A Jump in the Weihrauch degrees

Steffen Lempp

University of Wisconsin-Madison

March 19, 2024

(joint work with Andrews, Marcone, J. Miller and Valenti)

A mathematical problem can be viewed as a statement of the form

 $\forall X (\varphi(X) \to \exists Y \psi(X, Y)),$

where φ and ψ are formulas in the (two-sorted) language $\mathcal{L}=\{+,\cdot,<,0,1,\in\}\text{ using only number quantifiers}.$

Here, X is called an *instance*, and Y a *solution* of the problem.

Two standard examples are:

- Weak König's Lemma: X is an infinite binary tree by φ(X), and Y is an infinite path through X by ψ(X, Y);
- Ramsey's Theorem for Pairs and 2 Colors: X is a 2-coloring of unordered pairs of numbers by φ(X), and Y is an infinite homogeneous set by ψ(X, Y).

This talk focuses on the Weihrauch degrees as a degree structure, rather than applications to measure the computational complexity of "ordinary" mathematical problems. So will restrict ourselves to $X, Y \in \mathbb{N}^{\mathbb{N}}$ for the rest of the talk. Consider problems as partial multi-valued functions $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, mapping problems x satisfying $\varphi(x)$ to the set of all solutions y satisfying $\psi(x, y)$.

Definition (Weihrauch reducibility)

Let $f,g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ be partial multi-valued functions. Then f is *Weihrauch reducible to* g (written $f \leq_{\mathrm{W}} g$) if the problem of computing f can be computably and uniformly solved by using for each instance of f a single computation of g in the following sense:

There are Turing functionals Φ and Ψ such that

- $\Phi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ computes from every $p \in \operatorname{dom}(f)$ some $q \in \operatorname{dom}(g)$; and
- $@ \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computes from } p \text{ and every } r \in g(q) \\ \text{ some element of } f(p).$

Basic Facts:

Let $\mathcal{W} = (\mathcal{PF} / \equiv_W, \leq)$ (for the set \mathcal{PF} of partial multi-valued functions $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$), under the partial order induced by \leq_W .

 \mathcal{W} is a partial order with least element $\mathbf{0} = \{\emptyset\}$. Under AC, \mathcal{W} has no greatest (or even maximal) element.

$${\mathcal W}$$
 has size $2^{\mathfrak c}=2^{2^{leph_0}}$

In fact, every Weihrauch degree $\neq \mathbf{0}$ has size 2^c.

Every nontrivial lower cone in $\mathcal W$ has size $2^{\mathfrak c}$.

Every nontrivial maximal antichain in \mathcal{W} must be uncountable. There is a maximal antichain of size $2^{\mathfrak{c}}$, but nothing more is known. Every well-ordered ascending chain in \mathcal{W} of countable cofinality has an upper bound.

For every $\kappa \leq \mathfrak{c}$ of uncountable cofinality, there is an ascending chain in \mathcal{W} of type κ without upper bound.

(This is open for $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$.)

In 2012, Brattka, Gherardi and Marcone introduced an operation they called jump on partial multi-valued functions.

Their jump f' of f takes as input a sequence of elements of $\mathbb{N}^{\mathbb{N}}$ converging to some input for f; and the output is the output of f.

For many f that they were interested then, they proved $f <_W f'$, but especially at higher levels of the Weihrauch lattice, there are quite a few examples of interesting g such that $g' \equiv_W g$: So the jump sometimes does not "jump" (i.e., strictly increase)!

Moreover, the jump is not degree-theoretic:

There exist f and g such that $f \equiv_W g$ while $f' \not\equiv_W g'$.

So the jump is not weakly monotone: There exist f and g such that $f \leq_W g$ while $f' \not\leq_W g'$.

(However, the jump is weakly monotone with respect to *strong* Weihrauch reducibility.)

So Marcone and Valenti started looking for a "better-behaved" jump operation.

 Background
 Weihrauch Lattice

 A new jump operation
 Searching for a Jump Operation

For a partial order $\mathcal{P} = (P, \leq_P)$, we define a *jump operation* on \mathcal{P} to be a function $j : P \to P$ that is

- strictly increasing, i.e., $p <_P j(p)$ for every $p \in P$; and
- weakly monotone, i.e., if p ≤_P q then j(p) ≤_P j(q) for all p, q ∈ P.

Using the Axiom of Choice, one can show that every upper semilattice without maximum, and in particular the Weihrauch lattice, has an "abstract" jump operation.

But we wanted a "natural" jump operation on the Weihrauch lattice that satisfies the above conditions.

Note: In preliminary work with Raghavan, I have a sketch of an argument that ZF alone does not suffice to ensure a jump operation on every upper semilattice without maximum.

We first need the following

Definition (totalization)

The *totalization* (or *total continuation*) of $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ is the total (multi-valued) function $\mathsf{T}f : \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ defined by

$$\mathsf{T}f(p) = egin{cases} f(p) & ext{if } p \in \mathsf{dom}(f); \ \mathbb{N}^{\mathbb{N}} & ext{otherwise.} \end{cases}$$

The totalization has been before used; e.g., the Weihrauch degree of $TC_{\mathbb{N}^{\mathbb{N}}}$ is relevant for functions related to the system ATR_0 .

The totalization is not a degree-theoretic operation and, even for non-total f, it is possible that $Tf \equiv_W f$.

The totalization comes close to giving a natural jump operation, but it requires a small tweak:

Definition (totalizing jump)

The Weihrauch degree of the *totalizing jump*, or *tot-jump*, of f is the maximum of the degrees of Tg for all $g \equiv_W f$. (We denote it by tJ(f).)

This maximum exists since it can also be defined as follows: For $x = (e, i)^{\frown} p \in \mathbb{N}^{\mathbb{N}}$, define

$$\mathsf{tJ}(f)(x) = \begin{cases} \{ \Phi_i(p,q) \mid q \in f \Phi_e(p) \} & \text{if } \Phi_e(p) \in \mathsf{dom}(f) \text{ and} \\ & (\forall q \in f \Phi_e(p))(\Phi_i(p,q) \downarrow) \\ \mathbb{N}^{\mathbb{N}} & \text{otherwise} \end{cases}$$

This is indeed a jump operation:

Theorem

- For every f, $f <_{W} tJ(f)$.
- 2 For every f and g, if $f \leq_W g$ then $tJ(f) \leq_W tJ(g)$.

Proof Sketch: $f \leq_W tJ(f)$ and weak monotonicity are easy. To show $tJ(f) \nleq_W f$, define first $d : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by

$$d(p)(0) := p(0) + 1$$
, and $d(p)(n) := p(n)$ for $n > 0$.

Then define a new function $f_d \equiv_W tJ(f)$ (this requires a proof!) by

$$f_d(x) := \begin{cases} \{ d\Phi_i(x,q) \mid q \in f\Phi_e(x) \} & \text{if } \Phi_e(x) \in \text{dom}(f) \text{ and} \\ (\forall q \in f\Phi_e(x))(\Phi_i(x,q) \downarrow), \\ \mathbb{N}^{\mathbb{N}} & \text{otherwise.} \end{cases}$$

Suppose $f_d \leq_W f$ via Φ_e and Φ_i . For $p \in \mathbb{N}^{\mathbb{N}}$, let $y = (e, i)^{\frown} p$. So $y \in \text{dom}(f_d)$; $\Phi_e(y) \in \text{dom}(f)$; and $(\forall q \in f \Phi_e(y))(\Phi_i(y, q) \downarrow)$.

Now set $X = \{ \Phi_i(y, t) \mid t \in f \Phi_e(y) \} \neq \emptyset$, so there is $q \in f \Phi_e(y)$ with $\Phi_i(y, q) \notin d(X) = \{ d\Phi_i(y, t) \mid t \in f \Phi_e(y) \} = f_d(y)$. Another characterization of the totalizing jump is as follows:

Definition

Let
$$W_{\Pi_2^0 \to \Pi_1^0} :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$$
 be the problem defined as

$$\mathcal{W}_{\Pi_2^0
ightarrow \Pi_1^0}(p) := \{q \in \mathbb{N}^{\mathbb{N}} \mid orall i \left(q(i+1) > q(i) ext{ and } p(q(i)) = 0
ight)\}.$$

So the domain of $W_{\Pi_2^0 \to \Pi_1^0}$ is the set of all functions p with infinitely many zeroes, and the outputs are increasing listings of positions of infinitely many of these zeroes. (So $W_{\Pi_2^0 \to \Pi_2^0}$ converts a Π_2^0 -question into a Π_1^0 -question.)

Theorem

For every
$$f$$
, we have $tJ(f) \equiv_W T(W_{\Pi_2^0 \to \Pi_1^0} * f * W_{\Pi_2^0 \to \Pi_1^0})$.
(Here, $g * h$ is the sequential product of h and then g .)

But $W_{\Pi_2^0 \to \Pi_1^0}$ cannot be dropped on either side of f!

We have far more than for "usual jumps" on degree structures:

Theorem

For every $f, g, f \leq_W g$ if and only if $tJ(f) \leq_W tJ(g)$. Thus tJ is an (injective!) endomorphism on the Weihrauch degrees.

Here are some specific examples of totalizing jumps:

Theorem

- $tJ(\emptyset) = id;$
- $tJ(id)(p) = \{ q \mid \exists m \forall n > m p(n) = 1 \iff \exists n q(n) > 0 \};$
- $tJ(C_{\mathbb{N}^{\mathbb{N}}}) = TC_{\mathbb{N}^{\mathbb{N}}}.$

Moreover, LPO $\leq_{W} tJ(id)$ and $\widehat{tJ(id)} \equiv_{W} lim$. (Here LPO : $\mathbb{N}^{\mathbb{N}} \to \{0, 1\}$ is defined by LPO(p) = 0 iff $p \neq 0^{\mathbb{N}}$; and \hat{f} is the countable parallelization of f.)

We also have explicit descriptions of $tJ^n(id)$ for every n.

Main Open Question

Characterize the range of the totalizing jump on the Weihrauch degrees.

We are very far from a satisfactory answer. In fact, while our definition of the totalizing jump is Δ_2^1 , we would like to know if we can lower that complexity to Π_1^1 , say, given that we can prove it cannot be Σ_1^1 .

But we do have some interesting properties of the totalizing jump:

Theorem

For every f, tJ(f) is total and join-irreducible but can be meet-reducible.

However, not all total join-irreducible Weihrauch degrees are in the range of tJ, e.g., (the degree of) $TC_{\mathbb{N}}$ is not in the range of tJ.

Here are some more properties of the totalizing jump:

Theorem

For every $g \neq \emptyset$, there exists $f <_W g$ such that $tJ(f) \nleq_W g$.

Theorem

For every f, there exists h s.t. $f <_W h <_W tJ(f)$.

Theorem

If LPO × $g \leq_W tJ(f)$, then $g \leq_W f$. In fact (with Pauly): If DIS × $g \leq_W tJ(f)$, then $g \leq_W f$. (Here, DIS : $\mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$, $p \mapsto \{ q \mid U(p) \neq q \}$ for a fixed universal partial computable functional $U :\subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$.)

Corollary

If DIS $\times g \leq_W g$, then g is not in the range of tJ.

Background A new jump operation

Thank you!