The Borel Complexity of the Class of Models of First-order Theories: the Finite Case

Hongyu Zhu

University of Wisconsin-Madison

February 6, 2024

Joint work with Uri Andrews, David Gonzalez, Steffen Lempp, and Dino Rossegger. With thanks to Ali Enayat, Roman Kossak, and Albert Visser.

1 Review

2 Boundedly Axiomatizable Theories

3 Effectiveness

4 Further Questions

5 Bibliography

Assume the language \mathcal{L} is (at most) countable and relational. For any first-order theory T, consider the family $\operatorname{Mod}(T) \subseteq 2^{\omega}$ of all countable models of T. As the conjunction of T is an infinitary Π_{ω} sentence, $\operatorname{Mod}(T)$ is always Π_{ω}^{0} .

One major tool we used was the following theorem:

Theorem (Solovay)

Let T be a complete theory. Suppose $R \leq_T X$ is an enumeration of a Scott set S, with functions t_n , $\Delta_n^0(X)$ uniformly in n, such that: for each n, $\lim_s t_n(s)$ is an R-index for $T \cap \Sigma_n$; and for all s, $t_n(s)$ is an R-index for a subset of $T \cap \Sigma_n$. Then X can compute a model $\mathcal{M} \models T$ representing S.

Questions

All theories we consider here are assumed to be consistent, unless otherwise noted.

Definition (Boundedly Axiomatizable Theory)

A theory T is boundedly axiomatizable if for some $n < \omega$, T has an axiomatization consisting entirely of Π_n sentences.

We saw from last time that:

Theorem

Suppose T is complete. Then T is not boundedly axiomatizable iff Mod(T) is Π^0_{ω} -complete.

Two questions arise from this theorem:

- **1** What is the complexity of Mod(T) when T is boundedly axiomatizable?
- 2 What are the valid oracles for the continuous reduction?

Wadge Degree

Fact (Wadge, Martin)

The relation \leq^* , defined by $A \leq^* B \iff A \leq_W B \lor A \leq_W \overline{B}$, is a pre-wellordering of all Borel sets.

It remains to pinpoint which Wadge degrees are self-dual (i.e. $A \equiv_W \overline{A}$).

Fact (Steel, Van Wesep)

At successor stages, a non-self-dual Wadge degree is followed by a self-dual degree, and vice versa. At limit stage λ , we have a self-dual degree iff $cf(\lambda) = \omega$.

A more relevant criterion for us:

Fact

There are no Δ^0_{α} -complete sets for any $\alpha \geq 2$.

Structure of the Wadge Degrees (that we care about)

Warning: Dangerous notation! For every pointclass Γ on this slide (like Σ_n^0, Π_n^0), it is more accurate to say " Γ -complete."

We care about Wadge degrees below Π^0_{ω} . For completeness we also include Σ^0_{ω} .

Structure of the Wadge Degrees (that we care about)

Warning: Dangerous notation! For every pointclass Γ on this slide (like Σ_n^0, Π_n^0), it is more accurate to say " Γ -complete."

We care about Wadge degrees below Π^0_{ω} . For completeness we also include Σ^0_{ω} .

Theorem

For any $n \in \omega$ and any theory T (not necessarily complete):

$$\mathbf{I} \operatorname{Mod}(T) \in \mathbf{\Pi}_n^0 \iff T \text{ is } \Pi_n \text{-axiomatizable.}$$

2
$$\operatorname{Mod}(T) \in \Sigma_n^0 \Rightarrow T$$
 is Σ_n -axiomatizable.

3 Mod(T) is Π_n^0 -complete $\iff T$ is Π_n -axiomatizable but not Σ_n -axiomatizable.

$$T is \Sigma_n \text{-}axiomatizable \Rightarrow \operatorname{Mod}(T) \in \Pi_{n+1}^0.$$

We first obtain a core lemma using Solovay's theorem.

Lemma

Suppose $n \in \omega$, and $T^+ \neq T^-$ are complete theories with $T^- \cap \Sigma_n \subseteq T^+ \cap \Sigma_n$. Then for any $X \in \Sigma_n^0$, there is a Wadge reduction f such that $f(x) \in Mod(T^+)$ if $x \in X$, and $f(x) \in Mod(T^-)$ otherwise. In particular, $Mod(T^+)$ is Σ_n^0 -hard, and $Mod(T^-)$ is Π_n^0 -hard.

Suppose $n \in \omega$, and $T^+ \neq T^-$ are complete theories with $T^- \cap \Sigma_n \subseteq T^+ \cap \Sigma_n$. Then for any $P \in \Sigma_n^0$, there is a Wadge reduction f such that $f(x) \in Mod(T^+)$ if $x \in X$, and $f(x) \in Mod(T^-)$ otherwise. In particular, $Mod(T^+)$ is Σ_n^0 -hard, and $Mod(T^-)$ is Π_n^0 -hard.

Proof.

Given $p \in 2^{\omega}$, Feed these ingredients to Solovay's theorem, noting its uniformity (like before):

- \blacksquare R: comes from a fixed oracle.
- t_k for k < n: output a fixed *R*-index of $T^- \cap \Sigma_k = T^+ \cap \Sigma_k$.
- t_n : check whether $p \in P$ using $p^{(n-1)}$; keep outputting index of $T^- \cap \Sigma_n$ until the Σ_n outcome (i.e. witness $p \in P$), then switch to $T^+ \cap \Sigma_n$.
- t_k for k > n: compute membership and then output the correct index.

Let Γ be a family of sentences, A a set of sentences, and φ a sentence such that $A \not\vdash \neg \varphi \leftrightarrow \psi$ for any $\psi \in \Gamma$. Then there are complete consistent theories $T^+ \supseteq A \cup \{\varphi\}$ and $T^- \supseteq A \cup \{\neg\varphi\}$ such that $\operatorname{Th}_{\Gamma}(T^-) \subseteq \operatorname{Th}_{\Gamma}(T^+)$. In fact, we can take T^+ to be any completion of $A \cup \{\varphi\} \cup \operatorname{Th}_{\Gamma}(A \cup \{\neg\varphi\})$.

Proof.

First we verify that $A \cup \{\varphi\} \cup \operatorname{Th}_{\Gamma}(A \cup \{\neg\varphi\})$ is consistent: if not, then for some $\psi \in \Gamma$, we have $A \cup \{\neg\varphi\} \vdash \psi, A \cup \{\varphi\} \vdash \neg\psi$. So by deduction theorem, $A \vdash \neg\varphi \leftrightarrow \psi$, a contradiction. Take T^+ to be any such completion. Let $\check{\Gamma} = \{\neg\varphi|\varphi \in \Gamma\}$. By completeness, $\operatorname{Th}_{\Gamma}(T^-) \subseteq Th_{\Gamma}(T^+) \iff \operatorname{Th}_{\check{\Gamma}}(T^+) \subseteq \operatorname{Th}_{\check{\Gamma}}(T^-)$, so it suffices to verify $A \cup \{\neg\varphi\} \cup \operatorname{Th}_{\check{\Gamma}}(T^+)$ is consistent. If not, then for some $\psi \in \Gamma$ we have $T^+ \vdash \neg\psi$ and $A \cup \{\neg\varphi\} \vdash \psi$. This contradicts the consistency of T^+ . Thus, any completion $A \cup \{\neg\varphi\} \cup \operatorname{Th}_{\check{\Gamma}}(T^+)$ works as T^- .

Corollary

For any theory T and any family of sentences Γ , if T is not Γ -axiomatizable (i.e. $\operatorname{Th}_{\Gamma}(T)$ is not equivalent to T), then there are complete theories T_0, T_1 such that $T \subseteq T_0, T$ is inconsistent with T_1 , and $\operatorname{Th}_{\Gamma}(T_0) \subseteq \operatorname{Th}_{\Gamma}(T_1)$.

Proof.

Let $A = \operatorname{Th}_{\Gamma}(T)$. Choose some sentence φ provable from T but not A. Check that: (1) $A \not\vdash \varphi \leftrightarrow \psi$ for any $\psi \in \Gamma$; (2) $T \cup \operatorname{Th}_{\check{\Gamma}}(A \cup \{\neg\varphi\})$ is consistent. For (1), if it fails then $T \vdash \varphi \leftrightarrow \psi$, so $\psi \in \operatorname{Th}_{\Gamma}(T) = A$. Now $A \vdash \varphi$, contradiction. For (2), if it fails then for some $\psi \in A$, $A \cup \neg \varphi \vdash \neg \psi$, so $A \vdash \varphi$, contradiction. Now apply the previous lemma (with $\check{\Gamma}$ in place of Γ above) to a completion T_0 of $T \cup \operatorname{Th}_{\check{\Gamma}}(A \cup \{\neg\varphi\})$ (as T^+) to obtain T_1 (as T^-).

Boundedly Axiomatizable Theories

Theorem

For any $n \in \omega$ and any theory T (not necessarily complete):

- 2 $\operatorname{Mod}(T) \in \Sigma_n^0 \Rightarrow T$ is Σ_n -axiomatizable.
- **3** Mod(T) is Π_n^0 -complete $\iff T$ is Π_n -axiomatizable but not Σ_n -axiomatizable.
- 4 T is Σ_n -axiomatizable $\Rightarrow \operatorname{Mod}(T) \in \Pi^0_{n+1}$.

Proof.

- 1 (\Rightarrow) Apply the corollary to T and $\Gamma = \Pi_n$ to obtain T_0, T_1 . Then use the first lemma with $T^+ = T_0, T^- = T_1$.
- **2** Similar to the previous point: $\Gamma = \Sigma_n, T^+ = T_1, T^- = T_0.$
- **3** Follows directly from the previous two points.
- **4** Note that the conjunction of T is an infinitary Π_{n+1} sentence.

Examples

Examples showing the Σ_n result is "tight":

Remark. Using Marker's extension, one can make these work for larger values of n.

Example

Let \mathcal{L} consist of just one unary relation P, and T says P is infinite and coinfinite. Then T is Σ_1 -axiomatizable and \aleph_0 -categorical (thus complete). Mod(T) is Π_2^0 -complete. [In fact, by our convention, Mod $(T) \in \Sigma_2^0 \Rightarrow \text{Mod}(T) = \emptyset$.]

Example

 $T = \text{Th}(2 \cdot \mathbb{Q} + 1 + \mathbb{Q}, <, S)$ is axiomatizable by a single Σ_3 sentence and \aleph_0 -categorical. Mod(T) is Σ_3^0 -complete.

Example

Use a 2-sorted language to combine a $\Sigma_2 - \Pi_3^0$ example and a $\Sigma_3 - \Sigma_3^0$ example: this gives a $\Sigma_3 - \Delta_4^0$ (strict) example. While infinitary logic is more expressive than first-order logic, it does not do so more efficiently (in terms of quantifier complexity).

Theorem (Keisler 1965; Harrison-Trainor/Kretschmer 2023)

If a finitary formula φ is equivalent to an infinitary Π_n formula ψ , then φ is actually equivalent to a finitary Π_n formula.

Proof.

By compactness, it suffices to show $T = \{\varphi\}$ is Π_n -axiomatizable. This is immediate as $Mod(T) = Mod(\psi)$ is Π_n^0 .

For the continuous reduction we saw before, we seem to need the oracle $C \oplus R$, where C is the Borel code of the set we are trying to reduce, and R is a Scott set suitable for T (and each T_n).

- For the Π^0_{ω} case, seem to use $C \oplus (R \oplus T \oplus (\bigoplus_n T_n))'$ directly?
- Is this necessary, especially R?

Definition (Effective Wadge Reducibility)

 $X \subseteq \omega^{\omega}$ effectively Wadge reduces to $Y \subseteq \omega^{\omega}$ if there exists a Turing operator Φ such that for every Borel code C of X and every $x \in \omega^{\omega}$, $x \in X \iff \Phi^{C \oplus x} \in Y$. If C can be dropped above, we say X is computably reducible to Y.

Theorem

There are complete theories T with $Mod(T) \Pi^0_{\omega}$ -complete under Wadge reducibility, but not Σ^0_2 -hard under effective Wadge reducibility.

In fact T can taken to be any completion of $I\exists_1^\leq$, induction for bounded existential formulas (in the language of arithmetic). Such theories are important because they exhibit the Tennenbaum phenomenon:

Fact (Wilmers)

Any nonstandard model of $I\exists_1^{\leq}$ is not computable.

Definition

 $I(T)\subseteq \omega$ is the set of all indices of computable functions computing a model of T.

If Mod(T) is Σ_n^0 -hard for computable reducibility then I(T) is Σ_n^0 -hard for *m*-reduction.

Proof.

Consider a Σ_n^0 set $S \subseteq \omega$ and define $C(S) = \{X \in \omega^{\omega} | X(0) \in S\} \subseteq \omega^{\omega}$, which is Σ_n^0 . Let Φ be an effective Wadge reduction from C(S) to Mod(T). Let $\mathbf{x} \in \omega^{\omega}$ be given by $\mathbf{x} = (x, 0, 0, 0, \cdots)$. Define a computable function $f : \omega \to \omega$ where f(x) is an index of the computable set $\Phi(\mathbf{x})$. Then f is an m-reduction from S to I(T), as

$$x\in S\iff \mathbf{x}\in C(S)\iff \Phi(\mathbf{x})\in \mathrm{Mod}(T)\iff f(x)\in I(T).$$

If T is a consistent theory that contains $I\exists_1^{\leq}$, then I(T) is not Σ_2^0 -hard for *m*-reduction.

Proof.

If not, for a given Σ_2^0 -complete set A there is a computable function f such that for all $n \in \omega$, $\Phi_{f(n)} \models T \iff n \in A$. If T is not contained in the theory of true arithmetic, then T has no computable model, a contradiction. Otherwise, the above shows that $I(\mathbb{N})$ is Σ_2^0 -hard. However $I(\mathbb{N})$ is Π_2 , as \mathbb{N} has a computable infinitary Π_2 Scott sentence, a contradiction.

Combining the previous two lemmas immediately gives the theorem, noting that T cannot be boundedly axiomatizable by Enayat/Visser.

- Characterize the Wadge degrees (and the difference degrees) occupied by Mod(T)?
 In particular, how do they differ from the degrees that are Scott complexities?
- Can more be said about the Π^0_{ω} case when T is incomplete (and not sequential)?
- More analysis on oracles?

- [1] Uri Andrews et al. The Borel complexity of the class of models of first-order theories. In preparation.
- [2] Ali Enayat and Albert Visser. Incompleteness of boundedly axiomatizable theories. 2024. arXiv: 2311.14025 [math.LO].
- [3] Alexander S. Kechris. Classical descriptive set theory. Vol. 156. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, pp. xviii+402. ISBN: 0-387-94374-9. DOI: 10.1007/978-1-4612-4190-4. URL: https://doi.org/10.1007/978-1-4612-4190-4.

Thank you for listening!