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The Question
The Theorem

Background
A theorem of Solovay

Given a countable first-order language L, consider the family of
countable L-models M as a subspace of Cantor space 2ω:

Fix a list {φi}i∈ω of all atomic sentences with constants in ω for
the elements of M, and identify M with the path p ∈ 2ω such that

M |= φi iff p(i) = 1.

It is not hard to check that for any L-theory T , the family C of
L-models of T forms a Borel subset of 2ω.

By Vaught’s 1974 proof of Lopez-Escobar (1965), the family C is
indeed always a Π0

ω-subset of 2
ω since it is Π0

ω-definable in Lω1,ω.

Naturally, the question arises for which theories T , this upper
bound is sharp.

Clearly, if T has an axiomatization of bounded quantifier
complexity, the answer is no.
Rossegger raised this question on Mathoverflow in 2020 for the
theory of true arithmetic.
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The Question
The Theorem

Background
A theorem of Solovay

Theorem (Solovay 1982, see Knight 1999)

Let T be a complete theory. Suppose R ≤T X is an enumeration
of a Scott set S, with functions tn which are ∆0

n(X ) uniformly
in n, such that for each n, lims tn(s) is an R-index for T ∩ Σn, and
for all s, tn(s) is an R-index for a subset of T ∩ Σn.
Then T has a model M, representing S, with M ≤T X .

Definitions:
A Scott set is a set S ⊆ P(ω) such that

X ∈ S and Y ≤T X implies Y ∈ S;
X ,Y ∈ S implies X ⊕ Y ∈ S; and
an infinite binary tree T ∈ S implies p ∈ S for some p ∈ [T ].

R is an enumeration of S if S = {Ri | i ∈ ω} where R =
⊕

n∈ω Ri .

A countable model M represents a countable Scott set S
if for all complete Bn-types Γ(u, x) and all c ∈ M:

Γ(c , x) realized in M ⇐⇒ Γ ∈ S and Con(Γ(c , x) ∪Diagel(M)).
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The Question
The Theorem

Background
A theorem of Solovay

Theorem repeated (Solovay 1982, see Knight 1999)

Let T be a complete theory. Suppose R ≤T X is an enumeration
of a Scott set S, with functions tn which are ∆0

n(X ) uniformly
in n, such that for each n, lims tn(s) is an R-index for T ∩ Σn, and
for all s, tn(s) is an R-index for a subset of T ∩ Σn.
Then T has a model M, representing S, with M ≤T X .

Knight presents the proof of Solovay’s theorem using two lemmas:

Lemma 1

Let A an L-model representing a countable Scott set S with an
enumeration R ≤T X such that {(i , c) | Ri is the B1-type of c}
is Σ0

2(X ). Then there is M ∼= A with M ≤T X .

Lemma 2

Let T , R, X , S, {tn}n∈ω be as above. Then T has a model A
representing S such that {(i , c) | Ri is the B1-type of c} is Σ0

2(X ).
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The Question
The Theorem

Background
A theorem of Solovay

Lemma 1 repeated

Let A an L-model representing a countable Scott set S with an
enumeration R ≤T X such that {(i , c) | Ri is the B1-type of c}
is Σ0

2(X ). Then there is M ∼= A with M ≤T X .

Lemma 2 repeated

Let T , R ≤T X , S and {tn}n∈ω be as in the Theorem. Then T
has a model M, representing S, with M ≤T X .

Lemma 1 is proved using a finite-injury argument.
Lemma 2 is proved using a full-blown worker argument (actually, a
then-new metatheorem using α-systems).

Part of the proof of our theorem consisted in verifying that
Knight’s proofs are fully uniform, and effective in X .

I will now present our main theorem in an initial and then a
stronger final version.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

Background
A theorem of Solovay

Lemma 1 repeated

Let A an L-model representing a countable Scott set S with an
enumeration R ≤T X such that {(i , c) | Ri is the B1-type of c}
is Σ0

2(X ). Then there is M ∼= A with M ≤T X .

Lemma 2 repeated

Let T , R ≤T X , S and {tn}n∈ω be as in the Theorem. Then T
has a model M, representing S, with M ≤T X .

Lemma 1 is proved using a finite-injury argument.
Lemma 2 is proved using a full-blown worker argument (actually, a
then-new metatheorem using α-systems).

Part of the proof of our theorem consisted in verifying that
Knight’s proofs are fully uniform, and effective in X .

I will now present our main theorem in an initial and then a
stronger final version.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

Background
A theorem of Solovay

Lemma 1 repeated

Let A an L-model representing a countable Scott set S with an
enumeration R ≤T X such that {(i , c) | Ri is the B1-type of c}
is Σ0

2(X ). Then there is M ∼= A with M ≤T X .

Lemma 2 repeated

Let T , R ≤T X , S and {tn}n∈ω be as in the Theorem. Then T
has a model M, representing S, with M ≤T X .

Lemma 1 is proved using a finite-injury argument.
Lemma 2 is proved using a full-blown worker argument (actually, a
then-new metatheorem using α-systems).

Part of the proof of our theorem consisted in verifying that
Knight’s proofs are fully uniform, and effective in X .

I will now present our main theorem in an initial and then a
stronger final version.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Initial Main Theorem

The family of models of true arithmetic is Π0
ω-complete.

Indeed, for each Π0
ω-set P, there is a continuous functional,

mapping any p ∈ P to a model of true arithmetic TA, and any
p /∈ P to a model not satisfying Peano arithmetic PA.

Note first that getting the above reduction to be continuous (so
showing Wadge reducibility) is the crux; a Borel reduction would
have been easy.

Let T = TA. Now, more precisely, our reduction Γ : p → Mp will
be computable in X = C ⊕ (R ⊕ T )′, where C is a “Borel code”
for a Π0

ω-set P.
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The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Proof sketch: Fix a Π0
ω-set P, so P =

⋂
n≥2 Pn for Π0

n-sets Pn.

Fix a (computable) basis {Ui}i∈ω for the topology of 2ω.
The Borel code for Pn will be a tree Cn ⊆ ω≤n+1 such that each
τ ∈ ωn has an extension in Cn.
The interpretation (suppressing labeling) is

Pn =

{⋂
j1

⋃
j2
· · ·

⋂
jn

⋃
⟨j1...jnj⟩∈Cn

Uj if n is odd,⋂
j1

⋃
j2
· · ·

⋃
jn

⋂
⟨j1...jnj⟩∈Cn

Uj if n is even.

We may assume that P2 ⊇ P3 ⊇ . . . ; so P =
⋂

n≥2 Pn has Borel
code

C =
⋃
n≥2

(⟨n⟩ ̂ Cn).

For n ≥ 2, fix a completion Tn ≤T T of PA− + IΣn−1 + ¬IΣn.

We want Mp |= T for p ∈ P; and
Mp |= Tn if p /∈ Pn (for least n ≥ 2).
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Our proof now proceeds in two steps:

Step 1: From p ∈ 2ω construct a sequence of indices {epn}n∈ω
meeting the conditions of Solovay’s theorem,

namely, satisfying

1 {epn}n∈ω is a sequence of indices for total functions

tpn = Φ
(X⊕p)(n−1)

epn
;

2 for each n, lims t
p
n (s) = tp∗n exists;

3 for each n, Rtp∗n
= Tp ∩ Σn for a complete theory Tp (in the

language of arithmetic); and

4 for each n and s, Rtpn (s)
⊆ Tp ∩ Σn.

We will indeed define epn = en to be the sequence of indices of

constant functions such that Φ
(X⊕p)(n−1)

en = in for the least in with
Tp ∩ Σn = Rin . (This uses X ≥T (R ⊕ T )′.)
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Step 1 (continued):
We will also want Tp = T for p ∈ P; and

Tp = Tn if p /∈ Pn (for least n ≥ 2).

Step 2: Verify that Solovay’s construction of Mp from {epn}n∈ω is
continuous, indeed computable in X .
This requires a careful analysis of the proof of Solovay’s theorem.

Remark: We do need infinitely many theories in our theorem:
E.g., suppose we fix any complete theory T0 ̸= TA and ask for
Mp |= TA for p ∈ P, and Mp |= T0 for p /∈ P:
TA and T0 diverge at a fixed quantifier level.
We could reverse the roles of TA and T0 and get that the models
of TA form a Σ0

ω-complete family.
Both facts clearly show a contradiction.
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What did we “really” use about TA in the proof above?

The main feature was that TA ∩ Σn does not axiomatize TA for
any n so that we can change Tp “arbitrarily late”, as soon as we
find out that p /∈ Pn.

Thus we actually obtain our

Main Theorem

Let T be any complete theory in a relational language which is not
axiomatizable by a set of axioms of bounded quantifier complexity.
Then the family of models of T is Π0

ω-complete.
Indeed, for each Π0

ω-set P, there is a continuous functional,
mapping any p ∈ P to a model of T , and any p /∈ P to a model
not satisfying T .

By an observation of Rabin (1961), using Tarski’s undefinability of
truth in arithmetic, any completion T of PA has this property and
thus the family of models of T is Π0

ω-complete.
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To what other theories does our Main Theorem apply?

We asked Kossak, who asked Enayat, who asked Visser, and voilà:

Definition (Pudlák 1983, Pakhomov/Visser 2022)

A (possibly incomplete) L-theory T is called sequential if it
“directly interprets” Adjunctive set theory AS(T ), namely, the
{∈}-theory with the axioms

1 ∃x ∀y (¬y ∈ x) (”the empty set exists”), and

2 ∀x ∀y ∃z ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)) (“x ∪ {y} exists”).

In essence, sequential theories allow for coding of finite sequences
as in Gödel’s β-function (but do not require, e.g., extensionality).
Clearly, sequential theories are closed under extension.

Examples of sequential theories:
PA, IΣ0

1, PRA, I∆0 + exp, ZF, even PA− (Jěrábek 2012),
AS = AS(∅) (Pakhomov/Visser 2022), but not Robinson’s Q.
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AS = AS(∅) (Pakhomov/Visser 2022), but not Robinson’s Q.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

To what other theories does our Main Theorem apply?

We asked Kossak, who asked Enayat, who asked Visser, and voilà:

Definition (Pudlák 1983, Pakhomov/Visser 2022)

A (possibly incomplete) L-theory T is called sequential if it
“directly interprets” Adjunctive set theory AS(T ), namely, the
{∈}-theory with the axioms

1 ∃x ∀y (¬y ∈ x) (”the empty set exists”), and

2 ∀x ∀y ∃z ∀w (w ∈ z ↔ (w ∈ x ∨ w = y)) (“x ∪ {y} exists”).

In essence, sequential theories allow for coding of finite sequences
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Theorem (Enayat/Visser)

For any completion T of a sequential theory in a finite language L,
T ∩ Σn does not axiomatize T for any n.

Their proof uses a version of Tarski’s undefinability of truth and
also Rosser’s trick.

This allows us to conclude the following

Corollary

The family of models of any completion T of a sequential theory in
a finite language (e.g., PA−) is Π0

ω-complete.

We now turn to theories which have a set of axioms of bounded
quantifier complexity.
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Theorem

Let T be a theory and n > 0. Then:

Mod(T ) ∈ Π0
n iff T is Πn-axiomatizable.

Mod(T ) is Π0
n-complete iff T is Πn-axiomatizable but not

Σn-axiomatizable.

If Mod(T ) ∈ Σ0
n, then T is Σn-axiomatizable.

If T is Σn-axiomatizable, then Mod(T ) ∈ Π0
n+1.

We have examples that if a theory T is Σn-axiomatizable but not
Πn-axiomatizable then it can be Σ0

n-complete, Π0
n+1-complete, or

in between.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Theorem

Let T be a theory and n > 0. Then:

Mod(T ) ∈ Π0
n iff T is Πn-axiomatizable.

Mod(T ) is Π0
n-complete iff T is Πn-axiomatizable but not

Σn-axiomatizable.

If Mod(T ) ∈ Σ0
n, then T is Σn-axiomatizable.

If T is Σn-axiomatizable, then Mod(T ) ∈ Π0
n+1.

We have examples that if a theory T is Σn-axiomatizable but not
Πn-axiomatizable then it can be Σ0

n-complete, Π0
n+1-complete, or

in between.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Theorem

Let T be a theory and n > 0. Then:

Mod(T ) ∈ Π0
n iff T is Πn-axiomatizable.

Mod(T ) is Π0
n-complete iff T is Πn-axiomatizable but not

Σn-axiomatizable.

If Mod(T ) ∈ Σ0
n, then T is Σn-axiomatizable.

If T is Σn-axiomatizable, then Mod(T ) ∈ Π0
n+1.

We have examples that if a theory T is Σn-axiomatizable but not
Πn-axiomatizable then it can be Σ0

n-complete, Π0
n+1-complete, or

in between.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Theorem

Let T be a theory and n > 0. Then:

Mod(T ) ∈ Π0
n iff T is Πn-axiomatizable.

Mod(T ) is Π0
n-complete iff T is Πn-axiomatizable but not

Σn-axiomatizable.

If Mod(T ) ∈ Σ0
n, then T is Σn-axiomatizable.

If T is Σn-axiomatizable, then Mod(T ) ∈ Π0
n+1.

We have examples that if a theory T is Σn-axiomatizable but not
Πn-axiomatizable then it can be Σ0

n-complete, Π0
n+1-complete, or

in between.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

True and Peano arithmetic
Beyond arithmetic
Bounded quantifier complexity

Theorem

Let T be a theory and n > 0. Then:

Mod(T ) ∈ Π0
n iff T is Πn-axiomatizable.

Mod(T ) is Π0
n-complete iff T is Πn-axiomatizable but not

Σn-axiomatizable.

If Mod(T ) ∈ Σ0
n, then T is Σn-axiomatizable.

If T is Σn-axiomatizable, then Mod(T ) ∈ Π0
n+1.

We have examples that if a theory T is Σn-axiomatizable but not
Πn-axiomatizable then it can be Σ0

n-complete, Π0
n+1-complete, or

in between.

Steffen Lempp, University of Wisconsin-Madison The complexity of the class of models of theories



The Question
The Theorem

Thanks!
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