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Motivating questions

Study how computation interacts with mathematical concepts.

Complexity of constructions and objects we use in mathematics

A large focus of computability theory is to calibrate the notion of

relative computational strength

The most common way of doing this is through the use of Turing

reducibility ≤T .

The Turing reducibility measures relative algorithmic content (both

positive and negative information) of two objects. Useful if

information is presented or understood as �decision procedure�.
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Motivating questions

However in some cases it may be useful to be able to compare the

relative positive algorithmic content between two objects.

The enumeration reducibility captures this by allowing only positive

information about one set to produce positive information about

another set.

As usual this pre-ordering induces a degree structure, the

enumeration degrees De .

Motivation for studying the structure of the enumeration degrees

comes from:

� Connections with the Turing degrees

� Applications to computable topology and analysis
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The enumeration degrees

De�nition (1950s)

We say that A ≤e B if there is a c.e. set W such that for every n,

n ∈ A ⇔ De ⊆ B for some ⟨n, e⟩ ∈ W .

Here De is the canonical index of a �nite set.

This only compares positive information between A and B .

This is di�erent from A is c.e. relative to B , which is equivalent to

A ≤e B ⊕ Bc .
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The enumeration degrees

An equivalent formulation of A ≤e B is that every enumeration of

B (as an element of ωω) computes an enumeration of A. By a

result of Selman, this can be made uniform.

For example, if S is any set of vertices in a computable graph, then

N(S) ≤e S , where N(S) is the set of neighbours of S .

Therefore Sc ≤e S if S is a maximal independent set of vertices (in

a computable graph). The converse is not true unless S is c.e.
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The enumeration degrees

The degree structure De induced by ≤e consists of the enumeration

degrees. It is an upper semi-lattice (under the usual ⊕) with the

least element 0e .

Connections with ≤T :

A ≤T B ⇔ A⊕ Ac is c.e. relative to B ⇔ A⊕ Ac ≤e B ⊕ Bc .

Therefore, the Turing degrees embed naturally into De via:

degT (A) 7→ dege(A⊕ Ac),

preserving order, ∨ and the jump. The range of this embedding are

the total enumeration degrees.

We want to study the structure of the (local) enumeration degrees.
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De�nability in De

Theorem (Shore, Slaman)

The Turing jump is �rst order de�nable.

In De , the enumeration jump is de�ned by A′ = KA ⊕ K c
A, where

KA =
⊕
e∈ω

Φe(A). As usual we have A <e A′.

Note that A ≡e KA and KA ≰e K c
A in general.

Theorem (Kalimullin, 2003, Ganchev, Soskova 2012)

The enumeration jump is �rst order de�nable.

Theorem (Ganchev, Soskova 2015, Cai, Ganchev, Lempp,
Miller, Soskova 2016)

The total e-degrees are de�nable, both locally and globally.
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Applications to E�ective
Topology

Selwyn Ng 7 / 35



Motivating questions

We want to study computable uncountable structures. To apply

tools of classical computability, we only consider structures that are

countably based.

Computable analysis has laid the framework and provided intuition

on working with �uncountable� e�ective objects.

Recall that a Polish space is a separable completely metrizable

space.

De�nition

A computable metric space (S , d) consists of a countable set

S = {c0, c1, · · · } and d : N2 7→ R such that d(ci , cj) is a

computable real number, and (S , d) is Polish with metric induced

by d .
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Motivating questions

We wish to go a little further. What about countably based (not

necessarily metrizable) topological spaces?

De�nition

A topological space is e�ectively second countable if there is a

countable base {Bi}i∈ω, and a computable function f such that

Bi ∩ Bj =
⋃

k∈Wf (i,j)
Bk , and where �Bi ∩ Bj ̸= ∅� is c.e.

These de�nitions allow one to study many e�ective aspects of

non-countable countably based spaces.
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Represented spaces

De�nition

Let (T , {Bn}n∈ω) be an e�ective second countable topological

space. To do computability we identify a point x ∈ T with

NBase(x) = {e ∈ ω | x ∈ Be}

Notice that the information for x ∈ T should be positively given.

Hence, a name for x is any p ∈ ωω such that rng(p) = NBase(x).

This gives a representation of T , if T is T0 (Kolmogorov).

The e�ective properties of NBase(x) depends on the presentation

{Bn}n∈ω of T . We always �x the �standard copy�.

x ∈ T is computable i� NBase(x) is c.e.
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Using enumeration degrees

To each x ∈ X we assign the degree of di�culty of generating a

name for x :

De�nition (Kihara-Pauly, extending J. Miller)

Suppose x ∈ X and y ∈ Y. Then

x ≤ y ⇔ NBase(x) ≤e NBase(y).

Conversely, given an enumeration degree d , we say that d is an

X -degree if NBase(x) ∈ d for some x ∈ X .

Every second countable space X is associated with a set of

enumeration degrees {dege (NBase(x)) | x ∈ X}.

This approach leads to a rich study of classical computability,

computable analysis, and e�ective descriptive set theory.
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Examples of second countable spaces

We can study

DX := {dege (NBase(x)) | x ∈ X} ⊆ enumeration degrees

for di�erent second countable T0 spaces X .

Conversely, we also want to know which classes of enumeration

degrees is a spectrum? I.e. equal to DX for some second countable

T0 space X ?

The class of all enumeration degrees is a spectrum.

� Take Sω where S is the Sierpi«ski space

({0, 1}; {∅, {1}, {0, 1}}) (T0 space).

� Then for any A ⊆ ω, A ≡e NBaseSω(χA).

� Computable points in Sω are the c.e. sets.
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Examples of second countable spaces

If X = 2ω, ωω or Rn, then DX = total enumeration degrees.

� For any x ∈ 2ω, NBase2ω(x) = {σ ∈ 2<ω | σ ⊂ x}. Thus,
NBase2ω(x) ≥e NBase2ω(x).

� Thus, 2ω, ωω and Rn correspond to the Turing degrees, and is

the smallest spectrum.

� x ∈ 2ω is a computable point i� x is computable.

Let R< be the set R with the lower topology, with base

{(q,∞) | q ∈ Q}. This is T0 but not T1.

� x ∈ R< is a computable point i� x is a left-c.e. real.

� (Kihara-Pauly) DR< = the semirecursive e-degrees.

Selwyn Ng 13 / 35



Continuous degrees

De�nition (J. Miller)

An enumeration degree is continuous if it contains NBaseM(x) for
some point x ∈ M where M is some computable metric space.

Every total e-degree is continuous.

(J. Miller) Continuous degrees = DC [0,1] = D[0,1]ω .

(J. Miller) There is a non-total continuous degree.

(Andrews, Igusa, J. Miller, M. Soskova) An e-degree is continuous

i� it is almost total (a is almost total if for every total x ≰ a, a ∪ x

is total).
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Which classes of enumeration degrees are spectra?

Studying DX for various second countable X leads to a zoo of

classes of e-degrees.

A degree is cototal if it contains a set A such that A ≤e A.

All continuous degrees are cototal. In fact, they can be

characterised as:

� (AGKLMSS) The degrees of complements of maximal

independent sets in computable graphs.

� (J. Miller, M. Soskova) The degrees of sets with good

approximations.

� (McCarthy) DX where X is the maximal antichain space.

� (Kihara, N., Pauly) The collection of points in e�ective

Gδ-spaces.
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Which classes of enumeration degrees are spectra?

(Kihara, N, Pauly) Establishing further classi�cations of DX and

providing separations:

graph-cototal, telograph-cototal, Roy halfgraph-above, doubled

co-d-CEA, Arens co-d-CEA, n-cylinder cototal, n-semirecursive,

quasiminimality, etc.

(Jacobsen-Grocott) Provided further separations involving Roy

halfgraph-above and Arens co-d-CEA degrees.
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The structure of the
enumeration degrees De
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Studying degree structures

Most degree structures (arising from classical computability) are

very complicated partial orders.

Commonly studied degrees DT ,DT (≤ 0′),R,De ,De(≤ 0′)

Does the degree structure (as a partial order) have a decidable

theory?

Usually the answer is �no�, and in fact the theory is maximally

complicated.

Well, in that case, is the existential theory decidable?

Usually the answer is �yes�, because we can decide which �nite

partial orders are embeddable.

Usually, the ∃∀∃-theory can be shown to be undecidable.
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Studying degree structures

The ∀∃ theory is usually the di�cult case

(Shore 78, Lerman 83) The ∀∃ theory of DT is decidable.

(Shore, Lerman 88) The ∀∃ theory of DT (≤ 0′) is decidable.

The question remains open for R,De ,De(≤ 0′).

A main di�culty in the remaining cases is (downward) density:

� (Spector, Sacks) DT and DT (≤ 0′) have minimal degrees.

� (Gutteridge) De does not have minimal degrees.

� (Sacks, Cooper) R and De(≤ 0′) are dense partial orders.
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The local enumeration degrees

We focus on the local enumeration degrees De(≤ 0′), which are

exactly the enumeration degrees of Σ0
2 sets.

The ∃∀∃ theory is undecidable (Kent) and is computably isomorphic

to the theory of �rst order arithmetic (Ganchev, Soskova).

The ∀∃ theory of the local enumeration degrees remain open, but a

well-known algebraic formulation is equivalent:

Given �nite partial orders P,Q0,Q1, · · · ,Qn such that P ⊆
Qi for every i ≤ n, does every embedding of P into D
extend to an embedding of Qi into D for some i ≤ n?

When n = 0 this is the Extension of embeddings problem.

We say that a con�guration P,Q0,Q1, · · · ,Qn can be realised if

every embedding of P extends to an embedding of some Qi ;

otherwise we say that the con�guration can be blocked.
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The local enumeration degrees

(Lempp, Slaman and Sorbi) The extension of embeddings for

De(≤ 0′) is decidable.

Cooper showed that De(≤ 0′) is dense (similar to the c.e. Turing

degrees). Are they elementarily equivalent?

Theorem (Ahmad)

There are incomparable Σ0
2 e-degrees a and b such that if x < a

then x < b.

This became known as the so-called Ahmad pair. Denote this

property as A(a,b).

Note that if A(a,b) then a is non-splittable, whereas every

non-zero c.e. degree is splittable (Sacks Splitting).
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The local enumeration degrees

Analyzing the ∀∃ theory for De(≤ 0′) seems to involve the

following basic obstacles:

There are incomparable degrees a,b such that A(a,b).
For every x , if x < a then x < b.

This means that the following con�guration is blockable:

This is already covered by the extension of embeddings of Lempp,

Slaman and Sorbi.
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The local enumeration degrees

Theorem (Ahmad, Lachlan)

There is no symmetric Ahmad pair, i.e. if A(a,b) and A(b, a) then
a = b.

This means that the following con�guration is realisable:
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The local enumeration degrees

These led us to consider the following subproblem of deciding all

∀∃ sentences:

Problem

We restrict P to a �nite antichain of degrees, and each Qi to be a

single point extension of P such that every new element is below at

least one (possibly more) elements of P .

Other variations on one point extensions can be decided easily:

� P is a �nite chain of degrees and Qi are one point extensions

of P .

� P is a �nite antichain of degrees and at least one Qi adds one

point incomparable to P

� P is a �nite antichain of degrees and every Qi is a one point

extension adding elements above P
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|P | = 3

Under this formulation, all cases when |P| = 2 can be decided.

The next con�guration to consider is:

This con�guration can be blocked if the natural extension of an

Ahmad pair to an Ahmad triple holds, i.e. incomparable Σ0
2 degrees

a0, a1 and a2 such that A(a0, a1) and A(a1, a2).
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|P | = 3

Theorem (Goh, Lempp, N, Soskova)

There is no Ahmad triple of Σ0
2 degrees.

To prove this we �rst �nd a direct proof of �no symmetric Ahmad

pair�. (Ahmad, Lachlan's proof was an indirect one using

Gutteridge operators).

(Ahmad, Lachlan) There is no symmetric Ahmad pair, i.e. if

A(a,b) and A(b, a) then a = b.

It turns out that the only property needed to make it work was that

the same degree b cannot simultaneously be the left half and the

right half of an Ahmad pair.
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|P | = 3

Theorem (Goh, Lempp, N, Soskova)

If a,b, c are incomparable, then we cannot have A(a,b) and

A(b, c).

Proof.

First we build x0 < a.

If we fail to make x0 ̸≤ b, then we begin building another x1 < b.

If we fail to make x1 ̸≤ c , then we begin building another x2 < a.

This time we will succeed in making x2 ̸≤ b.
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|P | = 3

Theorem (Goh, Lempp, N, Soskova)

There is no Ahmad triple of Σ0
2 degrees.

Replacing Q2 with Q4 gives a completely di�erent picture:

How to block this con�guration?
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|P | = 3

Theorem (Goh, Lempp, N, Soskova)

There are incomparable Σ0
2 degrees a0, a1 and a2 such that

A(a0, a1) and A(a0, a2), and for every x , if x < a1, a2 then x < a0.

This blocks the con�guration:

Di�culty: By the fact that there are no symmetric Ahmad pairs,

neither A(a1, a0) nor A(a2, a0) can hold, so the condition

�x < a1, a2� is absolutely necessary.
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|P | = 3

There is another technique used in the analysis: mixing in minimal

pair requirements.

The previous theorem is such an example.

� To block P,Q1,Q3,Q4, we can make a0, a1 and a2 form

pairwise minimal pairs.

� To block P,Q0,Q4, we can make A(a0, a1) and a1 ∧ a2 = 0.
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|P | = 3

We consider the next con�guration:

To block this (if possible), we cannot simply rely on constructing

Ahmad pairs, since if we make A(a0, a1), then we cannot make

A(a1, a2) or A(a1, a0) true.

It's clear that we need a (new) method to build a0, a1 and a2 such

that for every x < a0, we have x < a1 or x < a2.
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|P | = 3

De�nition (Generalized Ahmad pair)

If F is a �nite set of degrees, and a ≰ b for any b ∈ F , we say that

A(a,F ) if for every x < a we have x < b for some b ∈ F .

Theorem (Goh, Lempp, N, Soskova)

There are incomparable Σ0
2 degrees a0, a1 and a2 such that

A(a0, {a1, a2}), but neither A(a0, a1) nor A(a0, a2) holds.

The di�culty is to implement the switching of outcomes from

coding x < a0 into a1 to coding x into a2.
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|P | = 3

Theorem (Gutteridge)

There is an operator G such that for any set A, G (A) ≤e A. If A is

not c.e. then G (A) <e A, and if A is not ∆0
2 then G (A) is not c.e.

The Gutteridge operator has been a key tool in our analysis. (Used

in Ahmad, Lachlan's proof of no symmetric Ahmad pair).

� Each column G (X )[n] is �nite.

� Each n ∈ X is encoded in G (X )[n], and the location of this

can be computed by ∅′.
Using this, we can show:

Theorem (Goh, Lempp, N, Soskova)

There are no incomparable Σ0
2 degrees a0, · · · , an such that∧

i≤n A (ai ,F − {ai}) where F = {a0, · · · , an}.

Thus the con�guration P,Q0,Q5,Q6 turns out to be realisable.
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Where is this all going?

It turns out that the previous analysis of di�erent cases yields all

the tools needed.

Theorem (Goh, Lempp, N, Soskova, in preparation)

There are no �nite sets of degrees F = {a1, · · · , an},G1, · · · ,Gn

and a degree a0 such that all degrees are incomparable, and where

A(a0,F ) ∧
∧

0<i≤n

A(ai ,Gi )

This simultaneously generalises all �negative� results that produce

realisable con�gurations in the previous analysis.

The proof uses ideas from the previous theorem on �no Ahmad

triples�, using a modular approach.
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The criteria for one point extensions

This allows us to formulate a condition for which con�gurations can

be blocked:

Theorem (Goh, Lempp, N, Soskova, in preparation)

Let S ⊆ P({0, · · · , n})− {∅}. (Here, each S ∈ S represents a one

point extension QS of P = {a0, · · · , an}).
Let S0 = {i ≤ n | {i} ∈ S} and S1 = {0, · · · , n} − S0. Then the

con�guration P, (QS)S∈S can be blocked if and only if (omitting

trivial cases) there is an assignment ν : S0 → P(S1)− {∅}
satisfying:

� For each i ∈ S0, {i} ∪ ν(i) ̸∈ S, and
� for each F ⊆ S0 with |F | > 1 we have

⋂
{ν(i) | i ∈ F} ̸∈ S.
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Next steps

The next step towards deciding the ∀∃ theory of De(≤ 0′) is to
obtain a condition for one point extensions both above and below

elements of P .

Theorem (Kalimullin, Lempp, N., Yamaleev)

There are no incomparable Σ0
2 degrees a and b such that

a ∪ b = 0′ and A(a,b).

The proof is a non-uniform �nite injury argument.

This shows that P = {a,b}, Q0 = {x < a,b},
Q1 = {a,b, x ≥ a, x ≥ b} is realisable.

Both questions (Existence of an Ahmad triple and a cupping

Ahmad pair) were asked by Kent (2007).
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Thank you!
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