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Baire Space

We work in Baire space ωω (or Cantor space 2ω).

This is a (Polish) topological space with basic clopen sets

[σ] = {τ ∈ ω<ω ∶ τ ⪰ σ}.

Closed sets correspond to paths through trees.



The Borel Hierarchy

The Borel sets are the least collection of sets closed under countable
intersections, countable unions, and complements.

The Borel sets can be classified by the number of intersections and unions
required to construct them:

▸ Σ0
1: Open sets.

▸ Π0
1: Closed sets.

▸ Σ0
α: Countable unions of Π0

β sets for β < α.

▸ Π0
α: Countable intersections of Σ0

β sets for β < α.



The Difference Hierarchy

We will need two more types of sets as well:

▸ A set is ∆0
α if it is both Σ0

α and Π0
α.

▸ A set is Dη(Σ
0
α) if it is a difference of η-many Σ0

α sets. E.g., if η
even, of the form

⋃
γ < η odd

⎛

⎝
Uγ − ⋃

γ′<γ
Uγ′
⎞

⎠

where each Uγ is Σ0
α.

For example, a D2(Σ
0
α) set is of the form

U1 −U0

and a D3(Σ
0
α) set is of the form

U2 − (U1 −U0).



The Hausdorff-Kuratowski Theorem

Theorem (Hausdorff-Kuratowski)

∆0
2 = ⋃

η
Dη(Σ

0
1).

Proof.

See blackboard.



The Hausdorff-Kuratowski Theorem

Theorem (Hausdorff-Kuratowski)

∆0
α+1 = ⋃

η
Dη(Σ

0
α).

If you look in Kechris, the proof is essentially:

Proof.

Let A be ∆0
α+1.

Change the topology so that A is ∆0
2.

By the α = 1 case, A is Dη(Σ
0
1) in the new topology.

Each Σ0
1 sets in the new topology is Σ0

α in the old topology.



Change-of-Topology

Change-of-topology is a useful tool in descriptive set theory.

Theorem

Let (X ,T ) be a Polish space with topology T .

Let B1,B2, . . . be any countable collection of Borel sets in (X ,T ).

There is a finer Polish topology T ′ ⊇ T such that B1,B2, . . . are open.

Often you can also say something about the open sets in the new
topology. Before, we needed that the open sets in the new topology are
Σ0

α in the old topology.



What is this talk about?

This talk will be about a way of understanding change-of-topology in
descriptive set theory using iterated true stages from computability theory.



The Effective Borel Hierarchy

The effective Borel hierarchy allows only computable unions and
intersections. For α a computable ordinal:

▸ Σ0
1: Effectively open sets, i.e., sets of the form ⋃σ∈W [σ] for W c.e.

▸ Π0
1: Effectively closed sets, i.e., paths through a computable tree.

▸ Σ0
α: Unions of c.e. collections of (names for) Π0

β sets for β < α.

▸ Π0
α: Intersections of c.e. collections of (names for) Σ0

β sets for β < α.

We can also define ∆0
α, Dη(Σ

0
α), etc.

These hierarchies also relativize to an oracle.



Effective Descriptive Set Theory

Any Σ0
α set is Σ0

α(X ) (relative to X ) for some set X . Thus it can be
useful to apply effective methods even if we are not initially interested in
computability.

Theorem (Hausdorff-Kuratowski, Selivanov)

∆0
2 = ⋃

η<ωCK
1

Dη(Σ
0
1).



The Turing Jump

The key connection is that there is a way of thinking about Σ0
α+1 sets

using the αth jump.

Fact

A set A ⊆ ωω is Σ0
α+1 if and only if there is a Σ0

1 set V ⊆ ωω such that
A = {x ∶ x(α) ∈ V }.

We will use true stage constructions to approximate the jumps.



Iterated True Stage Constructions

The idea is to think of ∅(α) as an iteration of the limit lemma. Each jump
is a simple step, and we just need a good way to organize how they fit
together.

Many computability-theoretic frameworks have been introduced to help
organize this:

▸ Harrington worker arguments

▸ Lempp and Lerman’s tree of strategies

▸ Ash and Knight’s α-systems

▸ Montalbán’s η-systems

▸ Greenberg and Turetsky’s variation on the η-systems



Approximating the First Jump

Consider the Halting problem K .

We can computably approximate K by

K = ⋃Ks

where Ks is the finite set containing e < s if the eth program has halted at
stage s.

We could think of approximating the infinite binary string K by the finite
binary strings Ks ↾ s. But it might be that every Ks ↾ s makes some
incorrect guess.



Approximating the First Jump

The solution is Dekker non-deficiency stages.

Suppose that at each stage s, a single element ns enters K .

Say that s is a Dekker non-deficiency stage if for all t > s, nt > ns . There
are infinitely many non-deficiency stages.

Suppose that at stage s, we guess that Ks ↾ ns is an initial segment of K .
At non-deficiency stages, our guess is correct.

A stage s is 1-true if Ks ↾ ns ≺ K .



Approximating the First Jump

A stage s is 1-true if Ks ↾ ns ≺ K .

▸ There are infinitely many 1-true stages.

▸ If s is a 1-true stage, then it appears 1-true at every stage t > s.

▸ If s is not 1-true, then there might be stages t > s which do not have
enough information to see this, i.e.,

Ks ↾ ns ≺ Kt ↾ nt .

We say that s appears 1-true at stage t. Such t are also not 1-true.



Approximating More Jumps

Montalbán: Iterate this through the hyperarithmetic hierarchy:

▸ Having approximated ∅(α) at stage s by a finite string ∇α
s , use this

finite string as an oracle to approximate ∅(α+1) by a finite string ∇α
s+1.

▸ At limits, take joins.

▸ Use non-deficiency stages to ensure that there are infinitely many
α-true stages s with ∇β

s ≺ ∅
(β) for β ≤ α.

▸ Say that s appears α-true at stage t, and write s ≤α t, if ∇β
s ⪯ ∇

β
t for

β ≤ α.

▸ The ∇α
s and the relations ≤α are all computable.

Disclaimer: This is all morally correct, but needs some adjustment for
technical reasons.



References

For the technical details, see:

▸ Ash and Knight’s book Computable Structures and the
Hyperarithmetical Hierarchy

▸ Montalban, η-systems, in Priority Arguments via True Stages and
Computable Structure Theory: Beyond the arithmetic

▸ Day, Greenberg, HT, Turetsky, An effective classification of Borel
Wadge classes and Iterated priority arguments in descriptive set
theory



Relativizing True Stages

In the true stage constructions before, we approximated ∅, ∅′, ∅′′, . . . .

We can also relativise this to any x , approximating x , x ′, x ′′, . . . .

In fact, given x ∈ ωω, we can make it so that the approximation to x(α) at
stage s only depends on x ↾ s:

▸ For each finite string σ and computable ordinal α, define σ(α), the
approximation to x(α) for x extending σ at stage ∣σ∣.

▸ Define σ ≤α τ if σ(β) ≤ τ (β) for β ≤ α. We say σ appears α-true at τ .

▸ Say that σ is α-true for x ∈ 2ω, and write σ ≤α x , if σ(β) ≤ x(β) for
β ≤ α.

Note that being true is now relative to the extension x .



The Structure of the Approximations

These orderings ≤α on ω<ω ∪ ωω have lots of nice properties:

▸ The relations ≤α, when restricted to finite strings ω<ω, are
computable.

▸ σ ≤0 τ ⇔ σ ⪯ τ .

▸ σ ≤α τ ⇒ σ ≤β τ for β < α.

▸ for each x ∈ ωω, there infinitely many strings which are α-true for x :

σ0 ≤α σ1 ≤α σ2 ≤α ⋯ ≤α x .

▸ (ω<ω,≤α) is a tree/forest.



True Stages and Topology

Some additional properties of our true stages:

▸ [σ]α = {x̄ ∶ σ ≤α x̄} is Σ0
α.

▸ Each Σ0
α set is of the form

⋃
σ∈W
[σ]α = ⋃

σ∈W
{x̄ ∶ σ ≤α x̄}

for some c.e. set W .

Taking [σ]α = {x̄ ∶ σ ≤α x̄} as a basis, we get a Polish topology T ′

extending the standard topology where the open sets are exactly those
generated by the Σ0

α sets.



Hausdorff-Kuratowski

This way of constructing the change of topology is particularly nice
because it looks like the standard topology on ωω in the sense that it
comes from a tree.

We can adjust our proof of the Hausdorff-Kuratowski theorem to get a
proof for ∆0

α+1 by replacing the standard tree (ω<ω,⪯) by the tree
(ω<ω,≤α).

Theorem (Hausdorff-Kuratowski, Selivanov)

For all computable α,
∆0

α+1 = ⋃
η<ωck

1

Dη(Σ
0
α).

Proof.

See blackboard.



This sounds great, but can we do anything new?



Wadge Reducibility

Definition (Wadge)

Let A and B be subsets of Baire space ωω.

We say that A is Wadge reducible to B, and write A ≤W B, if there is a
continuous function f on ωω with A = f −1[B], i.e.

x ∈ A⇐⇒ f (x) ∈ B.



Structure of Wadge Degrees

Theorem (Martin and Monk, AD)

The Wadge order is well-founded.

Theorem (Wadge’s Lemma, AD)

Given A,B ⊆ ωω, either A ≤W B or B ≤W ωω −A.

These theorems are proved by playing a game. For Borel sets, we have
Borel Determinacy without having to assume AD, and so these are always
true for Borel sets.



Wadge Degrees in Second-order Arithmetic

Borel determinacy requires iterations of power-set.

Theorem (Friedman)

Borel determinacy requires ω1 iterations of the Power Set Axiom.

Martin showed that Σ0
4 Determinacy is not provable in second-order

arithmetic.

One the other hand, one can prove that Borel Wadge games are
determined in second-order arithmetic.

Theorem (Louveau and Saint-Raymond)

Borel Wadge determinacy is provable in second-order arithmetic.



Description of Wadge Degrees

There are also many comprehensive descriptions of the Borel Wadge
classes:

▸ Louveau (1983)

▸ Duparc (2001)

▸ Selivanov, for k-partitions (2007, 2017)

▸ Kihara and Montalbán, for functions into a countable BQO (2019)

We use our true stage machinery to give a new description of the Borel
Wadge classes, and use them to prove Borel Wadge determinacy in a
reasonable fragment of second-order arithmetic.



Wadge Degrees and Reverse Math

Theorem (Day, Greenberg, HT, Turetsky)

Borel Wadge determinacy is provable in ATR0 +Π
1
1−Ind, and there is a

complete description of the Borel Wadge classes.

Thus the Borel Wadge degrees are semilinearly ordered and well-founded.

This simplifies Louveau and Saint-Raymond’s proof in second-order
arithmetic and uses a weaker subsystem. Our descriptions of the classes
are inherently dynamic, and naturally lightface.



▸ Make a list of described classes. These are non-self-dual. Our
descriptions are dynamic in nature.

▸ Prove a Louveau-Saint Raymond separation result for each described
class Γ, which implies that if A is universal for Γ, and B is Borel, then
either A ≤W B or B ∈ Γ̌, in which case B ≤W Ac .

▸ Prove that the intersection of a described class and its dual is either a
union of described classes of lower Wadge degree, like

∆0
ξ+1 = ⋃

η
Dη(Σ

0
ξ),

or is a Wadge class in its own right like ∆0
1.

▸ Given a Borel set, take the least described class (or dual of a described
class, or ∆(Γ)) containing it. Prove that it is complete for that class.



Theorem (Loueveau, Saint Raymond)

Suppose that Γ is a described class. Let A ∈ Γ. Let B0 and B1 be two
disjoint Σ1

1 sets. Then either:

▸ There is a continuous reduction of (A,Ac) into (B0,B1), or

▸ There is a Γ̌ separator of B0 from B1.

If A is universal for Γ, and B is Borel, then either A ≤W B or B ∈ Γ̌, in
which case B ≤W Ac .

The direct way to prove this would be to use Borel determinacy for a
naturally associated game.

Louveau and Saint Raymond show by an unravelling process that there is
an associated closed game.

Using true stages, we get a relatively simple description of such a game.



Theorem (Loueveau, Saint Raymond)

Suppose that Γ is a described class. Let A ∈ Γ. Let B0 and B1 be two
disjoint Σ1

1 sets. Then either:

▸ There is a continuous reduction of (A,Ac) into (B0,B1), or

▸ There is a Γ̌ separator of B0 from B1.

Take Γ = Σ0
ξ . Let Ti be a tree whose projection is Bi .

▸ Player 1 plays x in A or Ac .

▸ Player 2 attempts to play y in B0 (if x ∈ A) or B1 (if x ∉ A), with a
corresponding witness f in [T0] or [T1].

▸ Player 2 guesses, using the true stage machinery, at whether x is in A
or not. At each stage, they play an attempt at extending y and f .
But they are only committed to which f they play at true stages.



Theorem (Day, Greenberg, HT, Turetsky)

Borel Wadge determinacy is provable in ATR0 +Π
1
1−Ind, and there is a

complete description of the Borel Wadge classes.

Thus the Borel Wadge degrees are semilinearly ordered and well-founded.

This simplifies Louveau and Saint-Raymond’s proof in second-order
arithmetic and uses a weaker subsystem. Our descriptions of the classes
are inherently dynamic, and naturally lightface.
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Day, Greenberg, Harrison-Trainor, Turetsky:

▸ Iterated priority arguments in descriptive set theory

▸ An effective classification of Borel Wadge classes



Thanks!




