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A mathematical problem can be viewed as a statement of the form

∀X (φ(X ) → ∃Y ψ(X ,Y )),

where φ and ψ are formulas in the (two-sorted) language
L = {+, ·, <, 0, 1,∈} using only number quantifiers.

Here, X is called an instance, and Y a solution of the problem.

Two standard examples are:
Weak König’s Lemma: X is an infinite binary tree by φ(X ),
and Y is an infinite path through X by ψ(X ,Y );
Ramsey’s Theorem for Pairs and 2 Colors: X is a 2-coloring of
unordered pairs of numbers by φ(X ), and Y is an infinite
homogeneous set by ψ(X ,Y ).

We consider mathematical problems from three angles: the proof-
theoretic, the model-theoretic and the computability-theoretic one.

Steffen Lempp Minimal covers in the Weihrauch degrees



Introduction
The degree 1

Mathematical Problems
Weihrauch Reducibility

The proof-theoretic angle: Reverse Mathematics
We work over a weak base theory, usually RCA0 (PA− with
Σ0

1-Induction and ∆0
1-Comprehension, essentially codifying

computable mathematics), and measure the proof-theoretic
strength of mathematical problems in the usual proof calculus.

E.g., one can show that Weak König’s Lemma and Ramsey’s
Theorem for Pairs and 2 colors are independent over RCA0.
Ramsey’s Theorem for Pairs with 2 colors and with 3 colors are
equivalent, but strictly weaker than Ramsey’s Theorem for Triples
with 2 colors.

On the one hand, this approach is less restrictive: We can use
assumptions repeatedly.
But our proof (thinking model-theoretically, i.e., semantically) has
to work for any model of arithmetic, including non-standard
models, which may not satisfy full (first-order) induction.
(E.g., the Infinite Pigeonhole Principle does not follow from RCA0.)
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The model-theoretic angle: P ≤ω Q
Instead of considering all models of our theory, we can only
consider models with a standard first-order part (so-called
ω-models, with an (often countable) second-order part S ⊆ P(ω)).

We then work with semantic implication: A problem P is reducible
to a problem Q if every model (ω,S) of Q is a model of P.

This approach has not been explored very much. (It is sometimes
called the ω-model reducibility and denoted as Q |=ω P.)
It avoids “pesky” problems with induction.
E.g., the Infinite Pigeonhole Principle is just outright true
(in ω-models of RCA0).
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The (less restrictive) computability-theoretic approach:
Call P computably reducible to Q (P ≤c Q) if

every P-instance X computes a Q-instance X̂ , and
every Q-solution Ŷ to this X̂ , together with X , computes a
P-solution Y to X .

This approach is more restrictive: We can use assumptions only
once but can argue computability-theoretically.
(If Y can be computed only from Ŷ without using X , we write
P ≤sc Q.)

E.g., now Ramsey’s Theorem for Pairs with 3 colors does not
computably reduce to Ramsey’s Theorem for Pairs with 2 colors.
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The (more restrictive) computability-theoretic approach:
Weihrauch reducibility

We restrict the previous approach by requiring uniformity:
P ≤W Q if there are Turing functionals Φ and Ψ (the forward and
the backward functionals) such that

every P-instance X computes a Q-instance X̂ = Φ(X ), and
every Q-solution Ŷ to this X̂ , together with X , uniformly
computes a P-solution Y = Ψ(Ŷ ⊕ X ) to X .

This is the most restrictive approach: We are allowed to query Q
only once, and only uniformly so.
(If Y can be computed only from Ŷ as Ψ(Ŷ ), we write P ≤sW Q.)

E.g., we have DNR2 ≤c DNR3 but DNR2 ≰W DNR3.
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Much research about Weihrauch reducibility concerns applications,
often via “representing” problems in other spaces via “names”
in NN.

However, we consider the Weihrauch degrees as a degree structure:
So we change notation:

Consider problems as partial multi-valued functions
f :⊆ NN ⇒ NN, mapping problems x satisfying φ(x) to the set of
all solutions y satisfying ψ(x , y).

We denote the set of partial multi-valued functions f :⊆ NN ⇒ NN

by PF , and the quotient (PF/ ≡W ,≤) (with the induced partial
order) by W.
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Basic Facts about W:

W is a partial order with least element 0 = {∅}.
Under AC, W has no greatest (or even maximal) element.

W has size 2c = 22ℵ0 .
In fact, every Weihrauch degree ̸= 0 has size 2c.

Every nontrivial lower cone in W has size 2c.

Every nontrivial maximal antichain in W must be uncountable.
There is a maximal antichain of size 2c, but nothing more is
known.

Every well-ordered ascending chain in W of countable cofinality
has an upper bound.
For every κ ≤ c of uncountable cofinality, there is an ascending
chain in W of type κ without upper bound.
(This is open for c < κ ≤ 2c.)
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Quite a few natural operations on PF have been defined, some of
which are degree-theoretic, and some of which are not.

The following operations of meet and join make W into a
distributive lattice:

f ⊔ g :⊆ NN ⇒ NN, (f ⊔ g)(i , x) =
{

{0} × f (x), if i = 0,
{1} × g(x), if i = 1;

f ⊓ g :⊆ NN ⇒ NN, (f ⊓ g)(x , y) = ({0} × f (x)) ∪ ({1} × g(y)).

The next “natural” degree-theoretic question concerns the
(un)decidability and complexity of the first-order theory of W.

The Weihrauch degree 1 = deg(id) of the identity function

id : NN → NN, x 7→ x

plays a special role as we will now explore.
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The Lattice of the Medvedev Degrees:

A mass problem is a subset A ⊆ NN.

A mass problem A is Medvedev reducible to a mass problem B
(A ≤M B) if there is a Turing functional Φ such that Φ(B) ⊆ A.
(So, in particular, Φ(x) is a total function for all x ∈ B.)
Denote the quotient (P(NN)/ ≡M ,≤) of Medvedev degrees by M.

We next define, for each A ⊆ NN, the function dA :⊆ NN → NN

mapping each x ∈ A to 0ω. (Note dA ≡W id ↾A.)

Then the map d : P(NN) → PF , A 7→ dA induces an embedding
of Mop (the Medvedev degrees under the reverse ordering) into W
(by Higuchi/Kihara 2013, following Brattka/Gherardi 2011).
This embedding is onto the cone W(≤ 1) in the Weihrauch
degrees below degW (id).

So note Mop ∼= W(≤ 1) = {degW (id ↾A) | A ⊆ P(NN)}.
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Question (Pauly 2020)
Is 1 = degW (id) definable in (W,≤)?

Theorem (Lempp, J. Miller, Pauly, M. Soskova, Valenti)
The degree 1 is definable in (W,≤) in two ways:

1 1 is the greatest degree that is a strong minimal cover in W.
2 1 is the least degree such that the cone above it is dense.

Theorem (Lewis-Pye, Nies, Sorbi 2009, Shafer 2011)
The first-order theory of (M,≤) is as complicated as third-order
arithmetic.

Corollary (Lempp, J. Miller, Pauly, M. Soskova, Valenti)
The first-order theory of (W,≤) (and of (W(≤ 1),≤)) is as
complicated as third-order arithmetic.
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Proof Sketch (1):

For x ∈ NN, let {x}+ = {(e)⌢y | Φe(y) = x and y ≰T x}.

Theorem (Dyment 1976)
In the lattice of the Medvedev degrees (M,≤,∧,∨):

B is a minimal cover of A iff there is x ∈ A with
A ≡M B ∧ {x} and B ∧ {x}+ ≡M B.
The strong minimal covers are precisely of the form
(degM({x}), degM({x}+)) for any x ∈ NN.

So being the Medvedev degree of a singleton (i.e., being a degree
of solvability) is definable in M.

Corollary
1 = degW (id) is a strong minimal cover of degW (id ↾NREC),
where NREC = degM({0ω}+) = degM({x ∈ NN | x >T 0ω}).

Steffen Lempp Minimal covers in the Weihrauch degrees



Introduction
The degree 1

The cone below deg(id)
The definability of deg(id)

Theorem (Lempp, J. Miller, Pauly, M. Soskova, Valenti)
In the Weihrauch degrees (W,≤):

degW (g) is a minimal cover of degW (f ) iff g ≡W f ⊔ id↾{x}
for some x ∈ NN with dom(f ) ≰M {x} and dom(f ) ≤M {x}+.
degW (g) is a strong minimal cover of degW (f ) iff there is
x ∈ NN with g ≡W id ↾{x} and f ≡W id ↾{x}+.

In particular, degW (id) is the greatest strong minimal cover in W,
and every Weihrauch degree has at most one strong minimal cover.
Our proof critically relies on the following

Lemma
If degW (g) is a minimal cover of degW (f ), then there is h
with | dom(h)| = 1 such that g ≡W f ⊔ h.
If degW (g) is a strong minimal cover of degW (f ), then there
is h ≡W g with | dom(h)| = 1.
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Proof of “If degW (g) is a minimal cover of degW (f ),
then there is h with | dom(h)| = 1 such that g ≡W f ⊔ h.”

Construct ξ :⊆ NN → N as ξ =
⋃
s∈ω

ξs for finite functions ξs .

Define Gξ(x , ξ(x)) = g(x).

Then Gξ ≤W g for all ξ. We try to ensure f <W f ⊔ Gξ <W g by
letting ξ “scramble” the domain of g .

At odd stages, we try to ensure Gξ ≰W f via the pair (Φe ,Φi).

At even stages we try to ensure g ≰W f ⊔ Gξ via the pair (Φe ,Φi).

So this construction has to start failing at some finite stage s with
some ξs .
This gives g ≡W f ⊔ Gξs for a finite function Gξs .
But Gξs ≡W

⊔
in hi for functions hi with | dom(hi)| = 1.

Since degW (g) is a minimal cover of degW (f ),
we have g ≡W f ⊔ hj for some j < n.
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Proof Sketch (2):

We rely on the following

Lemma
The following are equivalent for f ∈ PF :

id ≰W f ;
There are g , h ∈ PF such that f ≤W g <W h and degW (h)
is a minimal cover of degW (g).

Thus, in particular, the Weihrauch degrees ≥ 1 are dense, and 1 is
least such.
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Thank you!
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