Structural and topological aspects of the enumeration and hyperenumeration degrees

Josiah Jacobsen-Grocott

University of Wisconsin–Madison Partially supported by NSF Grant No. DMS-2053848

Thesis defense, 30th April, 2024

1 Enumeration reducibility

- 2 Topological classes of enumeration degrees
- O Hyperenumeration reducibility
- 4 E-pointed trees
- **5** Structure of \mathcal{D}_{he}

Enumeration reducibility

- 2 Topological classes of enumeration degrees
- 3 Hyperenumeration reducibility
- 4 E-pointed trees
- **5** Structure of \mathcal{D}_{he}

Definition (Friedberg and Rogers 1959)

A set A is enumeration reducible to a set B $(A \leq_e B)$ if there is a program that transforms any enumeration of B into an enumeration of A.

In practice, we use that $A \leq_e B$ if and only if there is a c.e. set of axioms W such that

$$x \in A \iff \exists \langle x, u \rangle \in W[D_u \subseteq B]$$

where $(D_u)_{u \in \omega}$ is a listing of all finite sets by strong indices.

Example

 $\frac{K \leq_e A \text{ for any } A \text{ since } K \text{ is c.e.}}{\overline{K} \leq_e K \text{ since } \overline{K} \text{ is not c.e.}}$

- Like with Turing reducibility ≤_T we have that ≤_e is a pre-order and taking equivalences classes gives us a degree structure D_e.
- The lowest element of \mathcal{D}_e is 0_e which is the equivalence class of all c.e. sets.
- From an effective listing of c.e. sets (W_e)_{e∈ω} we obtain an effective listing of enumeration operators (Ψ_e)_{e∈ω}, defined by A = Ψ_e(B) if A ≤_e B via the set of axioms W_e.
- Unlike with Turing operators Ψ_e(A) is always a set. We also have that these operators are monotonic: if B ⊆ A then Ψ_e(B) ⊆ Ψ_e(A).
- Gutteridge showed that the enumeration degrees are downward dense.

Definition

We say that a set A is *total* if $\overline{A} \leq_e A$. We say that A is cototal if $A \leq_e \overline{A}$. A degree is *total* (*cototal*) if it contains a total (cototal) set.

- If A is total then $B \leq_e A$ if and only if B is c.e. in A.
- For any set A we have that $A \oplus \overline{A}$ is both total and cototal.
- The Turing degrees embed as the total degrees via the map induced by A → A ⊕ A.
- So $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$.
- The cototal degrees are a proper subclass of the enumeration degrees and the total degrees are a proper subclass of the cototal degrees.

Enumeration reducibility

2 Topological classes of enumeration degrees

3 Hyperenumeration reducibility

4 E-pointed trees

5 Structure of \mathcal{D}_{he}

The continuous degrees, introduced by Miller, are another subclass of the enumeration degrees that arise from a reduction on points in computable metric spaces. Kihara and Pauly extend this idea to general topological spaces as follows:

Definition

- A cb₀ space X is a second countable T₀ space given with a listing of a basis (β_e)_e.
- Given a cb₀ space $\mathcal{X} = (X, (\beta_e)_e)$ and a point $x \in X$ the name of x is $\operatorname{NBase}_{\mathcal{X}}(x) = \{e \in \omega : x \in \beta_e\}.$
- We define the degrees of a space \mathcal{X} to be $\mathcal{D}_{\mathcal{X}} = \{ a \in \mathcal{D}_e : \exists x \in X[NBase(x) \in a] \}.$

Example

- The product of the Sierpiński space S^ω where S = {0, 1} with open sets {Ø, {1}, S}, is universal for second countable T₀ spaces. We have that D_{S^ω} = D_e. This follow from the fact that for any x ∈ S^ω we have NBase_{S^ω}(x) ≡_e {n : x(n) = 1}. This means that any class of enumeration degrees is D_X for some X ⊆ S^ω.
- Cantor space 2^{ω} gives the total degrees.
- \bullet Hilbert's cube $[0,1]^\omega$ is universal for second countable metric spaces, and gives us the continuous degrees.

- Kihara, Ng and Pauly look at many different spaces from topology and discover many new classes of enumeration degrees.
- A second part of their work is to establish a classification and hierarchy of classes of degrees by looking at what types of spaces a particular class of degrees could arise from.

Definition

A topological space is considered

- T_0 if for any $x \neq y$ there is an open set U such that either $x \in U, y \notin U$ or $x \notin U, y \in U$.
- T_1 if $\{x\}$ is closed for any x.
- T_2 (Hausdorff) if for any $x \neq y$ there are disjoint open U, V such that $x \in U, y \notin U$ and $x \notin V, y \in V$.
- $T_{2.5}$ if for any $x \neq y$ there are open sets U, V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$.
- Submetrizable if its topology comes from taking a metric space and adding open sets.

- We have the following series in implications: metrizable \implies submetrizable $\implies T_{2.5} \implies T_2 \implies T_1 \implies T_0$. It is well known that this hierarchy is strict for second countable spaces.
- One question is if the separation axioms give rise to different classes of degrees. For instance we could define the T₁ degrees to be the set the {a : ∃X ∈ T₁[a ∈ D_X]}.

Theorem (Kihara, Ng, Pauly)

For every degree $a \in D_e$ there is a decideable submetrizable space X such that such that $a \in D_X$.

• So the submetrizable degrees are the same as the T_0 degrees and hence the same as the T_1 degrees, T_2 degrees and $T_{2.5}$ degrees.

The separation axioms may not give us new classes of degrees, but they can still be used to categorize classes of degrees.

Definition

Given a collection of cb_0 spaces \mathcal{T} we say that a class \mathcal{C} of enumeration degrees is \mathcal{T} if there is some $\mathcal{X} \in \mathcal{T}$ such that $\mathcal{D}_{\mathcal{X}} = \mathcal{C}$.

So any $C \subseteq D_e$ is T_0 and the continuous degrees and total degrees are both computably metrizable. This leads to the following question.

Question

Is the separation hierarchy T_0 , T_1 , T_2 , $T_{2,5}$, submetrizable, metrizable a strict hierarchy on classes of degrees?

Known separations

The Golomb space $\mathbb{N}_{rp} = (\mathbb{Z}^+, (a + b\mathbb{Z} : gcd(a, b) = 1))$ and its product \mathbb{N}_{rp}^{ω} is a known $T_2 \setminus T_{2.5}$ space. The cocylinder topology $\omega_{co}^{\omega} = (\omega^{\omega}, (\omega^{\omega} \setminus [\sigma])_{\sigma \in \omega^{<\omega}})$ is a $T_1 \setminus T_2$ space the degrees of which are known as the cylinder cototal degrees.

Theorem (Kihara, Ng, Pauly)

- $\mathcal{D}_{\mathbb{S}^{\omega}}$ is $T_0 \setminus T_1$.
- The cylinder cototal degrees are $T_1 \setminus T_2$.
- $\mathcal{D}_{\mathbb{N}_{\mathrm{rp}}^{\omega}}$ is $T_2 \setminus T_{2.5}$.
- There is a decidable, submetrizable space X such that D_X is not metrizable.

Question (Kihara, Ng, Pauly)

Is there a $T_{2.5}$ class of degrees that is not submetrizable?

The Arens co-d-CEA degrees and Roy halfgraph degrees were introduced by Kihara, Ng and Pauly. Both come from non submetrizable, decidable $T_{2.5}$ spaces and are subclasses of the doubled co-d-CEA degrees, a class that comes from a decidable $T_2 \setminus T_{2.5}$ space.

Theorem (J-G)

The Arens co-d-CEA degrees and the Roy halfgraph degrees are both not submetrizable.

A corollary is that the doubled co-d-CEA degrees are not submetrizable. In fact the doubled co-d-CEA degrees give us another separation of T_2 classes from $T_{2.5}$ classes.

Theorem (J-G)

The doubled co-d-CEA degrees are not $T_{2.5}$.

Definition

For a cb_0 space \mathcal{X} we say that a degree $a \in \mathcal{D}_e$ is \mathcal{X} -quasi-minimal if $a \notin \mathcal{D}_{\mathcal{X}}$ and for all $b \in \mathcal{D}_{\mathcal{X}}$ if $b \leq_e a$ then b = 0.

So, since $\mathcal{D}_{2^{\omega}}$ is the total degrees, 2^{ω} -quasi-minimal and quasi-minimal mean the same thing.

Definition

For class $\mathcal{C} \subseteq \mathcal{D}_e$ and a set of cb_0 spaces \mathcal{T} , we say that \mathcal{C} is \mathcal{T} -quasi-minimal if for every $\mathcal{X} \in \mathcal{T}$ the is a $\in \mathcal{C}$ such that a is \mathcal{X} -quasi-minimal.

If \mathcal{C} is \mathcal{T} -quasi-minimal then \mathcal{C} is not \mathcal{T} .

Kihara, Ng and Pauly showed that \mathcal{D}_e is \mathcal{T}_1 -quasi-minimal and give several other quasi-minimal results. Recall that the cylinder cototal degrees are $\mathcal{T}_1 \setminus \mathcal{T}_2$ and that $\mathcal{D}_{\mathbb{N}_{\mathrm{Tp}}^{\omega}}$ is $\mathcal{T}_2 \setminus \mathcal{T}_{2.5}$. By modifying the proofs of these two results I was able to get the following.

Theorem (J-G)

- The cylinder cototal degrees are T₂-quasi-minimal.
- $D_{\mathbb{N}_{\mathrm{rp}}^{\omega}}$ is $T_{2.5}$ -quasi-minimal.

Theorem

There is a (non-decidable) metrizable space \mathcal{DCD}_0 such that $\mathcal{D}_{\mathcal{DCD}_0}$ contains all quasi-minimal doubled co-d-CEA degrees.

 \mathcal{DCD}_0 is an example of a metrizable class that is not effectively submetrizable.

Corollary

- The doubled co-d-CEA degrees, and hence also the Arens co-d-CEA degrees and Roy halfgraph degrees, are not metrizable-quasi-minimal.
- There is a metrizable class of degrees that is not effectively submetrizable.
- There is no effectively submetrizable class of degrees that is metrizable-quasi-minimal.

Any enumeration degree can arise from a decidable submetrizable space or a non-decidable metrizable space.

Question

What are the degrees of decideable, metrizable spaces.

This class will include all continuous degrees but,

Theorem (J-G)

There is a decideable metrizable cb_0 -space \mathcal{X} such that $\mathcal{D}_{\mathcal{X}}$ contains a quasi-minimal degree.

Enumeration reducibility

2 Topological classes of enumeration degrees

O Hyperenumeration reducibility

4 E-pointed trees

5 Structure of \mathcal{D}_{he}

Definition (Sanchis 1978)

We say that $A \leq_{he} B$ if there is a c.e. set W such that

 $n \in A \iff \forall f \in \omega^{\omega} \exists u \in \omega, x \prec f[\langle n, x, u \rangle \in W \land D_u \subseteq B]$

- Like with enumeration reducibility this is a preorder and the equivalence classes give us the hyperenumeration degrees \mathcal{D}_{he} .
- From an effective listing of c.e. sets (W_e)_{e∈ω} we obtain an effective listing of hyperenumeration operators (Γ_e)_{e∈ω}.
- Sanchis proved, if $A \leq_e B$ then $A \leq_{he} B$ and $\overline{A} \leq_{he} \overline{B}$.

Definition

We say that a set A is *hypertotal* if $\overline{A} \leq_{he} A$. We say that A is *hypercototal* if $A \leq_{he} \overline{A}$. A degree (in either \mathcal{D}_e or \mathcal{D}_{he}) is *hypertotal* (*hypercototal*) if it contains a hypertotal (hypercototal) set.

- If $A \leq_{he} B$ then A is Π_1^1 in B.
- If A is Π_1^1 in B then $A \leq_{he} B \oplus \overline{B}$.
- $A \leq_h B \iff A \oplus \overline{A} \leq_{he} B \oplus \overline{B}.$
- The hyperarithmetic degrees embed onto the hypertotal degrees via the map induced by $A \mapsto A \oplus \overline{A}$.

Theorem (Sanchis)

There is a hyperenumeration degree that is not hypertotal.

Enumeration reducibility

- 2 Topological classes of enumeration degrees
- 3 Hyperenumeration reducibility
- 4 E-pointed trees

5 Structure of \mathcal{D}_{he}

Definition (Montalbán)

A tree T is *e-pointed* if for every path $P \in [T]$ we have that T is c.e. in P. We say T is *uniformly* e-pointed if there is a single operator Ψ_e such that for all paths $P \in [T]$ we have $T = \Psi_e(P)$.

McCarthy studied e-pointed trees in Cantor space and was able to characterize their enumeration degrees.

Theorem (McCarthy)

For a degree $a \in \mathcal{D}_e$ the following are equivalent:

- a is cototal.
- a contains an e-pointed tree $T \subseteq 2^{<\omega}$.
- a contains a uniformly e-pointed tree $T \subseteq 2^{<\omega}$ with no dead ends.

In Baire space we have the following characterization in terms of hypercototal sets.

Theorem (Goh, J-G, Miller, Soskova)

For a degree $a \in D_e$ (or D_{he}) the following are equivalent:

- a is hypercototal.
- a contains an e-pointed tree $T \subseteq \omega^{<\omega}$ with dead ends.
- a contains a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$ with dead ends.

E-pointed trees in Baire space without dead ends

When we consider only e-pointed trees that do not have dead ends then things become more complex

Theorem (Goh, J-G, Miller, Soskova)

There is an arithmetic set that is not enumeration equivalent to any e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends.

Theorem (Goh, J-G, Miller, Soskova)

There is a uniformly e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends that is not of cototal enumeration degree.

Question

Is there an e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends that is not enumeration equivalent to any uniformly e-pointed tree $T \subseteq \omega^{<\omega}$ without dead ends.

Theorem (J-G)

All these classes are T_1 but not T_2

Proof.

They all contain the cototal degrees so are not T_2 . The hypercototal degrees are the degrees of a T_1 space.

Consider the space:

 $\mathcal{X} = \{F \subseteq \omega^{\omega} : F = [T] \text{ for some uniformly e-pointed tree via } \Psi\}$ with basis given by $\alpha_{\sigma} = \{F \in \mathcal{X} : [\sigma] \cap F \neq \emptyset\}$. The degrees of \mathcal{X} give us all uniformly e-pointed trees via Ψ .

Enumeration reducibility

- 2 Topological classes of enumeration degrees
- 3 Hyperenumeration reducibility
- 4 E-pointed trees
- **5** Structure of \mathcal{D}_{he}

Selman's theorem gives us a way of defining enumeration reducibility in terms of total degrees.

Theorem (Selman's Theorem)

 $A \leq_e B$ if and only if, for all X if $B \leq_e X \oplus \overline{X}$ then $A \leq_e X \oplus \overline{X}$.

From the original definition of enumeration reducibility. We have that $A \leq_e B$ if every enumeration of B uniformly computes an enumeration of A. In this context, Selman's theorem shows that we can drop the uniformity in the definition.

Theorem (J-G)

There is a uniformly e-pointed tree with no dead ends that is not hypertotal.

This shows that the analogue of Selman's theorem fails for hyperenumeration reducibility.

Corollary

There are sets A, B such that $B \not\leq_{he} A$ and for any X, if $A \leq_{he} X \oplus \overline{X}$ then $B \leq_{he} X \oplus \overline{X}$.

Proof idea.

Let A = T and $B = \overline{T}$ for a non hypertotal uniformly e-pointed tree T without dead ends.

Theorem (Gutteridge '71)

For every $a \neq 0_e$ there is $b \in \mathcal{D}_e$ such that 0 < b < a.

As part of his proof, Gutteridge constructed an enumeration operator Θ with the following properties:

- If A is not c.e. then $\Theta(A) <_e A$.
- **2** If $\Theta(A)$ is c.e. then A is Δ_2^0 .

Theorem (J-G)

There is a hyperenumeration operator Λ such that for all A:

- If A is not Π_1^1 then $\Lambda(A) <_{he} A$.
- **2** If $\Lambda(A)$ is Π^1_1 then $A \leq_{he} \overline{\mathcal{O}}$.

Theorem (J-G)

For every X such that $\emptyset <_{he} X \leq_{he} \overline{\mathcal{O}}$ there is Y such that $\emptyset <_{he} Y <_{he} X$.

Difficulty with injury arguments

For an enumeration operator we have that $\Psi_e(A) = \bigcup_{D \subseteq_{\text{fin}} A} \Psi_e(D)$. For a hyper enumeration operator it may be that $\Gamma_e(A) \neq \bigcup_{H \subseteq_{\text{hvp}} A} \Gamma_e(H)$.

Question

We proved that notion of hyperenumeration reducibility in terms of operators does not match up with a definition in terms of hyperenumerations, but is possible to define a different reducibility in terms of hyperenumerations. Does a version of Selman's theorem hold for this reducibility?

Question

Are the hypertotal degrees definable in \mathcal{D}_{he} ? How complex is the theory of \mathcal{D}_{he} ? Are the hypertotal degrees an automorphism base?

Thank You