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Introduction: What



Problems and Weihrauch reduction

Weihrauch reduction is a way of comparing the computational strength of

various “problems”, represented as partial multifunctions on NN.

We may think of Weihrauch reduction f ≤W g as a computation of

values of f , given the ability to query g as an oracle exactly once.

Formally, we have this reduction if there are computable functionals

(Φ,Ψ) such that

1. α ∈ dom f ⇒ Φ(α) ∈ dom g

2. for any α ∈ dom f and β ∈ g(Φ(α)), we have Ψ(α, β) ∈ f (α).
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The algebras P & P]

Define P to be P(N) equipped with a binary operation (called

application) given by

AB = {n : ∃m(〈n,m〉 ∈ A ∧ Dm ⊆ B)}.

We read application as left associative (e.g. ABC means (AB)C .)

The algebra P] is the substructure of P consisting of the c.e. sets (i.e.

enumeration operators).

Dana Scott proved in [Scott, 1976] that both these algebras can interpret

the untyped lambda calculus or Schönfinkel/Curry’s combinator calculus.
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eW -problems and eW -reductions

An eW -problem is a partial multifunction from P to itself. Given

problems f , g , we say that f 6eW g if there are enumeration operators

Γ,∆ such that

1. if A ∈ dom f then ΓA ∈ dom g ,

2. and for any A ∈ dom f and X ∈ g(ΓA), ∆〈A,X 〉 ∈ f (A).

In other words, eW -reduction is just Weihrauch reduction where the

problems operate on P, and enumeration reduction (i.e. the action of

elements in P]) is our notion of computation.
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Introduction: Why



Why formulate the notion of eW -reduction?

First, enumeration operators have a robust computational structure, and

their use to study problems-as-multifunctions is intrinsically interesting.

Moreover, it’s a notion of computation that works on positive

information, potentially making some different distinctions between

common problems.
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Why formulate the notion of eW -reduction?

Second, they are related to an under-studied realizability topos.

• A topos is a category theoretic model of a kind of intuitionistic set

theory. Realizability toposes are built from a model of computation

(see [van Oosten, 2008] for an overview of the area).

• There is a realizability topos where the underlying model of

computation is enumeration reduction—the topos RT(P,P]).

• There is a strong relationship between DeW and subtoposes of

RT(P,P]) (see [Kihara, 2023]).
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Basic results about eW -reduction



The eW degrees extend the Weihrauch

Proposition. There is an embedding of the Weihrauch degrees into the

eW degrees.

Proof sketch.

• Using the injective function gr : NN → P(N), replace a Weihrauch

problem f with f̃ so that gr(α) ∈ f̃ (gr(β)) iff α ∈ f (β).

• We can replace each Turing functional in a reduction f ≤W g with

enumeration operators that witness f̃ 6eW g̃ . (Think about the

graph of the computable function ω<ω → ω<ω that defines the

functional.)

• Now we want f̃ 6eW g̃ to imply f ≤W g . Given an enumeration

operator Γ, we may pick a computable enumeration γ of Γ and

define a functional Φ such that Φ(α)(n) is found by searching longer

and longer portions of Γ and α to find when Γ(gr(α)) outputs a pair

〈n, k〉.
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The eW degrees extend the Weihrauch

This mapping is not surjective.

Let g :⊆ P⇒ P have domain consisting of a single 1-generic G , to which

every element of P is a solution. Suppose that there is a Weihrauch

problem f with g ≡eW f̃ .

Since G is quasi-minimal, and every element in the domain of f̃ is total,

Γ : dom g → dom f̃ occurring in a reduction g 6eW f̃ must send G to a

computable element.

But now a reduction f̃ 6eW g must send that computable element of

dom f̃ to G , requiring G to be a c.e. set, contradicting 1-genericity.
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The problem id

Definition. The problem id is the identity function on P.

Proposition.

1. f 6eW id if and only if there is an enumeration operator Γ such that

for all A ∈ dom f , ΓA ∈ f (A).

2. id 6eW f if and only if f has a c.e. instance.

Proof.

1. Let the reduction be witnessed by (Γ,∆); then ∆(A, ΓA) ∈ f (A) and

can be coded by a single enumeration operator.

2. ∅ is an id-instance, so if (Γ,∆) witness a reduction, Γ∅ must be a

(c.e.) f -instance.
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Closed choice problems

Definition. A computable metric space X is a separable metric space

with a listing of a dense set (pn)n∈ω such that the distance function

(n,m)→ d(pn, pm) is computable.

The closed choice problem on a complete metric space (or some

non-metric spaces) X , CX :⊆ P⇒ P, takes an encoding of an open set

with non-empty complement, and returns (the name of) an element of

that complement.
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Closed choice problems

In the Weihrauch setting, open complements of closed sets are coded by

enumerations of open balls—i.e. of pairs (n, r) representing an open ball

of radius r around pn.

In the eW setting, we may simply take the set of open balls instead of a

listing of the open balls. In the case of Baire or Cantor space, we may

equivalently represent open sets by sets of finite strings, and for N we

represent open sets by themselves.
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A first example: CP

A natural topology on P is the positive information topology: the basic

open sets are of the form Oa := {A ∈ P(N) : a ⊆ A} for a finite. (Note:

this isn’t actually a metric space.)

We may represent open sets O by a set I ⊆ N such that O =
⋃

i∈I ODi .

Proposition. CP ≡eW id .

Proof. Every closed set of P contains ∅, so the enumeration operator

coding λx .∅ computes solutions from instances.
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C− and C̃−

The eW versions of choice problems tend to fall strictly above their

Weihrauch counterparts.

For instance, C̃N <eW CN, the reduction being easy—one need only take

the graph of a function to its range, and take the CN-solution {m} to the

graph of the constant function with value m.

On the other hand, ∅ is an instance of CN, so consider two distinct

singleton closed sets A,B. Since ∅ ⊆ A,B, we must have Γ∅ ⊆ ΓA, ΓB

for any enumeration operator Γ; but the image of Γ consists of graphs of

total functions, so it has to be constant.

The arguments for CNN and C2N are similar.
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CN & UCN

The first interesting separation that develops in the eW setting concerns

CN and its restriction to singletons, UCN.

Fact. C̃N ≡eW ŨCN.

Proposition. UCN <eW CN
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CN & UCN

Proof. The reduction is immediate from the fact that unique choice is

just a restriction of closed choice.

For strictness, suppose we had a reduction CN 6eW UCN witnessed by

(Γ,∆). Then Γ∅ is the complement of a singleton, and for any other

A ∈ domCN, ΓA must both be the complement of a singleton, and a

superset of Γ∅. The only way this can happen is if ΓA = Γ∅, meaning Γ

must be constant.

Now consider {k} = ∆(∅⊕ {n}), where n ∈ Γ∅; then ∆({k} ⊕ {n})
must also contain k by monotonicity, and cannot be outputting any

subset of {k}.
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Commentary

In general, we think of instances and solutions as codes for elements of

mathematical objects (e.g. points in spaces, or closed sets of topologies).

Here we see a substantial difference in behavior depending on what

information our codes contain—positive and negative information, or just

positive.

I don’t know what this means, but it’s pretty cool.

15



C2N and WKL

We have C̃2N ≡eW W̃KL as a standard result from the Weihrauch

degrees. With positive and negative information, these are two different

representations of the same thing.

On the other hand,

Proposition. C2N |eW WKL
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C2N and WKL

Proof. Suppose in each case below that (Γ,∆), towards a contradiction,

witnesses the specified reduction.

1. (C2N 66eW WKL). Consider the set Γ∅ (∅ coding the full closed set

of Cantor space). Then Γ∅ is an infinite c.e. tree, such that for any

C2N-instance C we have Γ∅ ⊂ ΓC . So there is a 0′′-computable

path P such that ∆(C ⊕ P) ∈ C2N(C ) for any C ∈ domC2N .

Now let C be the complement of a 0′′-computable tree with no

0′′-computable paths. Then ∆(C ⊕ P) ≤e C ⊕ P ≤T 0′′. Since

∆(C ⊕ P) is a total object (elements of Cantor space are total

functions), this makes it 0′′-computable, which is impossible if

(Γ,∆) is a reduction.
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C2N and WKL

Proof. Suppose in each case below that (Γ,∆), towards a contradiction,

witnesses the specified reduction.

2. (WKL 66eW C2N). Consider the full tree T = 2<ω, and the closed set

ΓT . Again, ΓT , as a set of strings coding the complement of a

closed set, is c.e., so the closed set in question is Π0
1; moreover, it’s

a subset of every other closed set in the image of Γ.

So we fix a ∆0
2 element P ∈ ΓT . Now choose a ∆0

2 tree T with no

∆0
2 paths, and proceed as above.

In fact, for very simlar reasons, we even have WKL |eW CNN !
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Commentary

We’ve now seen that we can see that an equivalence from the Weihrauch

setting may break down in both directions, or only one.

The trend in these proofs of exploiting ⊆-monotonicity of enumeration

operators is common to many proofs in the setting.
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Some generalities about WKL & closed choice

WKL can’t reduce to any closed choice problem. We can generalize

the previous instances. This plays on the fact that the set of all trees has

a largest element under inclusion, and we can make trees of any

complexity with even more complex paths.

Unique choice problems are always weaker. There’s nothing special

about N in our analysis of CN and UCN.
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The Weihrauch degrees and eW

degrees



The W / eW relationship

Are the Weihrauch and eW degrees non-isomorphic? Is there a

first order difference between them?

The answer to this turns out to be affirmative. We start with the fact

that the Weihrauch degree of id is definable as the greatest strong

minimal cover [Lempp et al., 2023], and the degrees below id are

isomorphic to the dual of the Medvedev degrees.

If id is definable in the eW degrees with the same definition, then we

may move the question to a simpler set of problems.
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The W / eW relationship

Definition(s). Let X ,Y ⊆ P, and define X ≤D Y if and only if there is

an enumeration operator Γ such that for all A ∈ Y, ΓA ∈ X . We call the

degree system induced by ≤D the Dyment degrees, DD .

Note. This is not the definition of the Dyment degrees typically found in

the literature.

It’s not too hard to see that the eW degrees below id are isomorphic to

the dual of DD .
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The W / eW relationship

Theorem. The degree of id is definable in the eW degrees.

The proof will go through the following lemmas:

1. If a ∈ DeW is a strong minimal cover, it contains a problem with

finite domain.

1.1 There is a problem, equivalent to the one we will construct above,

with singleton domain.

2. No problem f with singleton domain and f 66eW id is a strong

minimal cover.
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The W / eW relationship

Lemma 1

If a ∈ DeW is a strong minimal cover, it contains a problem with finite

domain.

Proof

The proof proceeds similarly to that in [Lempp et al., 2023]. Suppose

that deg(f ) is a strong minimal cover of deg(h). We will construct a

problem g =
⋃

s∈ω gs by stages such that

dom g ⊆ {〈{n},A〉 : n ∈ N ∧ A ∈ dom f }, and if g had infinite domain,

we would have g <eW f and g 66eW h. When the construction fails, we

have the desired finite domain problem.

For simplicity, we will treat partial multifunctions as binary relations on P.
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The W / eW relationship

Proof (cont.)

Stage 0: g0 = ∅

Stage s + 1 = 2〈e, i〉: Here we ensure that (Γe , Γi ) is not a reduction

g 6eW h. Let k ∈ N be a number which is not banned (see below) and is

greater than any other occurring as the first component of a pair in

dom gs , and let ĝ = gs ∪ {〈{k},A,B〉 : B ∈ f (A)}.

Since ĝ is equivalent to f , we either have some 〈{n},A〉 ∈ dom ĝ with

Γe〈{n},A〉 /∈ dom h or there is a B ∈ h(Γe〈{n},A〉) such that

Γi (A,B) /∈ ĝ(〈{n},A〉). If we have such a 〈{n},A〉, we let

gs+1 = gs ∪ {〈{n},A,X 〉 : X ∈ f (A)}.
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The W / eW relationship

Proof (cont.)

Stage s + 1 = 2〈e, i〉+ 1: Here we try to ensure f 66eW g . If (Γe , Γi ) are

a reduction f 6eW gs , we have our g = gs ∈ deg(f ). Otherwise, there is

some f -instance A on which (Γe , Γi ) fails as a reduction. If

ΓeA 6= 〈{n},B〉 for some n, or if it’s in dom gs , we do nothing. If

ΓeA = 〈{n},B〉 /∈ dom gs , then we ban n from being used in any future

even step. �

Note that the odd steps are the only steps on which our diagonalizing

efforts can fail.
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The W / eW relationship

Lemma 1.1

The g constructed in the previous lemma is equivalent to a problem with

singleton domain.

Proof

If dom g = {〈{n0},A0〉, . . . , 〈{nk},Ak〉}, let g ′ = g � {〈{n0},A0〉} and

let g ′′ = g � {〈{n1},A1〉, . . . , 〈{nk},Ak〉}. Since g is constructed in such

a way that its domain contains at most one pair 〈{n},A〉 for each n, we

can build an enumeration operator that witnesses g ′ t g ′′ ≡eW g .

Since deg(g) is join-irreducible, one of g ′ or g ′′ is equivalent to g . If it’s

g ′, we are done. If it’s g ′′, we decompose it similarly; by induction, we

will eventually find the desired singleton-domain problem. �
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The W / eW relationship

Lemma 2

The degree of the problem id is the greatest strong minimal cover.

Proof

Suppose we have problems f , h where f has singleton domain{A},
f 66eW h, and f 66eW id . Then we can build a set D such that

f u χD <eW f and f u χD 66eW h.

Let D0 = ∅. At stage s + 1 = 〈e, i〉, we see if f u χDs 6eW h. If not, we

needn’t do anything. If so, note that if

Γi (〈A, {n}〉,X ) = 〈{0},B〉

with B ∈ f (A), for any n, then we can construct a reduction f 6eW h.
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The W / eW relationship

Proof (cont.)

So we must have

Γi (〈A, {n}〉,X ) = 〈{1}, j〉

for all f u χDs -instances and X ∈ h(Γe〈A, {n}〉), with j ∈ {0, 1}. Then

we add s to Ds+1 (or don’t) so as to ensure χDs+1 disagrees on the s-th

bit with χDs . We continue this way, and set D =
⋃

s∈ω Ds .

Note that we cannot have f 6eW f uχD . If we did have such a reduction

(Γ,∆), then ∆(A, 〈{1}, {j}〉) ∈ f (A) for 〈{1}, {j}〉 ∈ f u χD(ΓA). But

then A 7→ ∆(A, 〈{1}, {j}〉) is an enumeration reduction taking our

f -instance to a solution, which would imply f 6eW id . �
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Conclusion

In fact, the degrees of eW -problems below id with singleton domains are

exactly the strong minimal covers, which also constitute the dual of the

enumeration degrees.

Now we can show a first order difference between the Weihrauch and eW

degrees. By the above and Theorem 2.1 in [Dyment, 1976], the strong

minimal covers in each are isomorphic to the duals of the Turing and

enumeration degrees, respectively, which differ on the dualization of the

statement “there exists a minimal degree.”
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Thanks!
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