if we extend 𝜏𝑛,𝑠 to 𝜏𝑛+1,𝑠 to meet 𝑈𝑖 then we preserve 𝜏𝑛+1,𝑠
from changes trying to meet 𝑈𝑗, 𝑗 > 𝑖
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Constructing 1-generic Below R.E.

𝑚𝑠(𝑛) ≝ 𝜇𝑡 (𝐴𝑡�𝑛+1 = 𝐴𝑠�𝑛+1 )
𝑟𝑠(𝑖) ≝ max{𝑛 ∣ 𝑛 ≤ 𝑠 ∧ (∃𝜎 ≻ 𝜏𝑛,𝑠)(𝜏𝑛,𝑠¬ ⊩ 𝑈𝑖,𝑠−1 ∧ 𝜎 ⊩ 𝑈𝑖,𝑠−1)}
̄𝑟𝑠(𝑖) ≝ max

𝑗<𝑖
𝑟𝑠(𝑖)

𝑖∗
𝑛+1,𝑠 ≝ min

𝑖≤𝑛
¬(𝜏𝑛,𝑠 ⊩ 𝑈𝑖,𝑚𝑠(𝑛)) ∧ (∃𝜎 ≻ 𝜏𝑛,𝑠)(𝜎 ⊩ 𝑈𝑖,𝑚𝑠(𝑛+1))

𝜏𝑛,𝑠 ≝

⎧⎪
⎪
⎨
⎪
⎪⎩

⟨⟩ if 𝑠 ≤ 𝑛 ∨ 𝑠 = 0 ∨ 𝑛 = 0
𝜏𝑛,𝑠−1 unless 𝑚𝑠(𝑛 + 1) > 𝑚𝑠−1(𝑛)
𝜏𝑛,𝑠−1 if ̄𝑟𝑠(𝑖∗

𝑛,𝑠) ≥ 𝑛
𝜎 o.w. where 𝜎 is least witness for 𝑖∗

𝑛,𝑠

𝐺 ≝ lim
𝑛→∞

lim
𝑠→∞

𝜏𝑛,𝑠

Note that 𝜏𝑛,∞ = 𝜏𝑛,𝑚(𝑛) so 𝐺 ≤𝐓 𝐴.
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Verifying R.E. Sets Compute 1-generics

Suppose 𝑖 is least s.t. 𝐺¬ ⊩ 𝑈𝑖 ∧ 𝐺¬ ⊩ ¬𝑈𝑖. We show that 𝐴 is
computable.
Let 𝑛 large enough that 𝑛 > ̄𝑟∞(𝑖) (exists by fact 𝑖 least) and for all
𝑗 < 𝑖 𝜏𝑛 ⊩ 𝑈𝑗 ∨ 𝜏𝑛 ⊩ ¬𝑈𝑗 and 𝑡 large enough that 𝜏𝑛,𝑡 = 𝜏𝑛.
If there are 𝑛′ ≥ 𝑛, 𝑠 ≥ max(𝑡, 𝑛′), 𝜎 ≻ 𝜏𝑛′,𝑠, 𝜎 ⊩ 𝑈𝑖,𝑠 then 𝑚(𝑛′) < 𝑠.
Otherwise we’d preserve 𝜏𝑛′,𝑠 and have 𝜏𝑛′,𝑚(𝑛′) ⊩ 𝑈𝑖.
But, by assumption, there must be infinitetly many such 𝑚, 𝑠 showing
𝑚 ≤𝐓 𝟎
Contradiction.
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Computing Weak 1-Generics

Theorem (Andrews, Gerdes and Miller)
If 𝑓 ∈ 𝜔𝜔 is Δ0

2 escaping then 𝑓 computes a weak 2-generic

Proved in [1]. Won’t prove it here.
Idea is to try and extend to meet Σ0

2 sets 𝔘𝑖 by favoring those 𝜎 for
which (∃𝑥)(∀𝑦)𝜙(𝜎, 𝑥, 𝑦) appears true with least max(|𝜎|, 𝑥).

Hypothesis
If 𝐴 ≰𝐓 𝟎′ is 2‐REA then 𝐴 computes a 2-generic
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Pattern Ends at 𝑛 = 3

Theorem (Andrews, Gerdes and Miller)
There is a (pruned) perfect 𝜔-branching tree 𝑇 ⊂ 𝜔<𝜔, 𝑇 ≤𝐓 𝟎″ such that
if 𝑓 ∈ [𝑇 ] then 𝑓 doesn’t compute a weak 3-generic.

vertex Node with multiple successors (𝜎̂⟨𝑖⟩, 𝜎̂⟨𝑗⟩ ∈ 𝑇 , 𝑖 ≠ 𝑗).
𝜔-branching Every vertex has infinitely many immediate successors.

pruned No terminal nodes (all nodes extend to paths)
perfect Every node is extended by a vertex.
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Pattern Ends at 𝑛 = 3

Theorem (Andrews, Gerdes and Miller)
There is a (pruned) perfect 𝜔-branching tree 𝑇 ⊂ 𝜔<𝜔, 𝑇 ≤𝐓 𝟎″ such that
if 𝑓 ∈ [𝑇 ] then 𝑓 doesn’t compute a weak 3-generic.

No amount of (countable) non-domination suffices to compute a
weak 3-generic, e.g., 𝑔𝑗≫̸𝑓 , 𝑗 ∈ 𝜔.

View 𝑇 as function on 𝜔𝜔 by defining 𝑇 [ℎ] to be the path taking the
ℎ(𝑛)-th option at the 𝑛-th vertex.
Let 𝑓 = 𝑇 [ℎ] with ℎ(𝑘) picked large enough that
𝑇 [ℎ](𝑛𝑘) > 𝑔𝑗(𝑛𝑘), 𝑗 ≤ 𝑘 where 𝑇 [ℎ]�𝑛𝑘

is the 𝑘-th vertex along 𝑇 [ℎ]

Note that if 𝑓 is monotonic and Δ0
𝑛+3, 𝑛 ≥ 0 escaping then

𝑇 [𝑓] ≤𝐓 𝑓 ⊕ 𝟎″ is as well .
If 𝑔 ≫ 𝑇 [𝑓] then 𝑔∗(𝑘) = 𝑔(𝑛𝑘) satisfies 𝑔∗ ≫ 𝑓, 𝑔∗ ≤𝐓 𝑔 ⊕ 𝟎″
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Intuition Behind Failure

Question
What prevents the pattern from continuing indefinitely?

Pattern worked because more non-domination strength gave us more
computational power (guessing at membership in Σ0

1 sets then Σ0
2

sets).
But, a computable reduction can’t hope to always distinguish 𝟎(𝑛) big
and 𝟎(𝑛+𝑘) big.

Given finitely many potential values of Φ𝑒(𝜎̂⟨𝑛⟩), 𝟎″ can figure out
which value is compatible with infinitely many 𝑛.
Allows us to limit Φ𝑒(𝑓) to a narrow range of options (while allowing
𝑓 to take arbitrarily large values).
Can build 𝔘𝑒 ⊂ 2<𝜔 a dense Σ0

3 set Φ𝑒(𝑓) can’t meet by enumerating
strings outside that narrow range.
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Utility Lemma

Lemma
Suppose for infinitely many 𝑙 ∈ 𝜔, 𝟎″ can enumerate 𝑘 > 0,
𝜂𝑖 ∈ 2<𝜔, 𝑖 < 2𝑘 − 1, |𝜂𝑖| ≥ 𝑙 + 𝑘. If 𝑓 ∈ [𝑇 ] ∧ Φ𝑒(𝑓)↓ ⟹ Φ𝑒(𝑓) ≻ 𝜂𝑖 then
Φ𝑒(𝑓) isn’t weakly 3-generic for any 𝑓 ∈ [𝑇 ].

Proof.
For each 𝜎 with |𝜎| = 𝑙 there are 2𝑘 strings 𝜏 ≻ 𝜎 of length 𝑙 + 𝑘. At least
one of those strings 𝜏𝜎 must be incompatible with 𝜂𝑖, 𝑖 < 2𝑘 − 1.

For each such 𝑙 > 0 and 𝜎 with |𝜎| = 𝑙 enumerate 𝜏𝜎 into 𝔘𝑒. 𝔘𝑒 is a
dense Σ0

3 set that isn’t met by Φ𝑒(𝑓) for any 𝑓 ∈ [𝑇 ].
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Building 𝑇

Conditions
A finite set 𝑉𝑠 of vertexes ()
For each 𝜎 ∈ 𝑉𝑠 an infinite r.e. set of strings
Σ𝑠(𝜎) ⊂ {𝜎̂⟨𝑛⟩̂𝜏 ∣ 𝑛 ∈ 𝜔, 𝜏 ∈ 2<𝜔

}
𝜃𝑒

𝑠 ∶ 2<𝜔 ↦ 2<𝜔 ∪ {↑ }, 𝑒 ∈ 𝜔 such that if 𝜎 ∈ 𝑉𝑠, 𝜏 ∈ Σ𝑠(𝜎) then
Φ𝑒(𝜏) ≻ 𝜃𝑒

𝑠 (𝜎) (where that means Φ𝑒(𝑓)↑ if 𝑓 ≻ 𝜏 if 𝜃𝑒
𝑠 (𝜎) =↑ )

𝑉𝑠: Nodes we commit to making 𝜔-branching vertexes in 𝑇.
Σ𝑠(𝜎): Possible (i.e. not in 𝑉𝑠) branches extending 𝜎.
𝜃𝑒

𝑠 (𝜎): Specifies initial segment of Φ𝑒(𝜏) agreed on by all 𝜏 ∈ Σ𝑠(𝜎)
(or that all such 𝜏 force partiality)
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Building 𝑇

Conditions
A finite set 𝑉𝑠 of vertexes ()
For each 𝜎 ∈ 𝑉𝑠 an infinite r.e. set of strings
Σ𝑠(𝜎) ⊂ {𝜎̂⟨𝑛⟩̂𝜏 ∣ 𝑛 ∈ 𝜔, 𝜏 ∈ 2<𝜔

}
𝜃𝑒

𝑠 ∶ 2<𝜔 ↦ 2<𝜔 ∪ {↑ }, 𝑒 ∈ 𝜔 such that if 𝜎 ∈ 𝑉𝑠, 𝜏 ∈ Σ𝑠(𝜎) then
Φ𝑒(𝜏) ≻ 𝜃𝑒

𝑠 (𝜎) (where that means Φ𝑒(𝑓)↑ if 𝑓 ≻ 𝜏 if 𝜃𝑒
𝑠 (𝜎) =↑ )

𝑉0 = {⟨⟩} if 𝑠 = 0 ∨ 𝜎 ∉ 𝑉𝑠 ∨ 𝑒 ≥ 𝑠 then Σ𝑠(𝜎) = {𝜎̂⟨𝑛⟩} and
𝜃𝑒

𝑠 (𝜎) = ⟨⟩.
𝑉𝑠+1 = 𝑉𝑠 ⋃ {𝜏𝜎 ∣ 𝜎 ∈ 𝑉𝑠} where 𝜏𝜎 ∈ Σ𝑠(𝜎) with 𝜏𝜎(|𝜎|) large.
(Hence |𝑉𝑠| = 2𝑠).
Σ𝑠+1(𝜎) ⊂ Σ𝑠(𝜎) and 𝜃𝑒

𝑠+1 (𝜎) ≻ 𝜃𝑒
𝑠 (𝜎) (where ↑ is considered ≻

maximal).
We ensure that if 𝑒 < 𝑠, 𝜎 ∈ 𝑉𝑠 then |𝜃𝑒

𝑠 (𝜎)| > 2𝑠 + 1
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

Every 𝜎𝑖 ∈ Σ0(⟨⟩) has Φ𝑒(𝜎𝑖) ≻ 𝜃𝑒
0 (⟨⟩)
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

Add new vertex in Σ𝑠(𝜏) for each 𝜏 ∈ 𝑉𝑠.
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

Prune and extend (e.g. replace 𝜎𝑖 with an extension) so
𝜎𝑖 ∈ Σ1(⟨⟩) ⟹ Φ𝑒(𝜎𝑖) ≻ 𝜃𝑒

1 (⟨⟩) (now longer) and Φ𝑒(𝜎0𝑖) ≻ 𝜃𝑒
1 (𝜎0)
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

If 𝑓 ∈ [𝑇 ] then Φ𝑒(𝑓) ≻ 𝜃𝑒
1 (⟨⟩) or Φ𝑒(𝑓) ≻ 𝜃𝑒

1 (𝜎0)
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

Extend each vertex with a node from allowed branches.
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Visualizing 𝑇 Construction

𝜎0

𝜎1

𝜎2

𝜎3

𝜎4

𝜎5

⋮

Σ0(⟨⟩)
Σ1(⟨⟩)

𝜎00

𝜎01

𝜎02

𝜎03

⋮

Σ1(𝜎0)

If If 𝑓 ∈ [𝑇 ] then Φ𝑒(𝑓) ≻ 𝜃𝑒
2 (⟨⟩) or Φ𝑒(𝑓) ≻ 𝜃𝑒

2 (𝜎0) or
Φ𝑒(𝑓) ≻ 𝜃𝑒

2 (𝜎2) or Φ𝑒(𝑓) ≻ 𝜃𝑒
2 (𝜎00)
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Verifying Construction

To complete proof we must only show that we can always construct
Σ𝑠+1(𝜏) from Σ𝑠(𝜏) that makes 𝜃𝑒

𝑠+1 (𝜏) sufficently long.
But given the length 𝟎″ can ask if there are infinitely many elements
𝜎 ∈ Σ𝑠(𝜏) that can be extended to 𝜎′ with Φ𝑒(𝜎′) of sufficent length.
If not remove the finitely many elements that allow convergence.
If so 𝟎″ can determine which of the finitely many options for Σ𝑠+1(𝜏)
permits Σ𝑠+1(𝜏) to be infinite.
Repeat for each 𝑒 < 𝑠 + 1 and 𝜏 ∈ 𝑉𝑠+1.
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Genericity From 3‐REA Sets

Question
If 𝐴 ≰𝐓 𝟎″ is 3‐REA does 𝐴 compute a (weak) 3-generic?

𝐴 computes a Δ0
3 escaping function 𝑚[3](𝑥) (where 𝑚[𝑛+1](𝑥) is

modulus of 𝐴[𝑛+1] over 𝐴[𝑛]) but that’s not enough.
But several reasons to think that 3‐REA sets have extra power to
compute generics.

We get 𝑚[3], 𝑚[2], 𝑚[1] with 𝑚[𝑛] Δ0
𝑛, 1 ≤ 𝑛 ≤ 3 escaping. Modifications

even ensure all three functions simultaneously escape a tuple
ℎ1 ≤𝐓 𝟎, ℎ2 ≤𝐓 𝟎′, ℎ3 ≤𝐓 𝟎″

Our ability to effectively approximate 𝐴 offers additional power
(remember non-trivial r.e. sets compute 1-generics not just weak
1-generics).
Approach used to build 𝑇 doesn’t directly translate.
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Isolating Large Values

When we built 𝑇 functionals Φ𝑒(𝑓) had to meet 𝔘𝑒 using only one
large value.

If 𝜎 ∈ 𝑉𝑠, 𝑒 < 𝑠, 𝑥 ∈ 𝜔 we could wait until we found 𝜏 ≻ 𝜎̂⟨𝑛⟩ with
Φ𝑒(𝜏; 𝑥) converging before choosing the next large value.

Given 𝐴 ≰𝐓 𝟎″, 3‐REA, 𝑘 > 1 and ℎ ≤𝐓 𝟎″ there are infinitely many
tuples 𝑥0 < 𝑥1, <, … , < 𝑥𝑘 < 𝑚[3](𝑥0) such that 𝑚[3](𝑥𝑖) > ℎ(𝑥𝑖), 𝑖 ≤ 𝑘.
So, infinitely often, Φ𝑒(𝐴; 𝑥) can consult 𝑘 large values before trying
to meet 𝔘𝑒.
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Ultimately Insufficent

Theorem
There is a 3‐REA set 𝐴 ≰𝐓 𝟎″ that doesn’t compute a weak 3-generic.

We know 𝐴 computes a weak 2-generic
By result in [1] every Δ0

3 escaping function computes a 2-generic.
Thus, result is sharp.
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Requirements

Requirements

𝐴[3](𝑐𝑖) ≠ lim
𝑠→∞

lim
𝑡→∞

𝑝𝑖(𝑐𝑖, 𝑠, 𝑡)𝒫𝑖:

𝑋𝑒↓ ⟹ [∃𝜏 ≻ 𝜎](𝜏 ∈ 𝔘𝑒 ∧ 𝜏 ⊀ 𝑋𝑒)𝒬𝑒,𝜎:

𝑋𝑒 ≝ Φ𝑒(𝐴) ≝ Φ𝑒(𝐴) 𝔘𝑒 ∶ Σ0
1 (𝟎″) subset of 2<𝜔

𝒫𝑖 Ensures that 𝐴 ≰𝐓 𝟎″

𝒬𝑒,𝜎 Builds dense 𝔘𝑒 avoiding 𝑋𝑒 (no other additions)

We’ll want to break these requirements up into Π0
2 subrequirements

(to use tree method and let 𝟎″ see outcome).
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(Alt) Requirements

Requirements

𝐴[3](𝑐𝛼) ≠ lim
𝑠→∞

lim
𝑡→∞

𝑝𝛼(𝑐𝛼, 𝑠, 𝑡)𝒫𝛼:

𝑋𝛼↓ ⟹ [∃𝜏 ≻ 𝜎](𝜏 ∈ 𝔘𝛼 ∧ 𝜏 ⊀ 𝑋𝛼)𝒬𝛼,𝜎:

𝑋𝛼 ≝ Φ𝛼(𝐴) ≝ Φ𝑒𝛼
(𝐴) 𝔘𝛼 ∶ Σ0

1 (𝟎″) subset of 2<𝜔

𝒫𝛼 Ensures that 𝐴 ≰𝐓 𝟎″

𝒬𝛼,𝜎 Builds dense 𝔘𝛼 avoiding 𝑋𝑒 (no other additions)

We’ll want to break these requirements up into Π0
2 subrequirements

(to use tree method and let 𝟎″ see outcome).
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Strategy for 𝒫𝛼

Requirement

𝐴[3](𝑐𝛼) ≠ lim
𝑠→∞

𝑝′
𝛼(𝑐𝛼, 𝑠) where 𝑝′

𝛼(𝑐𝛼, 𝑠) ≝ lim
𝑡→∞

𝑝𝛼(𝑐𝛼, 𝑠, 𝑡)𝒫𝛼:

Sub-requirements

𝑏𝛼
𝑘 ∈ 𝐴[2] ⟺ |{𝑡 ∣ 𝑝′

𝛼(𝑐𝛼, 𝑡)} = 1| > 𝑘𝒫 𝑘
𝛼 :

Place 𝑐𝛼 ∈ 𝐴[3] iff (∃𝑘)(𝑏𝛼
𝑘 ∉ 𝐴[2])

At stage 𝑠 place 𝑏𝑘 into 𝐴[2] if it’s not currently in and
|{𝑡 ∣ 𝑝𝛼(𝑐𝛼, 𝑡, 𝑠)} = 1| > 𝑘.
We remove 𝑏𝑘 at 𝑠1 > 𝑠 (by enumerating into 𝐴[1]) if
|{𝑡 ∣ (∀𝑠′ ∈ [𝑠, 𝑠1])(𝑝𝛼(𝑐𝛼, 𝑡, 𝑠′) = 1)}| ≤ 𝑘
𝑐𝛼 ∉ 𝐴[3] if lim𝑠→∞ 𝑝′

𝛼(𝑐𝛼, 𝑠) is 1 or DNE
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First Attempt At 𝒬𝛼,𝜎

Let’s try same approach as constructing 𝑇, ensure that all ‘options’
for 𝐴 agree on ‘alot’ of Φ𝑒(𝐴).
But 𝟎″ can’t determine if 𝑐𝛼 ∈ 𝐴[3]. But we can accomodate both
options by agreeing on sufficently long initial segments.
Harder problem is ensuring that Φ𝑒(𝐴) takes the same value no
matter what value we get for 𝑘̄𝛼 ≝ 𝜇𝑘 (𝑏𝛼

𝑘 ∉ 𝐴[3]).
This is analog of allowing 𝑓(𝑥) to take on infinitely many values in
construction of 𝑇.

(Up to 𝟎″ equivalence) 𝑘̄𝛼 measures stage at 𝑐𝛼 enters 𝐴[3]

Effectively, we need to accomodate infinitely many options for 𝑚[3](𝑐𝛼).
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝐴[2]

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
𝟎″ would find some other long 𝜏 if
𝑐𝛼 ∉ 𝐴[3]. Easy (can only happen one
way).
Remember, elements can be removed
from 𝐴[2] by enumeration into 𝐴[1]

Like a Δ0
2 construction for 𝐴[2] but stays

out if removed infinitely many times.
For simplicity assume totality (𝟎″ will
be able to check)
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝐴[2]

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Φ𝑒(𝐴𝑠) ≻ ⟨11⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥

𝐴[2]

𝑏1

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Enumerate 𝑏1.
Φ𝑒(𝐴𝑠) ≻ ⟨00⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥

𝐴[2]

𝑏1

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩

Enumerate 𝑏1.

Φ𝑒(𝐴𝑠) ≻ ⟨00⟩.

Preserve higher priority string.

Cancelation can only happen at 𝑏𝑘
removing 𝑏𝑘 and all larger
enumerations.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥
𝑥

𝐴[2]

𝑏1

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Enumerate 𝑏1.
Φ𝑒(𝐴𝑠) ≻ ⟨10⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥
𝑥
𝑥

𝐴[2]

𝑏1

𝑏2

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Enumerate 𝑏2.
Φ𝑒(𝐴𝑠) ≻ ⟨01⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥
𝑥
𝑥

𝐴[2]

𝑏1

𝑏2

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩

Enumerate 𝑏2.

Φ𝑒(𝐴𝑠) ≻ ⟨01⟩.

Preserve higher priority string.

But don’t restrain/move 𝑏1 because
that belongs to higher priority string
⟨00⟩ .
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥
𝑥
𝑥
𝑥

𝐴[2]

𝑏1

𝑏2

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Enumerate 𝑏2.
Φ𝑒(𝐴𝑠) ≻ ⟨00⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥
𝑥
𝑥
𝑥

𝐴[2]

𝑏1

𝑏2

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Enumerate 𝑏2.
Φ𝑒(𝐴𝑠) ≻ ⟨00⟩.
Preserve higher priority string.
Don’t restrain/move 𝑏1 because it
belongs to same string ⟨00⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥

𝐴[2]

𝑏1

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
Later we may need to cancel 𝑏1

But this restores state we had at earlier
⟨00⟩ stage so Φ𝑒(𝐴𝑠) ≻ ⟨00⟩.
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Ensuring Φ𝑒(𝐴) ≻ 𝜏

⋮

𝑥

𝐴[2]

𝑏1

Satisfy 𝒫𝛼 allowing 𝟎″ to determine
𝜏, |𝜏| = 2 with Φ𝑒(𝐴) ≻ 𝜏 assuming
𝑐𝛼 ∈ 𝐴[3]

Try 𝜏 = ⟨00⟩ with highest priority, then
⟨01⟩, ⟨10⟩ and then ⟨11⟩
If 𝑐𝛼 ∈ 𝐴[3] then Φ𝑒(𝐴) extends highest
priority 𝜏, |𝜏| = 2 seen infinitely.
Critically 𝟎″ can determine what 𝜏
would be if 𝑐𝛼 ∈ 𝐴[3].
Doesn’t affect whether (eventually) all
𝑏𝑘 stay in 𝐴[3]
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Limit May Not Exist

Fortunately (for me), the method derived from 𝑇 isn’t enough.
If the limit DNE then 𝟎″ never gets confirmation that 𝑐𝛼 ∉ 𝐴[3]

So, unlike 𝑇, we can’t wait to see how 𝒫𝛼 is met before starting on
𝒫𝛽.

Requirements guessing that 𝑘̄𝛼 = 𝑛 (i.e. each way 𝑐𝛼 ∈ 𝐴[3]) can
execute on cancelation of 𝑏𝑛 (e.g. they get to know how 𝒫𝛼 is met)
But 𝒫𝛽 - which guesses that 𝑐𝛼 ∉ 𝐴[3] - can’t wait.

If guess 𝑐𝛼 ∉ 𝐴[3] we do know how 𝒫𝛼 is met but must work on 𝒫𝛽
allowing for possibility 𝑐𝛼 ∈ 𝐴[3] with really large 𝑘̄𝛼

This is the concrete instantiation of fact that Φ𝑒(𝐴) can wait to see
multiple large values before commiting.
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Interference Finding 𝜏 ≺ Φ𝑒(𝐴)

Trick to let 𝟎″ determine common 𝜏 ≺ Φ𝑒(𝐴) above can’t respect
both 𝒫𝛼 and 𝒫𝛽 simultaneously.

𝒫𝛽 is guessing 𝑐𝛼 ∈ 𝐴[3] so even if 𝑏𝛽
𝑚 is cancelled infinitely often that

must not cancel any 𝑏𝛼
𝑘 infinitely many times.

Has consequence that we can’t ensure that cancelling 𝑏𝛽
𝑚 doesn’t

return us to a lower priority option for 𝜏.
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Final Trick

Instead of ensuring that if 𝑏𝛼
𝑖 gets cancelled we restore Φ𝑒(𝐴) ≻ 𝜏

instead ensure that if 𝑏𝛼
𝑖 cancelled we restore Φ𝑒(𝐴) ≻ 𝜎̂⟨00 ⋯ 0⟩

where |⟨00 ⋯ 0⟩| = 𝑖.
𝟎″ can tell if we eventually succeed at this for infinitely many 𝑖.
If this succeeds we can (at stages we see progress) then go ahead and
try to meet 𝒫𝛽′ (where 𝛽′ guesses this succeeds) certain that when
𝟎″ finds out that 𝑏𝛼

𝑖 ∈ 𝐴[2] we can conclude Φ𝑒(𝐴) ≻ 𝜎̂⟨00 ⋯ 0⟩.
This means that even if 𝟎″ never sees exactly how 𝒫𝛼 is satisfied we
can enumerate a dense set of strings that Φ𝑒(𝐴) avoids if 𝑐𝛼 ∈ 𝐴[3].

OTOH, if this fails we 𝟎″ discovers a string 𝜎̂⟨00 ⋯ 0⟩ that Φ𝑒(𝐴)
avoids.
We can try this again and again for different 𝜎 and interleave (in
priority) with 𝒫 𝑘

𝛽 meaning each 𝒫 𝑘
𝛽 is only injured finitely many times.
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