Erdős-Hajnal property in NIP theories

Yayi Fu

University of Notre Dame

2024

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Definitions

Definition

A graph is a pair G = (V, E) where V is a finite set, E is a binary symmetric anti-reflexive relation on V. An element $x \in V$ is called a vertex. A pair $\{x, y\} \in E$ is called an *edge*.

We say x and y are *adjacent* if $\{x, y\} \in E$.

A *clique* in G is a set of vertices all pairwise adjacent.

An anticlique in G is a set of vertices all pairwise non-adjacent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A homogeneous set means a clique or an anticlique.

Erdős-Hajnal Conjecture

Definition

Given a graph H, we say that a graph G is H-free if G has no induced subgraph isomorphic to H.

Erdős-Hajnal Conjecture [EH89]:

Conjecture

For any graph H there is $\epsilon > 0$ such that if a graph G does not contain any induced subgraph isomorphic to H then G has a clique (i.e. every two distinct vertices are adjacent) or an anti-clique (i.e. every two distinct vertices are nonadjacent) of size $\geq |G|^{\epsilon}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The conjecture originates from Ramsey's theorem, which says for any fixed m, any graph large enough has a homogeneous subset (i.e. a clique or an anti-clique) of size m in the graph:

Fact

[Ram87, Theorem B] For all $m \in \mathbb{N}$, there is $n \in \mathbb{N}$ such that for any graph G with size $\geq n$, then G has a homogeneous set of size m.

It was known that given a graph, a homogeneous subset of "log" size always exists:

Fact [ES35] All graphs G with |G| = n contain a homogeneous set of size at least $\frac{\log n}{2 \log 2}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Can one find a homogeneous subset as large as of "polynomial" size in general? The answer is no.

Fact

[Erd47, Theorem I] For all sufficiently large n there is a graph G not containing homogeneous sets of size $\frac{2 \log n}{\log 2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

But if a graph omits some small graph, then homogeneous subsets of "polynomial" size exist. For example, if H is a cograph, then Erdős-Hajnal conjecture holds for H-free graphs. We define the family C of *cographs*:

- 1. The graph with a single vertex is a cograph;
- 2. If $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are cographs, then $G = (V_1 \cup V_2, E_1 \cup E_2)$ is a cograph;
- 3. If $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ are cographs, then $G = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{v, w\} : v \in V_1, w \in V_2\})$ is a cograph.

Fact

[EH89, Theorem 1.2] If H is a cograph, then there is $\epsilon = \epsilon(H) > 0$ such that if G is H-free, then G has a homogeneous set of size $\geq |G|^{\epsilon}$.

Since graphs omitting some fixed small graph behave nicely, it is natural to conjecture that for any graph H, if a graph G omits H, then G has a homogeneous subset of size at least $|G|^{\epsilon}$ where ϵ depends on H only.

A family of graphs is called *hereditary* if for any graph G in the family, all of its induced subgraphs are in the family. It's obvious that for any graph H, the family of H-free graphs is hereditary.

In general, we say a family of graphs has *Erdős-Hajnal property* if there is $\epsilon > 0$ such that for any graph G in the family, there is a homogeneous subset in G of size $\geq |G|^{\epsilon}$.

Question

Which family of graphs has Erdős-Hajnal property?

Plan

In this talk, we mainly talk about Erdős-Hajnal property in NIP theory.

Plan:

- 1. We define NIP.
- 2. We look at Erdős-Hajnal property in stable theories and distal theories, which are subcases of NIP theories.
- 3. My results on Erdős-Hajnal property in special NIP cases:
 - ▶ how to prove Erdős-Hajnal property for the family of graphs with VC-dimension ≤ 2 using model theory and combinatorics;
 - we show that strong Erdős-Hajnal property holds for the family of graphs with bounded VC-minimal complexity;
 - a lemma I found in my attempt to prove Erdős-Hajnal property for the family of dp-minimal graphs.
- 4. Recently, Erdős-Hajnal property of NIP graphs was proved by Nguyen, Scott, and Seymour in [NSS23]. We will briefly introduce their work.

NIP

Definition

[Sim15] Let T be a complete theory. Let \mathcal{U} be a monster model of T. Let $\varphi(\bar{x}; \bar{y})$ be a partitioned formula. We say that a set A of $|\bar{x}|$ -tuples is *shattered* by $\varphi(\bar{x}; \bar{y})$ if we can find a family $(b_I : I \subseteq A)$ of $|\bar{y}|$ -tuples such that for all $a \in A$

$$\mathcal{U}\models\varphi(a;b_I)\Leftrightarrow a\in I.$$

A partitioned formula $\varphi(\bar{x}; \bar{y})$ is *NIP* (or dependent) if no infinite set of $|\bar{x}|$ -tuples is shattered by $\varphi(\bar{x}; \bar{y})$.

The maximal integer *n* for which there is some *A* of size *n* shattered by $\varphi(\bar{x}; \bar{y})$ is called the *VC-dimension* of φ .

[Sim15, Definition 2.10.] The theory T is *NIP* if all formulas $\varphi(\bar{x}; \bar{y}) \in \mathcal{L}$ are NIP.

[Sim15, Remark 2.3.] If $\varphi(\bar{x}; \bar{y})$ is NIP, then by compactness, there is some integer *n* such that no set of size *n* is shattered by $\varphi(\bar{x}; \bar{y})$.

Stable case

Malliaris and Shelah proved in [MS14] that for every $k \in \mathbb{N}$ the family of k-stable graphs have Erdős-Hajnal property.

Definition

Let G = (V, E) be a graph. Let $k \in \mathbb{N}$. G is k-stable if there do not exist some $a_1, ..., a_k \in V$, $b_1, ..., b_k \in V$ such that $E(a_i, b_j)$ holds if and only if $i \leq j$.

It is easy to see from the definition of k-stability that

Fact

For any $k \in \mathbb{N}$, a k-stable graph has bounded VC-dimension. It was shown in [MS14] that Erdős-Hajnal property holds for k-stable graphs.

Fact

[MS14, Theorem 3.5 (2)] For $k \in \mathbb{N}$, there is $\epsilon_k > 0$ such that for any k-stable graph G, G has a homogeneous subset of size $\geq |G|^{\epsilon_k}$

Stable case-another proof

Chernikov and Starchenko gave another proof of the same result in [CS18a] using δ -dimension technique.

Let $\{G_i = (V_i, E_i) : i \in \omega\}$ be a sequence of finite graphs. Let \mathcal{F} be a non-principal ultrafilter of ω . Let G = (V, E) be the ultraproduct $\prod_{i \in \omega} (V_i, E_i)/\mathcal{F}$.

Definition

Let A be an internal set $\prod_{i \in \omega} A_i/\mathcal{F}$, where each A_i is a non-empty subset of V_i . For each $i \in \omega$, let $I_i = \log(|A_i|)/\log(|V_i|)$. We define the δ -dimension of A, denoted by $\delta(A)$, to be the unique number $l \in [0, 1]$ such that for any $\epsilon \in \mathbb{R}^{>0}$, the set $\{i \in \omega : l - \epsilon < l_i < l + \epsilon\}$ is in \mathcal{F} .

Then that Erdős-Hajnal property holds for the family $\{G_i : i < \omega\}$ is the same as there is a homogeneous set $A \subseteq G := \prod_{i \in \omega} G_i / \mathcal{F}$ with $\delta(A) > 0$. In [CS18a], using Shelah's 2-rank, Chernikov and Starchenko showed that for each $k \in \mathbb{N}$, if $\{G_i : i < \omega\}$ is a family of k-stable graphs and \mathcal{F} is a non-principal ultrafilter on ω , then there is an internal homogeneous set $A \subseteq G$ such that $\delta(A) > 0$.

Results using δ -dimension

(F.)

- 1. A slightly different proof using the same δ -dimension technique that for each $k \in \mathbb{N}$ Erdős-Hajnal property holds for the family of k-stable graphs.
- 2. We also show that δ -dimension technique combined with substitution proves that the family of graphs with VC-dimension \leq 2 has Erdős-Hajnal property.
- 3. Also as an application of δ -dimension, we can prove without using the substitution technique that Erdős-Hajnal property holds for the family of graphs with VC-dimension 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Using δ -dimension

Definition Let G = (V, E) be the ultraproduct $\prod_{i \in \omega} V_i / \mathcal{F}$. For a definable set $A \subseteq V$ such that $\delta(A) > 0$, we say that A satisfies *Property* (*) if there is a definable $A^+ \subseteq \{a \in A \mid \delta(\{x \in A \mid E(x, a)\}) < \delta(A)\}$ such that $\delta(A^+) = \delta(A)$ or there is a definable $A^- \subseteq \{a \in A \mid \delta(\{x \in A \mid \neg E(x, a)\}) < \delta(A)\}$ such that $\delta(A^-) = \delta(A)$.

Proposition

Let G = (V, E) be the ultraproduct $\prod_{i \in \omega} V_i / \mathcal{F}$. Assume $A \subseteq V$ is definable with $\delta(A) > 0$, and A satisfies property (*). Then A has a homogeneous subset with positive δ -dimension.

Using δ -dimension

Claim

(F.) Fix a definable A such that $\delta(A) > 0$. If property (*) fails for A, i.e. if for all definable $B \subseteq A$ with $\delta(B) = \delta(A)$,

1.
$$B \nsubseteq \{a \in A \mid \delta(\{x \in A \mid E(x, a)\}) < \delta(A)\}$$
 and

2.
$$B \nsubseteq \{a \in A \mid \delta(\{x \in A \mid \neg E(x, a)\}) < \delta(A)\},$$

then for all $B \subseteq A$ with $\delta(B) = \delta(A)$,

$$B \nsubseteq \{a \in A \mid \delta(\{x \in A \mid E(x, a)\}) < \delta(A)\} \cup$$
$$\{a \in A \mid \delta(\{x \in A \mid \neg E(x, a)\}) < \delta(A)\}.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Using δ -dimension

(Claim continued.)

Moreover, suppose property (*) fails for all A with $\delta(A) > 0$. Fix A with $\delta(A) > 0$. Then for any $B \subseteq A$ with $\delta(B) = \delta(A)$, there exist $a, a' \in B, a \neq a'$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.
$$\delta(\{x \in A \mid E(x, a)\}) > 0,$$

2. $\delta(\{x \in A \mid \neg E(x, a)\}) > 0,$
3. $\delta(\{x \in A \mid E(x, a')\}) > 0,$
4. $\delta(\{x \in A \mid \neg E(x, a')\}) > 0$ and
5. $E(a, a').$

Revisiting stable case

Fact

[She90, Theorem 2.2] Let G = (V, E) be the ultraproduct $\prod_{i \in \omega} V_i / \mathcal{F}. G \text{ is } k \text{-unstable for all } k \in \mathbb{N} \text{ iff there is } A \subseteq V \text{ and}$ $\lambda \geq \aleph_0 \text{ such that } |S_E^1(A)| > \lambda \geq |A|.$ $(S_E^1(A) := \{\bigcap_{a \in A} E(x; a)^{\epsilon(\overline{a})} : \epsilon \in 2^A\}.)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Revisiting stable case

Theorem (F.) A different proof for the following fact: For each $k \in \mathbb{N}$, the family of k-stable graphs has the Erdős-Hajnal property.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

VC-dimension 2 case

Theorem (F.) The family of graphs with VC-dimension ≤ 2 has the Erdős-Hajnal property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

VC-dimension 2 case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

VC-dimension 2 case

×

у

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ = □ > < ⊂

VC-dimension 1 without using substitution

Theorem (F.)Without using substitution, one can prove the family of finite graphs with VC-dimension ≤ 1 has the Erdős-Hajnal property.

Another important subcase of NIP theories is the distal theories, which are often considered as the opposite of stable theories. Chernikov and Starchenko proved in [CS18b] that the family of distal graphs has Erdős-Hajnal property by showing that *strong Erdős-Hajnal property* holds for the family.

Before we go into the distal case, we give the definition of Strong Erdős-Hajnal property and related facts.

Definition

A family \mathcal{F} of graphs has the *strong Erdős-Hajnal Property* if there is k > 0 such that for every $G \in \mathcal{F}$ there exist disjoint subsets $A, B \subseteq V$ satisfying that

$$|A| \ge k|V| \text{ and } |B| \ge k|V|;$$

•
$$A \times B \subseteq E$$
 or $A \times B \subseteq \neg E$.

The following fact says in order to find a homogeneous set of polynomial size, it suffices to find a cograph of polynomial size.

Fact

If G is a cograph, then G has a homogeneous set of size $\geq |G|^{\frac{1}{2}}$.

Strong Erdős-Hajnal property implies Erdős-Hajnal property by finding a cograph of polynomial size:

Fact

If a hereditary family \mathcal{F} of graphs has strong Erdős-Hajnal property, then \mathcal{F} has Erdős-Hajnal property.

Setting in model theory

In general, we talk about infinite models $\mathcal{M} \models \mathcal{T}$. But Erdős-Hajnal property is about finite objects. In [CS18b], Chernikov and Starchenko gave a modified version of Erdős-Hajnal property so that we can discuss Erdős-Hajnal property in an infinite model.

Definition

[CS18b, Definition 1.5.] Let \mathcal{M} be a first-order structure and $R \subseteq M^k \times M^k$ be a definable relation. Consider the family \mathcal{G}_R of all finite graphs G = (V, E) where $V \subseteq M^k$ is a finite subset and $E = (V \times V) \cap R$. We say that R satisfies the *(strong) Erdős-Hajnal property* if the family \mathcal{G}_R does.

Distal theories

The notion of distal theories was introduced in [Sim13]. For convenience, we use the following equivalent definition.

Definition

[CS15, Theorem 21] [CS18b, Fact 2.5.] Let T be a complete NIP theory. T is distal if for every formula $\varphi(\bar{x}, \bar{y})$ there is a formula $\psi(\bar{x}, \bar{y}_1, ..., \bar{y}_n)$ with $|\bar{y}_1| = |\bar{y}_n| = |\bar{y}|$ such that: for any $\mathcal{M} \models T$, for any finite $B \subseteq \mathcal{M}^{|\bar{y}|}$ with $|B| \ge 2$ and any $a \in \mathcal{M}^{|\bar{x}|}$, there are $b_1, ..., b_n \in B$ such that $\mathcal{M} \models \psi(a, b_1, ..., b_n)$ and $\psi(\bar{x}, b_1, ..., b_n) \vdash tp_{\varphi}(a/B)$ (i.e. for any $b \in B$ either $\varphi(\mathcal{M}, b) \supseteq \psi(\mathcal{M}, b_1, ..., b_n)$ or $\varphi(\mathcal{M}, b) \cap \psi(\mathcal{M}, b_1, ..., b_n) = \emptyset$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Distal case

Fact

[CS18b, Corollary 4.8.] Let \mathcal{M} be a distal structure and let a formula $\phi(x, y, z)$ be given. Then there is some $\delta = \delta(\phi) > 0$ and formulas $\psi_1(x, z_1)$ and $\psi_2(y, z_2)$ depending just on ϕ and satisfying the following. For any definable relation $R(x, y) = \phi(x, y, c)$ for some $c \in M^{|z|}$ and finite $A \subseteq M^{|x|}$, $B \subseteq M^{|y|}$ there are some $A' \subseteq A, B' \subseteq B$ with $|A'| \ge \delta |A|, |B'| \ge \delta |B|$ and (1) the pair A', B' is R-homogeneous, (2) there are some $c_1 \in A^{|z_1|}$ and $c_2 \in B^{|z_2|}$ such that $A' = \psi_1(A, c_1)$ and $B' = \psi_2(B, c_2)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$ACVF_{0,0}$ case

A corollary is strong Erdős-Hajnal property in $ACVF_{0,0}$ (algebraically closed field of characteristic zero whose residue field also has characteristic zero):

Fact

[CS18b, Example 4.11. (2)] Let $\mathcal{M} \models \mathsf{ACVF}_{0,0}$ and let a formula $\varphi(x, y, \overline{z})$ be given. Then there is some $\delta = \delta(\varphi) > 0$ such that for any definable relation $E(x, y) = \varphi(x, y, \overline{c})$ for some $\overline{c} \in \mathcal{M}^{|\overline{z}|}$ and finite disjoint $X \subseteq \mathcal{M}$, $Y \subseteq \mathcal{M}$, there are some $X' \subseteq X$, $Y' \subseteq Y$ with $|X'| \ge \delta |X|$, $|Y'| \ge \delta |Y|$ and $X' \times Y' \subseteq E$ or $X' \times Y' \subseteq \neg E$.

$ACVF_{p,q}$ in general

(F.) Let $\mathcal{M} \models ACVF_{p,q}$ and let a formula $\varphi(x, y, \overline{z})$ be given. Then there is some $\delta = \delta(\varphi) > 0$ such that for any definable relation $E(x, y) = \varphi(x, y, \overline{c})$ for some $\overline{c} \in \mathcal{M}^{|\overline{z}|}$ and finite disjoint $X \subseteq \mathcal{M}, Y \subseteq \mathcal{M}$, there are some $X' \subseteq X, Y' \subseteq Y$ with $|X'| \ge \delta |X|, |Y'| \ge \delta |Y|$ and $X' \times Y' \subseteq E$ or $X' \times Y' \subseteq \neg E$.

Definition

Given a set U, a family of subsets $\Psi = \{B_i : i \in I\} \subseteq \mathcal{P}(U)$, where I is some index set, is called a *directed family* if for any $B_i, B_j \in \Psi$, $B_i \subseteq B_j$ or $B_j \subseteq B_i$ or $B_i \cap B_j = \emptyset$.

Definition

Given a directed family Ψ of subsets of U, a set $B \in \Psi$ is a called a Ψ -ball. A set $S \subseteq U$ is a Ψ -Swiss cheese if $S = B \setminus (B_0 \cup ... \cup B_n)$, where each of $B, B_0, ..., B_n$ is a Ψ -ball. We will call B an outer ball of S, and each B_i is called a hole of S.

Definition

Given a finite bipartite graph (X, Y; E), we say it has *VC-minimal* complexity < N if there is a directed family Ψ of subsets of Y such that for each $a \in X$, E(a, Y) is a finite disjoint union of Ψ -Swiss cheeses and the number of outer balls + the number of holes < N. i.e.

if
$$E(a, Y) = (B_{11} \setminus (B_{12} \cup ... \cup B_{1d(1)})) \cup ... \cup (B_{s1} \setminus (B_{s2} \cup ... \cup B_{sd(s)})),$$

then $d(1) + ... + d(s) < N.$

Theorem

(F.) For N > 0, let $k_N = \frac{1}{2^{N+4}}$. If a finite bipartite graph (X, Y; E) has VC-minimal complexity < N then there exist $X' \subseteq X, Y' \subseteq Y$ with $|X'| \ge k_N |X|, |Y'| \ge k_N |Y|$ such that $X' \times Y' \subseteq E$ or $X' \times Y' \cap E = \emptyset$.

A D N A 目 N A E N A E N A B N A C N

Strong Erdős-Hajnal

Question

For which family of graphs does strong Erdős-Hajnal property hold?

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ≧ ○ � � �

In [Chu+20], Chudnovsky, Scott, Seymour and Spirkl characterized the families of graphs that are defined by omitting a finite family of graphs and have strong Erdős-Hajnal.

Fact

[Chu+20] For every forest H, there exists $\epsilon > 0$ such that for every graph G with |G| > 1 that is both H-free and \overline{H} -free, there is a pair (A, B) with $|A|, |B| \ge \epsilon |G|$ such that $A \times B \subseteq E$ or $A \times B \cap E = \emptyset$.

A D N A 目 N A E N A E N A B N A C N

The bounded VC-minaimal complexity case is different:

Remark

The family of forests can be shown to have VC-minimal complexity \leq 2 and thus the VC-minimal case is not covered in [Chu+20].

For a forest $H, v \in V(H)$, let $B_{v,\triangleleft}$ denote the set of the predecessor of v and $B_{v,\triangleright}$ denote the set of successors of v. Consider the family $\mathcal{F}_H := \{B_{v,\triangleleft}, B_{v,\triangleright} : v \in H\}$. \mathcal{F}_H is directed: Let $v, w \in V(H)$. If $B_{v,\triangleleft} \cap B_{w,\triangleright} \neq \emptyset$, then since $B_{v,\triangleleft}$ is a singleton, $B_{v,\triangleleft} \subseteq B_{w,\triangleright}$. Similarly, if $B_{v,\triangleleft} \cap B_{w,\triangleleft} \neq \emptyset$, then $B_{v,\triangleleft} \subseteq B_{w,\triangleleft}$. If $B_{v,\triangleright} \cap B_{w,\triangleright} \neq \emptyset$, then v = w and $B_{v,\triangleright} = B_{w,\triangleright}$. For any $v \in V(H)$, $E_v = B_{v,\triangleleft} \sqcup B_{v,\triangleright}$. So given any forest H = (V(H), E) and disjoint $X, Y \subseteq V(H)$, the bipartite graph (X, Y; E) has VC-minimal complexity ≤ 2 .

Comb lemma

Lemma

(F.) Given $k \in \mathbb{N}$, $d \in \mathbb{R}$ with $k \ge 2$, $d \ge 2$, there exists $\tau_0 = \tau_0(k, d), L_0 = L_0(k, d)$ satisfying the following: Let $\tau < \tau_0$, G a strongly $\binom{k}{2}$ -free τ -critical graph, and $\mathcal{A} = (A_i : 1 \le i \le t) \subseteq G$ an equicardinal blockade of width $\frac{|G|}{d}$ with $\frac{|G|}{*2d} \leq W_G$, of length $L_0 \leq t \leq 2|G|^{\frac{1}{d}}$ such that for all $a \in A$, $|E(a,A)| < \frac{|G|}{t^d}$. Then there exist $b \in A$, an $(t', \frac{|G|}{t^{2d+2}})$ -comb $((a_j, A'_j) : 1 \le j \le t')$ in $(E_b \cap A, \neg E_b \cap A)$ such that $\mathcal{A}' = (A'_j : 1 \le j \le t')$ is an equicardinal minor of \mathcal{A} with width $\geq \frac{|\mathcal{G}|}{t^{2d+2}}$, length $\geq t^{\frac{1}{8}}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Progress in combinatorics

Definition

For $\epsilon > 0$, we say that G is ϵ -sparse if it has maximum degree $\leq \epsilon |G|$, and ϵ -restricted if G or \overline{G} is ϵ -sparse.

Definition

A hereditary class C has the *polynomial Rödl property* if there exists C > 0 such that for every $\epsilon \in (0, \frac{1}{2})$, every graph $G \in C$ contains an ϵ -restricted induced subgraph on at least $\epsilon^{C}|G|$ vertices.

Conjecture

[FS08](Fox–Sudakov) For every graph H, there exists d > 0 such that for every $\epsilon \in (0, 1/2)$, and every H-free graph G, there is an ϵ -restricted subset of V(G) with size at least $\epsilon^d |G|$.

In [NSS23], Nguyen, Scott, and Seymour showed that polynomial Rödl property holds for graphs with bounded VC-dimension. Hence Erdős-Hajnal property holds for graphs with bounded VC-dimension (NIP graphs).

Fact

[NSS23, Theorem 1.5.] For every $d \ge 1$, the class of graphs of VC-dimension at most d has the polynomial Rödl property.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References I

- [ES35] Paul Erdös and George Szekeres. "A combinatorial problem in geometry". In: *Compositio mathematica* 2 (1935), pp. 463–470.
- [Erd47] Paul Erdös. "Some remarks on the theory of graphs". In: (1947).
- [Ram87] Frank P Ramsey. "On a problem of formal logic". In: Classic Papers in Combinatorics. Springer, 1987, pp. 1–24.
- [EH89] Paul Erdös and András Hajnal. "Ramsey-type theorems". In: *Discrete Applied Mathematics* 25.1-2 (1989), pp. 37–52.

[She90] Saharon Shelah. Classification theory: and the number of non-isomorphic models. Elsevier, 1990.

References II

[FS08] Jacob Fox and Benny Sudakov. "Induced Ramsey-type theorems". In: Advances in Mathematics 219.6 (2008), pp. 1771–1800.

- [Sim13] Pierre Simon. "Distal and non-distal NIP theories". In: Annals of Pure and Applied Logic 164.3 (2013), pp. 294–318.
- [MS14] Maryanthe Malliaris and Saharon Shelah. "Regularity lemmas for stable graphs". In: *Transactions of the American Mathematical Society* 366.3 (2014), pp. 1551–1585.
- [CS15] Artem Chernikov and Pierre Simon. "Externally definable sets and dependent pairs II". In: Transactions of the American Mathematical Society 367.7 (2015), pp. 5217–5235.

References III

- [Sim15] Pierre Simon. A guide to NIP theories. Cambridge University Press, 2015.
- [CS18a] Artem Chernikov and Sergei Starchenko. "A note on the Erdős-Hajnal property for stable graphs". In: *Proceedings of the American Mathematical Society* 146.2 (2018), pp. 785–790.
- [CS18b] Artem Chernikov and Sergei Starchenko. "Regularity lemma for distal structures". In: Journal of the European Mathematical Society 20.10 (2018), pp. 2437–2466.
- [Chu+20] Maria Chudnovsky et al. "Pure pairs. I. Trees and linear anticomplete pairs". In: Advances in Mathematics 375 (2020), p. 107396.

References IV

[NSS23]

Tung Nguyen, Alex Scott, and Paul Seymour. "Induced subgraph density. VI. Bounded VC-dimension". In: *arXiv preprint arXiv:2312.15572* (2023).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●