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Distance sets

Let E ⊆ Rn. The distance set of E is

∆E = {|x − y | | x , y ∈ E}.

More generally, if x ∈ Rn, the pinned distance of E w.r.t. x is

∆xE = {|x − y | | y ∈ E}.
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Distance sets

When E is a finite set, Erdös conjectured that |∆E | is at least (almost) linear in terms of |E |.
In a breakthrough paper, Guth and Katz proved this in the plane.

Still an important open problem for Rn with n ≥ 3.

Falconer posed an analogous question for the case that E is infinite, known as Falconer’s
distance set problem.

If E ⊆ Rn has dimH(E ) > n/2, then ∆E has positive measure.

Still open in all dimensions.

Guth, Iosevich, Ou and Wang, proved that if E ⊆ R2 and dimH(E ) > 5/4, then
µ(∆E ) > 0.
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Distance sets

Substantial progress has been made in a slightly different direction, on the Hausdorff
dimension of pinned distance sets in the plane for “many” x ∈ E .

Shmerkin proved that, if dimH(E ) > 1 and dimH(E ) = dimP(E ), then dimH(∆xE ) = 1.

Liu showed that, if dimH(E ) = s ∈ (1, 5/4), then dimH(∆xE ) ≥ 4
3s −

2
3 .

Shmerkin improved this bound when dimH(E ) = s ∈ (1, 1.04), by proving that

dimH(∆xE ) ≥ 2/3 + 1/42 ≈ 0.6904

S. proved that, for any E with dimH(E ) > 1,

dimH(∆xE ) ≥ dimH(E)
4 + 1

2
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Our results

Let E ⊆ R2 be analytic and 1 < d < dimH(E ).

There is a subset F of full dimension such that, for all x ∈ F ,

dimH(∆xE ) ≥ d(d−4)
d−5

This improves the best known bounds when dimH(E ) ∈ (1, 1.127).

For all x outside a set of dimension 1

dimH(∆xE ) ≥ dimP(E)+1
2 dimP(E) .

If dimP(E ) < d(3+
√
5)−1−

√
5

2 , then for all x in a subset of full dimension dimH(∆xE ) = 1.

There is a point x ∈ E such that

dimP(∆xE ) ≥ 12−
√
2

8
√
2
≈ 0.9356

Improves (slightly) the Keleti-Shermkin bound for packing dimension.
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Regularity results

We can generalize the problem, by considering a pinned set X , and a test set Y , and
investigating

supx∈X dimH(∆xY ).

We proved that, under some regularity assumptions, the distance sets achieve maximal
dimension.

1 If Y is analytic, with dimH(Y ) > 1 and dimP(Y ) < 2 dimH(Y )− 1. Then, for any subset
X with dimH(X ) > 1,

dimH(∆xY ) = 1.

for all x ∈ X outside a set of (Hausdorff) dimension one.
2 If Y is analytic with dimH(Y ) > 1, and X satisfies dimH(X ) = dimP(X ) > 1, then there

is a subset F ⊆ X such that,
dimH(∆xY ) = 1,

for all x ∈ F .
D. M. Stull (University of Chicago) Pinned Distance Sets 6 / 20



Kolmogorov complexity

Fix a universal Turing machine U. Let x ∈ R and r ∈ N. The Kolmogorov complexity of x
at precision r is

Kr (x) = minimum length input π ∈ {0, 1}∗ such that U(π) = x�r ,

where x�r is the first r bits in the binary representation of x .

Can think of U as a computer.

Can think of π as a program written in, e.g., Python.

Let y ∈ R. The Kolmogorov complexity of x at precision r given y at precision s is

Kr ,s(x | y) = minimum length input π ∈ {0, 1}∗ such that U(π, y�s) = x�r .
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Kolmogorov complexity

For every x ∈ Rn and r ∈ N, 0 ≤ Kr (x) ≤ nr + O(log r).

If x is rational, then Kr (x) = O(log r)
Almost every point satisfies Kr (x) = r − O(log r) for every r ∈ N. We call these points
random.

Symmetry of information: For every x ∈ Rn, y ∈ Rm, and r , t ∈ N,

Kr ,t(x , y) = Kt(y) + Kr ,t(x | y) + O(log r + log t).

We can relativize the definitions in the natural way to get KA
r (x),KA

r ,t(x | y), . . . for any
oracle A ⊆ N.
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Effective dimension

Let x ∈ Rn. The (effective Hausdorff) dimension of x is

dim(x) = lim inf
r→∞

Kr (x)
r .

The (effective) packing dimension of x is

Dim(x) = lim sup
r→∞

Kr (x)
r .

0 ≤ dim(x) ≤ Dim(x) ≤ n.

Almost every point satisfies dim(x) = Dim(x) = n.

If x is rational, then dim(x) = Dim(x) = 0.
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Point-to-set principle

Theorem (J. Lutz and N. Lutz)

For every set E ⊆ Rn,

dimH(E ) = min
A⊆N

sup
x∈E

dimA(x) and dimP(E ) = min
A⊆N

sup
x∈E

DimA(x).

The Hausdorff dimension of a set is characterized by the (effective) dimension of the
points in the set.

Allows us to use computability to attack problems in geometric measure theory.
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Pinned distance sets using effective dimension

Theorem (Fiedler, S.)

Let X ,Y ⊆ R2 such that Y is analytic, with 1 < dimH(Y ), dimH(X ). Then there is a subset
F ⊆ X of full dimension, such that, for all x ∈ F ,

dimH(∆xY ) ≥ d
(

1− (D−1)(D−d)
2(D2+D−1)−2d(2D−1)

)
,

where d = min{dimH(X ), dimH(Y )} and D = max{dimP(X ), dimP(Y )}.

We reduce our main theorem on the Hausdorff dimension of pinned distance sets to this
pointwise analog.

1 Orponen’s theorem on radial projections.

2 Point-to-set principle.

D. M. Stull (University of Chicago) Pinned Distance Sets 11 / 20



Pinned distance sets using effective dimension

Theorem (Fiedler, S.)

Suppose that x , y ∈ R2, e1 = y−x
|y−x | satisfy the following.

(C1) dim(x), dim(y) > 1

(C2) K x
r (e1) ≈ r for all r .

(C3) K x
r (y) ≈ Kr (y) for all sufficiently large r .

(C4) Kr (e1 | y) ≈ r for all r .

Then

dimx(|x − y |) ≥ d
(

1− (D−1)(D−d)
2(D2+D−1)−2d(2D−1)

)
,

where d = min{dim(x), dim(y)} and D = max{Dim(x),Dim(y)}.
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Pointwise setting

We fix x , y ∈ R2 satisfying the conditions. To get a lower bound on dimx(|x − y |), we show
the analogous bound at each precision (scale). Fix a precision r ∈ N.

1 Symmetry of information: proving a lower bound on K x
r (|x − y |) is equivalent to

establishing an upper bound on K x
r (y | |x − y |).

How many bits are needed to specify (a 2−r -approximation of) y if you know
(2−r -approximations of) x and |x − y |.

2 A 2−r -approximation of |x − y | gives an annulus of thickness 2−r . We need to specify
where y is on this annulus (trivial bound - give r bits).

3 Use an induction on scales approach - find a “nice” sequence of precisions
r1 < r2 < . . . rk = r . To specify y to precision r , first specify to precision r1, using this to
specify y to precision r2, and so on.

4 We choose our precisions based on the behavior of the complexity function Ks(y).
When the complexity is growing very quickly (slope at least 1), we are able to show that
K (|x − y |) is growing at a rate of 1 (best possible).
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Complexity of y increases slowly

Suppose that between precisions ri and ri+1, the complexity of y is increasing slowly (much
less than slope 1)

Want to specify y up to precision ri+1,
given x and |x − y | and given y up to
precision ri .

Want to show that y is essentially the
only point in the annulus whose
complexity is growing slowly.

That is, if z is in the annulus, then either
z is very close to y , or the complexity of z
is growing quickly.
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Complexity of y increases slowly

Goal: Prove the complexity of other points on annulus are growing more quickly than that of
y .

For any e ∈ S1 and x ∈ R2,
pex = e · x .

Reduce this to projections.

Main idea: we can compute x if we know
y , z and the position of x along the line
with direction e⊥2 containing x .

K (x | y) . K (z | y) + K (x | pe2x , e2)

Thus, if complexities of z and y are
growing very slowly, then the complexity
of x is growing slowly.

Goal is to prove that K (x | pe2x , e2) is
small.
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Reducing to projections

Suppose that |x − z | = |x − y |, and let s := − log ‖y − z‖.

Kr−s(x | y) . Kr (z | y) + Kr−s,r−s,r ,r (w , e2 | y , z) + Kr−s,r ,r (x | w , e2)

. Kr (z | y) + Kr−s(x | pe2x , e2).

We know that Kr−s(x | y) & d(r − s). So, if

the complexity of z increases at least as slowly as that of y , and

we can get a strong enough upper bound on Kr−s(x | pe2x , e2)

we have a contradiction - i.e., no such z exists on the annulus.
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Projection theorem

We want to bound Kr (x | pex , e) - the complexity of computing (an approximation of) x
given (approximations of) pex and e.

When the direction e is random relative to x , i.e., K x
r (e) ≈ r , we know that

Kr (x | pex , e) ≈ Kr (x)− r .

This is the pointwise analog of Marstrand’s projection theorem.

Unfortunately we don’t have enough control over the direction to directly apply this result.

However, we do have enough control to ensure that e is random up to some initial
precision:

K x
s (e) ≈ s,

where s = − log |z − y |.
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Projection theorem

Theorem (Fiedler, S.)

Let x ∈ R2, e ∈ S1, ε ∈ Q+, C ∈ N, A ⊆ N, and t, r ∈ N. Suppose that r is sufficiently large,
and that the following hold.

(P1) 1 < d ≤ dimA(x) ≤ DimA(x) ≤ D.

(P2) t ≥ d(2−D)
2 r .

(P3) K x ,A
s (e) ≥ s − C log s, for all s ≤ t.

Then

KA
r (x | pex , e) ≤ max{D − 1

D
(dr − t) + KA

r (x)− dr ,KA
r (x)− r}+ εr .
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Complexity of y increases slowly

Goal: Prove the complexity of other points on annulus are growing more quickly than that of
y .

For any e ∈ S1 and x ∈ R2,
pex = e · x .

We can compute x if we know y , z and
the position of x along the line with
direction e⊥2 containing x .

K (x | y) . K (z | y) + K (x | pe2x , e2)

Thus, if complexities of z and y are
growing sufficiently slowly, we have a
contradiction.
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The End

Thank you!
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