
Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Set-theoretic forcing as a computational
process

Joel David Hamkins
O’Hara Professor of Philosophy and Mathematics

University of Notre Dame

Associate Faculty, Professor of Logic
University of Oxford

Midwest Computability Seminar, 2 May 2023, University of
Chicago

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

This is joint work.

[HMW20] Joel David Hamkins, Russell Miller, and Kameryn J.
Williams, “Forcing as a computational process,”
arXiv:2007.00418,
http://jdh.hamkins.org/forcing-as-a-computational-process.

MCS Chicago 2023 Joel David Hamkins

http://arxiv.org/abs/2007.00418


Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Forcing

The method of forcing is ubiquitous within set theory.

With forcing, we can build diverse models of set theory,
revealing the vast range of set-theoretic possibility.

We construct models with the continuum hypothesis, or without,
or models with Suslin trees, or without, or models with a
definable well-ordering of the universe, or without.

The method has an algebraic character.

For any model of set theory M, we can construct forcing
extensions M[G], akin to a field extension, where everything is
constructible from objects in the ground model M and the new
generic object G.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Main Question

I proposed years ago that we should mount an analysis of
forcing from the perspective of computable structure theory.

To what extent is forcing a computably effective process?

Main Question

Given an oracle for a countable model of set theory M, to what
extent can we compute its various forcing extensions M[G]?

The answer depends on exactly how we are given the model M.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Main conclusions

In a variety of senses we get an affirmative answer.

With an oracle for the atomic diagram of M and P ∈ M, we
can compute an M-generic filter G ⊆ P.
From the ∆0 diagram of M, we can uniformly compute the
∆0 diagram of M[G].
From the full elementary diagram of M, we can uniformly
compute the elementary diagram of M[G].

Nevertheless in other senses the answer is negative.

There is no computable nor even Borel construction that is
functorial, in that different presentations of M give rise to
the same M[G].

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

The atomic diagram knows very little
Suppose we are given model M by its atomic diagram.

The atomic diagram of ⟨M,∈M⟩ has all instances of x ∈M y or
x /∈M y , written on oracle tape.

It turns out, however, that very little is computable from
this—we cannot identify even a single fixed element.

Theorem

For any countable model of set theory ⟨M,∈M⟩ and any element
b ∈ M, no algorithm will pick out the number representing b
uniformly given an oracle for the atomic diagram of a copy of M.

We cannot reliably find the empty set, the ordinal ω, nor R, nor
any particular set.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Let’s give the proof.

Theorem

For any countable model of set theory ⟨M,∈M⟩ and any element
b ∈ M, no algorithm will pick out the number representing b uniformly
given an oracle for the atomic diagram of a copy of M.

Proof.

Fix b ∈ M and fix an oracle for the atomic diagram of a copy of M.

Suppose an algorithm has claimed to identify b.

Only finitely much of the atomic diagram was inspected.

We may find an alternative presentation M ′ of M, whose atomic
diagram agrees on that part, but disagrees on which number
represents b.

So the algorithm will get the wrong answer on M ′.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Forcing

Consider a model of set theory M |= ZFC.

A forcing notion is a partial order P ∈ M.

Conditions are p,q ∈ P. Stronger conditions are lower p ≤ q.

A filter G ⊆ P is M-generic, if for every dense set D ⊆ P in M,
there is p ∈ D ∩ G.

The forcing extension M[G] will be built from P-names τ ∈ MP

and G.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

How to build a generic filter

Consider a countable model M |= ZFC.

Enumerate all dense subsets of P in M

D0,D1,D2, . . .

Build a descending sequence of conditions

p0 ≥ p1 ≥ p2 ≥ p3 ≥ · · ·

Start with p0 ∈ D0, and at stage n ensure pn ∈ Dn.

This is possible, because each Dn is dense.

The filter G generated by these conditions pn is M-generic.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Construct G from ∆0 diagram

We can carry out that construction using a oracle for the ∆0
diagram of M (in set theory sense).

The oracle in effect provides a listing of M.

To begin, ask the oracle if there is p0 in the set represented by
0 and P. If so, go find one.

At stage n, ask if there is pn below the previous in nth set and
P. If so, go find one.

Can compute the filter G generated by conditions pn.

So G is computable from ∆0-diagram of M.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Actually, the atomic diagram suffices

Theorem

Given an oracle for the atomic diagram of ⟨M,∈M⟩ |= ZF and
P ∈ M, we may compute an M-generic filter G ⊆ P.

Proof.

Fix oracle for atomic diagram of ⟨M,∈M⟩. Fix P. Can decide p ∈ P.

Fix ≤P. Can recognize p ≤ q. It’s fussy—Kuratowski pairing
(p,q) = { {p }, {p,q } }.

Fix set representing set of dense sets.

Can now build p0 ≥ p1 ≥ p2 ≥ · · · , with pn in the nth dense set.

Can enumerate filter G generated by these pn.

Can actually decide G, not just enumerate it. Use ⊥P.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Non-uniformity

The algorithm above is non-uniform in several senses.

Required parameters for P, ≤P, ⊥P.
(We can’t compute these from atomic diagram.)
The particular G depends on the presentation.
The pairing function mattered.

In the last section, I shall consider whether a truly uniform
construction is possible.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

P-names

A P-name is a set consisting of pairs ⟨σ, p⟩, where σ a P-name
and p ∈ P.

This is in effect a recursive definition on rank.

Lemma

The property of being a P-name is ∆1, hence decidable
uniformly in the ∆0-diagram of M.

For any candidate σ, look for a transitive set that thinks it is a
P-name.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Building the forcing extension M[G]

How do we define the forcing extension M[G]?

One standard approach is to define the “value” of each name

val(σ,G) = { val(τ,G) | ∃p ∈ G ⟨τ,p⟩ ∈ σ }.

The forcing extension M[G] consists of all such value sets.

This approach, however, does not work with all models of set
theory.

Because the recursion takes place outside M, it works only for
well-founded models.

But we should want an understanding of forcing over any model
of set theory.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Instead, construct M[G] as Boolean ultrapower
Consider the forcing relations

p ⊩P σ = τ

p ⊩P σ ∈ τ

For any ultrafilter G ⊆ P, define

σ =G τ ⇐⇒ ∃p ∈ G p ⊩P σ = τ

σ ∈G τ ⇐⇒ ∃p ∈ G p ⊩P σ ∈ τ.

The relation =G is a congruence with respect to the relation ∈G.

Define the forcing extension M[G] as quotient MP/=G using ∈G.

The construction works with any ultrafilter—no need for
genericity. But for G generic it agrees with the value
construction.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Presenting M[G]
The presentation of M[G] as the quotient of MP by =G is
computable from the ∆0-diagram.

Theorem

Given an oracle for ∆0-diagram of ⟨M,∈M⟩ |= ZF and forcing
P ∈ M, we may compute an M-generic filter G ⊆ P and the
∆0-elementary diagram of a presentation of M[G].

The diagram of the forcing extension M[G] can be given in the
full forcing language

⟨M[G],∈M[G], M̌, σ⟩σ∈MP ,

with a predicate M̌ for the ground model and constants for all
the P-names σ.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Presenting M[G]

The atomic forcing relations

p ⊩P σ = τ

p ⊩P σ ∈ τ,

have complexity ∆1.

So given ∆0 diagram of M and G, we can select
representatives for =G classes.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Full forcing relation

For any formula φ,

M[G] |= φ[(σ0)G, . . . , (σn)G]

if and only if there is p ∈ G so that

p ⊩ φ(σ0, . . . , σn).

The complexity of p ⊩ φ is Σn if φ is (for n ≥ 1).

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computing the full diagram

Theorem

Given an oracle for the full diagram of ⟨M,∈M⟩ |= ZF and
forcing P ∈ M, we can compute an M-generic filter and provide
a computable presentation of full diagram of M[G] in the forcing
language.

Moreover, this goes level-by-level: given P and an oracle for the
Σn-elementary diagram of M, for n ≥ 1, we can decide the
Σn-elementary diagram of this presentation.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Generic multiverse

The generic multiverse of a model of set theory M is the
smallest collection of models closed under forcing extensions
and grounds.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Grounds

W is a ground of M if M = W [G] for some W -generic filter
G ⊆ P ∈ W .

Ground model definability theorem (Laver, Woodin, JDH)

Every ground model is definable in its forcing extensions.

The definition uses the approximation and cover properties.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Ground model enumeration theorem

The definability of grounds is uniform:

Ground model enumeration theorem (Fuchs, Hamkins, Reitz)

There is an enumeration Wr of transitive classes such that
1 Every Wr is a ground of V .
2 Every ground of V is some Wr .
3 x ∈ Wr is Π2-definable φ(r , x).

This theorem is the beginning of set-theoretic geology [FHR15].

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computing the grounds

Theorem

There is a uniform computable procedure which given an oracle
for the Π2-elementary diagram of a model of set theory
⟨M,∈M⟩ |= ZFC will compute a list of the ∆0-diagrams of all the
grounds of M.

From the Π2-diagram, we get access to the ground-model
enumeration Wr , and then we can compute what is true in
them.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computing the grounds

Theorem

Given an oracle for the full elementary diagram of a model of
set theory ⟨M,∈M⟩ |= ZFC, there is a computable procedure to
compute a list of the full elementary diagrams of all the grounds
of M.

The elementary diagrams of the grounds of M can be
computed from the elementary diagram of M, using the fact
that the grounds themselves are uniformly definable.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computing the generic multiverse

Question

Can we computably present the generic multiverse of M?

Answer: No, because this is uncountable.

For example, for any given countable M, there are continuum
many M-generic Cohen reals.

We shall seek a computable fragment: the computable generic
multiverse.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Geology

Theorem (Usuba)

The grounds of a model of set theory are strongly downward
directed.

Corollary (Fuchs,Hamkins,Reitz)

Every model in the generic multiverse of M is a forcing
extension of a ground of M.

That is, two steps suffice—go down to a ground, then up to a
forcing extension.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computable generic multiverse

Suppose we are given an oracle for the full elementary diagram
of a model of set theory ⟨M,∈M⟩ |= ZFC.

We can uniformly compute the diagrams of all the various
grounds Wr ⊆ M.

For any such ground Wr and any forcing notion P ∈ Wr , any
condition p ∈ P, we can uniformly compute a Wr -generic filter
G ⊆ P and the elementary diagram of Wr [G].

These models constitute a computable proxy for the generic
multiverse of M.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Not capturing the full generic multiverse

Meanwhile, the computable generic multiverse is not dense in
the full generic multiverse.

For any countable model M |= ZFC, we can find a forcing
extension M[G], such that no outer model of it has a
∆0-diagram computable from the full elementary diagram of M.

The method borrows techniques from non-amalgamation and
pointwise definability results. We code a catastrophic real z into
G in such a way, that any presentation of such a model will
compute z.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Computable non-amalgamation

From the elementary diagram of a model ⟨M,∈M⟩ |= ZFC, we
can compute distinct M-generic Cohen reals c and d , such that
M[c] and M[d ] are non-amalgamable—they have no common
extension to a model of ZFC with the same ordinals as M.

In fact, we can make large assemblages with specified
non-amalgamability.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Class forcing

Question

To what extent can we compute generics for class forcing?

It turns out that many of the arguments go through for class
forcing.

Theorem

Given an oracle for the full elementary diagram of a countable
model ⟨M,∈M⟩ |= ZF and given a definable pretame class
forcing P ⊆ M, there is a computable procedure to compute an
M-generic filter G ⊆ P and decide the full elementary diagram
of the forcing extension M[G].

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Second-order set theory

It is natural to undertake class forcing with second-order set
theories, such as Gödel-Bernays set theory GBC.

A model of GBC has both sets and classes.

Theorem

Let ⟨M,∈M⟩ be a countable model of GB and suppose P ∈ M
is a class forcing notion with its atomic forcing relation a class in
M. Then, from an oracle for the ∆1

0-elementary diagram of M
there is a computable procedure to compute an M-generic
filter G ⊆ P and the ∆1

0-diagram of M[G].

And a similar result holds for the full elementary diagrams.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Is the process functorial?

We have described how to compute a presentation of M[G]
from a presentation of M.

Question

Is the procedure uniform in the sense that isomorphic
presentations of M give rise to isomorphic presentations of
M[G]?

In other words, is the procedure well-defined with respect to
isomorphisms of models?

This is connected with the existence of computable functors
from the category of models of set theory up to isomorphism.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

G depends on presentation
We have provided a computable procedure

(M,∈M ,P) 7→ G

to compute an M-generic filter G from the atomic diagram of M
and forcing notion P ∈ M.

But the particular G we get can depend on how M is presented.

The presentation led to a particular enumeration of the dense
sets

D0,D1,D2, . . .

Changing this could affect G.

Can we avoid this sensitivity?

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Inherently non-functorial

The answer is no: non-functoriality is inherent.

Theorem

There is no computable procedure taking the elementary
diagram of a model ⟨M,∈M⟩ |= ZFC with a partial order P to an
M-generic filter G ⊆ P, such that isomorphic copies of the input
always give the corresponding isomorphic G.

In other words, there is no computable procedure to produce
generic filters that is functorial in the category of presentations
of models of set theory under isomorphism.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Proof.

Assume toward contradiction that we have a computable procedure

Φ : ∆(M,∈M ,P) 7→ G

Assume functorial: isomorphic presentations of M get isomorphic G.

Take a model M |= ZFC with Mκ ≺ M some κ.

Fix any nontrivial forcing P ∈ Mκ.

Idea: run the computational process inside M, using finite fragments
of diagram of Mκ.

Any such finite fragment is part of a presentation of M. So all will give
same G.

Thus, G would exist inside M, contradiction.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

But sometimes possible

Meanwhile, for some models M, we can compute G functorially
from any presentation of M with its diagram.

Specifically, any pointwise definable model M will have this
feature.

M is pointwise definable, if every element of M is definable
without parameters.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Functoriality for some models

Theorem

There is a computable functor Φ, in which Φ takes as input the
elementary diagram of any pointwise definable model
⟨M,∈M⟩ |= ZFC and a forcing notion P ∈ M and returns an
M-generic G ⊆ P and the elementary diagram of M[G]. That is,
if ⟨M∗,∈M∗⟩ and ⟨M†,∈M†⟩ are two isomorphic presentations of
M then Φ(M∗,∈M∗

,P∗) ∼= Φ(M†,∈M†
,P†).

The point is that the elementary diagram of a pointwise
definable model provides a canonical presentation of it.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Non-functorality for Borel processes

The non-functorality result extends to the Borel context.

Theorem

Suppose ZF is consistent. Then there is no Borel function

(M,∈M ,P) 7→ G

producing M-generic filters in a functorial manner.

Indeed, we cannot even get such a Borel function so that if
⟨M∗,∈M∗

,P∗⟩ and ⟨M†,∈M†
,P†⟩ are elementarily equivalent

then so are ⟨M∗[G∗],∈M∗[G∗]⟩ and ⟨M†[G†],∈M†[G†]⟩.

MCS Chicago 2023 Joel David Hamkins



Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

References I

[FHR15] Gunter Fuchs, Joel David Hamkins, and
Jonas Reitz. “Set-theoretic geology”. Annals of
Pure and Applied Logic 166.4 (2015), pp. 464–501.
ISSN: 0168-0072. DOI: 10.1016/j.apal.2014.11.004.
arXiv:1107.4776[math.LO].
http://jdh.hamkins.org/set-theoreticgeology.

[HMW20] Joel David Hamkins, Russell Miller, and
Kameryn J. Williams. “Forcing as a computational
process”. Mathematics arXiv (2020). Under review.
arXiv:2007.00418[math.LO].
http://jdh.hamkins.org/forcing-as-a-computational-process.

MCS Chicago 2023 Joel David Hamkins

https://doi.org/10.1016/j.apal.2014.11.004
http://arxiv.org/abs/1107.4776
http://jdh.hamkins.org/set-theoreticgeology
http://arxiv.org/abs/2007.00418
http://jdh.hamkins.org/forcing-as-a-computational-process


Introduction Computing forcing extensions Generic multiverse Class forcing Functoriality

Thank you.
Slides and articles available on http://jdh.hamkins.org.

Joel David Hamkins
Professor of Logic, University of Oxford
Sir Peter Strawson Fellow, University College, Oxford

MCS Chicago 2023 Joel David Hamkins


	Introduction
	Computing forcing extensions
	Generic multiverse
	Class forcing
	Functoriality



