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Definitions

Definition
A graph is a pair G = (V ,E ) where V is a finite set, E is a binary
symmetric anti-reflexive relation on V . An element x ∈ V is called
a vertex. A pair {x , y} ∈ E is called an edge.

We say x and y are adjacent if {x , y} ∈ E .

A clique in G is a set of vertices all pairwise adjacent.

An anticlique in G is a set of vertices all pairwise non-adjacent.

A homogeneous set means a clique or an anticlique.



Erdős-Hajnal Conjecture

Definition
Given a graph H, we say that a graph G is H-free if G has no
induced subgraph isomorphic to H.

Erdős-Hajnal Conjecture [EH89]:

Conjecture

For any graph H there is ϵ > 0 such that if a graph G does not
contain any induced subgraph isomorphic to H then G has a clique
(i.e. every two distinct vertices are adjacent) or an anti-clique (i.e.
every two distinct vertices are nonadjacent) of size ≥ |G |ϵ.



Background

The conjecture originates from Ramsey’s theorem, which says for
any fixed m, any graph large enough has a homogeneous subset
(i.e. a clique or an anti-clique) of size m in the graph:

Fact
[Ram87, Theorem B] For all m ∈ N, there is n ∈ N such that for
any graph G with size ≥ n, then G has a homogeneous set of size
m.



Background

It was known that given a graph, a homogeneous subset of “log”
size always exists:

Fact
[ES35] All graphs G with |G | = n contain a homogeneous set of

size at least
log n

2 log 2
.



Background

Can one find a homogeneous subset as large as of “polynomial”
size in general? The answer is no.

Fact
[Erd47, Theorem I] For all sufficiently large n there is a graph G

not containing homogeneous sets of size
2 log n

log 2
.



Background

But if a graph omits some small graph, then homogeneous subsets
of “polynomial” size exist. For example, if H is a cograph, then
Erdős-Hajnal conjecture holds for H-free graphs. We define the
family C of cographs:

1. The graph with a single vertex is a cograph;

2. If G1 = (V1,E1), G2 = (V2,E2) are cographs, then
G = (V1∪̇V2,E1∪̇E2) is a cograph;

3. If G1 = (V1,E1), G2 = (V2,E2) are cographs, then
G = (V1∪̇V2,E1∪̇E2∪̇{{v ,w} : v ∈ V1,w ∈ V2}) is a
cograph.



Background

Fact
[EH89, Theorem 1.2] If H is a cograph, then there is ϵ = ϵ(H) > 0
such that if G is H-free, then G has a homogeneous set of size
≥ |G |ϵ.

Since graphs omitting some fixed small graph behave nicely, it is
natural to conjecture that for any graph H, if a graph G omits H,
then G has a homogeneous subset of size at least |G |ϵ where ϵ
depends on H only.



Background

A family of graphs is called hereditary if for any graph G in the
family, all of its induced subgraphs are in the family. It’s obvious
that for any graph H, the family of H-free graphs is hereditary.

In general, we say a family of graphs has Erdős-Hajnal property if
there is ϵ > 0 such that for any graph G in the family, there is a
homogeneous subset in G of size ≥ |G |ϵ.

Question
Which family of graphs has Erdős-Hajnal property?



Plan

In this talk, we mainly talk about Erdős-Hajnal property in NIP
theory.

Plan:

1. We define NIP.

2. We look at Erdős-Hajnal property in stable theories and distal
theories, which are subcases of NIP theories.

3. My results on Erdős-Hajnal property in special NIP cases:
▶ how to prove Erdős-Hajnal property for the family of graphs

with VC-dimension ≤ 2 using model theory and combinatorics;
▶ we show that strong Erdős-Hajnal property holds for the family

of graphs with bounded VC-minimal complexity;
▶ a lemma I found in my attempt to prove Erdős-Hajnal property

for the family of dp-minimal graphs.

4. Recently, Erdős-Hajnal property of NIP graphs was proved by
Nguyen, Scott, and Seymour in [NSS23]. We will briefly
introduce their work.



NIP

Definition
[Sim15] Let T be a complete theory. Let U be a monster model of
T . Let φ(x̄ ; ȳ) be a partitioned formula. We say that a set A of
|x̄ |-tuples is shattered by φ(x̄ ; ȳ) if we can find a family
(bI : I ⊆ A) of |ȳ |-tuples such that for all a ∈ A

U |= φ(a; bI ) ⇔ a ∈ I .

A partitioned formula φ(x̄ ; ȳ) is NIP (or dependent) if no infinite
set of |x̄ |-tuples is shattered by φ(x̄ ; ȳ).

The maximal integer n for which there is some A of size n
shattered by φ(x̄ ; ȳ) is called the VC-dimension of φ.

[Sim15, Definition 2.10.] The theory T is NIP if all formulas
φ(x̄ ; ȳ) ∈ L are NIP.

[Sim15, Remark 2.3.] If φ(x̄ ; ȳ) is NIP, then by compactness, there
is some integer n such that no set of size n is shattered by φ(x̄ ; ȳ).



Stable case

Malliaris and Shelah proved in [MS14] that for every k ∈ N the
family of k-stable graphs have Erdős-Hajnal property.

Definition
Let G = (V ,E ) be a graph. Let k ∈ N. G is k-stable if there do
not exist some a1, ..., ak ∈ V , b1, ..., bk ∈ V such that E (ai , bj)
holds if and only if i ≤ j .

It is easy to see from the definition of k-stability that

Fact
For any k ∈ N, a k-stable graph has bounded VC-dimension.

It was shown in [MS14] that Erdős-Hajnal property holds for
k-stable graphs.

Fact
[MS14, Theorem 3.5 (2)] For k ∈ N, there is ϵk > 0 such that for
any k-stable graph G , G has a homogeneous subset of size ≥ |G |ϵk



Stable case-another proof

Chernikov and Starchenko gave another proof of the same result in
[CS18a] using δ-dimension technique.

Let {Gi = (Vi ,Ei ) : i ∈ ω} be a sequence of finite graphs. Let F
be a non-principal ultrafilter of ω. Let G = (V ,E ) be the
ultraproduct

∏
i∈ω

(Vi ,Ei )/F .

Definition
Let A be an internal set

∏
i∈ω

Ai/F , where each Ai is a non-empty

subset of Vi . For each i ∈ ω, let li = log(|Ai |)/ log(|Vi |). We
define the δ-dimension of A, denoted by δ(A), to be the unique
number l ∈ [0, 1] such that for any ϵ ∈ R>0, the set
{i ∈ ω : l − ϵ < li < l + ϵ} is in F .

Then that Erdős-Hajnal property holds for the family {Gi : i < ω}
is the same as there is a homogeneous set A ⊆ G :=

∏
i∈ω

Gi/F with

δ(A) > 0.



Stable case-another proof

In [CS18a], using Shelah’s 2-rank, Chernikov and Starchenko
showed that for each k ∈ N, if {Gi : i < ω} is a family of k-stable
graphs and F is a non-principal ultrafilter on ω, then there is an
internal homogeneous set A ⊆ G such that δ(A) > 0.



Results using δ-dimension

(F.)

1. A slightly different proof using the same δ-dimension
technique that for each k ∈ N Erdős-Hajnal property holds for
the family of k-stable graphs.

2. We also show that δ-dimension technique combined with
substitution proves that the family of graphs with
VC-dimension ≤ 2 has Erdős-Hajnal property.

3. Also as an application of δ-dimension, we can prove without
using the substitution technique that Erdős-Hajnal property
holds for the family of graphs with VC-dimension 1.



Using δ-dimension

Definition
Let G = (V ,E ) be the ultraproduct

∏
i∈ω

Vi/F . For a definable set

A ⊆ V such that δ(A) > 0, we say that A satisfies Property (∗) if
there is a definable A+ ⊆ {a ∈ A | δ({x ∈ A |E (x , a)}) < δ(A)}
such that δ(A+) = δ(A) or there is a definable
A− ⊆ {a ∈ A | δ({x ∈ A | ¬E (x , a)}) < δ(A)} such that
δ(A−) = δ(A).

Proposition

Let G = (V ,E ) be the ultraproduct
∏
i∈ω

Vi/F . Assume A ⊆ V is

definable with δ(A) > 0, and A satisfies property (∗). Then A has
a homogeneous subset with positive δ-dimension.



Using δ-dimension

Claim
(F.) Fix a definable A such that δ(A) > 0. If property (∗) fails for
A, i.e. if for all definable B ⊆ A with δ(B) = δ(A),

1. B ⊈ {a ∈ A | δ({x ∈ A |E (x , a)}) < δ(A)} and

2. B ⊈ {a ∈ A | δ({x ∈ A | ¬E (x , a)}) < δ(A)},
then for all B ⊆ A with δ(B) = δ(A),

B ⊈ {a ∈ A | δ({x ∈ A |E (x , a)}) < δ(A)}∪

{a ∈ A | δ({x ∈ A | ¬E (x , a)}) < δ(A)}.



Using δ-dimension

(Claim continued.)
Moreover, suppose property (∗) fails for all A with δ(A) > 0. Fix A
with δ(A) > 0. Then for any B ⊆ A with δ(B) = δ(A), there exist
a, a′ ∈ B, a ̸= a′ such that

1. δ({x ∈ A |E (x , a)}) > 0,

2. δ({x ∈ A | ¬E (x , a)}) > 0,

3. δ({x ∈ A |E (x , a′)}) > 0,

4. δ({x ∈ A | ¬E (x , a′)}) > 0 and

5. E (a, a′).



Revisiting stable case

Fact
[She90, Theorem 2.2] Let G = (V ,E ) be the ultraproduct∏
i∈ω

Vi/F . G is k-unstable for all k ∈ N iff there is A ⊆ V and

λ ≥ ℵ0 such that |S1
E (A)| > λ ≥ |A|.

(S1
E (A) := {

⋂
a∈A

E (x ; a)ϵ(ā) : ϵ ∈ 2A}.)



Revisiting stable case

Theorem
(F.) A different proof for the following fact:
For each k ∈ N, the family of k-stable graphs has the Erdős-Hajnal
property.



VC-dimension 2 case

Theorem
(F.) The family of graphs with VC-dimension ≤ 2 has the
Erdős-Hajnal property.



VC-dimension 2 case
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VC-dimension 2 case
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VC-dimension 1 without using substitution

Theorem
(F.)Without using substitution, one can prove the family of finite
graphs with VC-dimension ≤ 1 has the Erdős-Hajnal property.



Distal case

Another important subcase of NIP theories is the distal theories,
which are often considered as the opposite of stable theories.
Chernikov and Starchenko proved in [CS18b] that the family of
distal graphs has Erdős-Hajnal property by showing that strong
Erdős-Hajnal property holds for the family.



Strong Erdős-Hajnal

Before we go into the distal case, we give the definition of Strong
Erdős-Hajnal property and related facts.

Definition
A family F of graphs has the strong Erdős-Hajnal Property if there
is k > 0 such that for every G ∈ F there exist disjoint subsets
A,B ⊆ V satisfying that

▶ |A| ≥ k |V | and |B| ≥ k|V |;
▶ A× B ⊆ E or A× B ⊆ ¬E .



Strong Erdős-Hajnal

The following fact says in order to find a homogeneous set of
polynomial size, it suffices to find a cograph of polynomial size.

Fact
If G is a cograph, then G has a homogeneous set of size ≥ |G |

1
2 .

Strong Erdős-Hajnal property implies Erdős-Hajnal property by
finding a cograph of polynomial size:

Fact
If a hereditary family F of graphs has strong Erdős-Hajnal
property, then F has Erdős-Hajnal property.



Setting in model theory

In general, we talk about infinite models M |= T . But
Erdős-Hajnal property is about finite objects. In [CS18b],
Chernikov and Starchenko gave a modified version of Erdős-Hajnal
property so that we can discuss Erdős-Hajnal property in an infinite
model.

Definition
[CS18b, Definition 1.5.] Let M be a first-order structure and
R ⊆ Mk ×Mk be a definable relation. Consider the family GR of
all finite graphs G = (V ,E ) where V ⊆ Mk is a finite subset and
E = (V × V ) ∩ R. We say that R satisfies the (strong)
Erdős-Hajnal property if the family GR does.



Distal theories

The notion of distal theories was introduced in [Sim13]. For
convenience, we use the following equivalent definition.

Definition
[CS15, Theorem 21] [CS18b, Fact 2.5.] Let T be a complete NIP
theory. T is distal if for every formula φ(x̄ , ȳ) there is a formula
ψ(x̄ , ȳ1, ..., ȳn) with |ȳ1| = = |ȳn| = |ȳ | such that: for any
M |= T , for any finite B ⊆ M |ȳ | with |B| ≥ 2 and any a ∈ M |x̄ |,
there are b1, ..., bn ∈ B such that M |= ψ(a, b1, ..., bn) and
ψ(x̄ , b1, ..., bn) ⊢ tpφ(a/B) (i.e. for any b ∈ B either
φ(M, b) ⊇ ψ(M, b1, ..., bn) or φ(M, b) ∩ ψ(M, b1, ..., bn) = ∅).



Distal case

Fact
[CS18b, Corollary 4.8.] Let M be a distal structure and let a
formula ϕ(x , y , z) be given. Then there is some δ = δ(ϕ) > 0 and
formulas ψ1(x , z1) and ψ2(y , z2) depending just on ϕ and satisfying
the following. For any definable relation R(x , y) = ϕ(x , y , c) for
some c ∈ M |z| and finite A ⊆ M |x |,B ⊆ M |y | there are some
A′ ⊆ A,B ′ ⊆ B with |A′| ≥ δ|A|, |B ′| ≥ δ|B| and
(1) the pair A′,B ′ is R-homogeneous,
(2) there are some c1 ∈ A|z1| and c2 ∈ B |z2| such that
A′ = ψ1(A, c1) and B ′ = ψ2(B, c2).



ACVF0,0 case

A corollary is strong Erdős-Hajnal property in ACVF0,0
(algebraically closed field of characteristic zero whose residue field
also has characteristic zero):

Fact
[CS18b, Example 4.11. (2)] Let M |= ACVF0,0 and let a formula
φ(x , y , z̄) be given. Then there is some δ = δ(φ) > 0 such that for
any definable relation E (x , y) = φ(x , y , c̄) for some c̄ ∈ M |z̄| and
finite disjoint X ⊆ M, Y ⊆ M, there are some X ′ ⊆ X , Y ′ ⊆ Y
with |X ′| ≥ δ|X |, |Y ′| ≥ δ|Y | and X ′ × Y ′ ⊆ E or X ′ × Y ′ ⊆ ¬E .



ACVFp,q in general

(F.) Let M |= ACVFp,q and let a formula φ(x , y , z̄) be given.
Then there is some δ = δ(φ) > 0 such that for any definable
relation E (x , y) = φ(x , y , c̄) for some c̄ ∈ M |z̄| and finite disjoint
X ⊆ M, Y ⊆ M, there are some X ′ ⊆ X , Y ′ ⊆ Y with
|X ′| ≥ δ|X |, |Y ′| ≥ δ|Y | and X ′ × Y ′ ⊆ E or X ′ × Y ′ ⊆ ¬E .



Bounded VC-minimal complexity case

Definition
Given a set U, a family of subsets Ψ = {Bi : i ∈ I} ⊆ P(U), where
I is some index set, is called a directed family if for any Bi ,Bj ∈ Ψ,
Bi ⊆ Bj or Bj ⊆ Bi or Bi ∩ Bj = ∅.

Definition
Given a directed family Ψ of subsets of U, a set B ∈ Ψ is a called
a Ψ-ball. A set S ⊆ U is a Ψ-Swiss cheese if
S = B \ (B0 ∪ ...∪Bn), where each of B,B0, ...,Bn is a Ψ-ball. We
will call B an outer ball of S , and each Bi is called a hole of S .



Bounded VC-minimal complexity case

Definition
Given a finite bipartite graph (X ,Y ;E ), we say it has VC-minimal
complexity < N if there is a directed family Ψ of subsets of Y such
that for each a ∈ X , E (a,Y ) is a finite disjoint union of Ψ-Swiss
cheeses and the number of outer balls + the number of holes < N.
i.e.

if E (a,Y ) = (B11\(B12∪...∪B1d(1)))∪̇...∪̇(Bs1\(Bs2∪...∪Bsd(s))),

then d(1) + ...+ d(s) < N.



Bounded VC-minimal complexity case

Theorem

(F.) For N > 0, let kN =
1

2N+4
. If a finite bipartite graph

(X ,Y ;E ) has VC-minimal complexity < N then there exist
X ′ ⊆ X , Y ′ ⊆ Y with |X ′| ≥ kN |X |, |Y ′| ≥ kN |Y | such that
X ′ × Y ′ ⊆ E or X ′ × Y ′ ∩ E = ∅.



Strong Erdős-Hajnal

Question
For which family of graphs does strong Erdős-Hajnal property hold?



Strong Erdős-Hajnal

In [Chu+20], Chudnovsky, Scott, Seymour and Spirkl characterized
the families of graphs that are defined by omitting a finite family of
graphs and have strong Erdős-Hajnal.

Fact
[Chu+20] For every forest H, there exists ϵ > 0 such that for every
graph G with |G | > 1 that is both H-free and H-free, there is a
pair (A,B) with |A|, |B| ≥ ϵ|G | such that A× B ⊆ E or
A× B ∩ E = ∅.



Bounded VC-minimal complexity case

The bounded VC-minaimal complexity case is different:

Remark
The family of forests can be shown to have VC-minimal complexity
≤ 2 and thus the VC-minimal case is not covered in [Chu+20].

For a forest H, v ∈ V (H), let Bv ,◁ denote the set of the
predecessor of v and Bv ,▷ denote the set of successors of v .
Consider the family FH := {Bv ,◁,Bv ,▷ : v ∈ H}. FH is directed:
Let v ,w ∈ V (H). If Bv ,◁ ∩ Bw ,▷ ̸= ∅, then since Bv ,◁ is a
singleton, Bv ,◁ ⊆ Bw ,▷. Similarly, if Bv ,◁ ∩ Bw ,◁ ̸= ∅, then
Bv ,◁ ⊆ Bw ,◁. If Bv ,▷ ∩ Bw ,▷ ̸= ∅, then v = w and Bv ,▷ = Bw ,▷.
For any v ∈ V (H), Ev = Bv ,◁ ⊔ Bv ,▷. So given any forest
H = (V (H),E ) and disjoint X ,Y ⊆ V (H), the bipartite graph
(X ,Y ;E ) has VC-minimal complexity ≤ 2.



Comb lemma

Lemma
(F.) Given k ∈ N, d ∈ R with k ≥ 2, d ≥ 2, there exists
τ0 = τ0(k, d), L0 = L0(k, d) satisfying the following:
Let τ < τ0, G a strongly

(k
2

)
-free τ -critical graph, and

A = (Ai : 1 ≤ i ≤ t) ⊆ G an equicardinal blockade of width |G |
td

with |G |
t2d

≤ WG , of length L0 ≤ t ≤ 2|G |
1
d such that for all a ∈ A,

|E (a,A)| < |G |
td
.

Then there exist b ∈ A, an (t ′, |G |
t2d+2 )-comb ((aj ,A

′
j) : 1 ≤ j ≤ t ′) in

(Eb ∩ A,¬Eb ∩ A) such that A′ = (A′
j : 1 ≤ j ≤ t ′) is an

equicardinal minor of A with width ≥ |G |
t2d+2 , length ≥ t

1
8 .



Progress in combinatorics

Definition
For ϵ > 0, we say that G is ϵ-sparse if it has maximum degree
≤ ϵ|G |, and ϵ-restricted if G or G is ϵ-sparse.

Definition
A hereditary class C has the polynomial Rödl property if there exists
C > 0 such that for every ϵ ∈ (0, 12), every graph G ∈ C contains
an ϵ-restricted induced subgraph on at least ϵC |G | vertices.

Conjecture

[FS08](Fox–Sudakov) For every graph H, there exists d > 0 such
that for every ϵ ∈ (0, 1/2), and every H-free graph G , there is an
ϵ-restricted subset of V (G ) with size at least ϵd |G |.



Progress in conbinatorics

In [NSS23], Nguyen, Scott, and Seymour showed that polynomial
Rödl property holds for graphs with bounded VC-dimension. Hence
Erdős-Hajnal property holds for graphs with bounded
VC-dimension (NIP graphs).

Fact
[NSS23, Theorem 1.5.] For every d ≥ 1, the class of graphs of
VC-dimension at most d has the polynomial Rödl property.
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