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Opening

After a full semester on the ceers, you (you, the audience) are
now among the world’s experts on the topic—congratulations!

Yet, computable reducibility (≤c) makes perfect sense for
equivalence relations on ω of any complexity. Today, I’m going
to review a couple of topics dealing with arithmetical
equivalence relations.
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Universality
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Introducing universality

For a complexity class C, an equivalence relation E ∈ C is
universal if every equivalence relation in C reduces to E.

Universal ceers have been studied since the 1980s. The
Cantor-Schröder-Bernstein property fails for ceers: there are
universal ceers that, although bi-reducible, are not computably
isomorphic. This discovery initiated the long-standing program
of classifying isomorphism types of universal ceers via natural
combinatorial properties.

Climbing up the arithmetical hierarchy, new phenomena occur.
Let’s begin with a curious observation. Denote by =ce the
equality (of indices) of c.e. sets.
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=ce not universal

Proposition (Andrews, S.)

=ce is not Π02 universal. In fact, there is a d-c.e. equivalence
relation E that doesn’t reduce to it.

The proof, although simple, distillates the two-dimensional
character of computable reducibility, which distingues it from
classic reducibilities, such as Turing or m-reducibility.

Proof idea: To diagonalize against a potential reduction φe, let e0 �E e1.
We use fresh numbers ez’s, with z > 1, to gradually copy Wφe(e0) into
Wφe(e1) and vice versa: e.g., whenever v↘ Wφe(e0) we let e0 E ez, for a
fresh z; next, if v↘ Wφe(ez), we let e0 �E ez and ez E e1.
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Universal Σn equivalence relations

The existence of a universal element for a class C of
equivalence relations is readily settled if C can be effectively
enumerated: just take

⊕
e∈ω Re, where (Re)e∈ω is an effective

enumeration of C.

Now, the reflexive and symmetric closure of a binary relation
doesn’t increase the complexity of the relation, while the
transitive closure of a binary relation S is c.e. in S. Thus, for all
n, there is an equivalence relation which Σ0n universal.

The case of Π-levels, as suggested by the nonuniversality of
=ce, is more delicate.
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No effective enumeration of all Π0
1 equivalence relations

Proposition (Ng, Yu)
There is no effective enumeration of all co-ceers.

Proof idea: Suppose that (Re)e∈ω is an effective enumeration of all
co-ceers. We build E so that the ith column E[i] of E witness that
E ̸= Ri. To do so, let ⟨e, 0⟩ �E⟨e, 1⟩. Then, we let ⟨e, s+ 2⟩ be
E-inequivalent with both ⟨e, 0⟩ and ⟨e, 1⟩; unless at stage s we
witness that ⟨e, 0⟩��Ri⟨e, 1⟩, in which case we keep

⟨e, 0⟩ E ⟨e, s+ 2⟩ E ⟨e, 1⟩.

By transitivity, the opponent must show us that ⟨e, s+ 2⟩ is
Ri-inequivalent to ⟨e, 0⟩ or ⟨e, 1⟩: this gives an immediate way to
diagonalize while ensuring that E satisfies transitivity.
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There is a universal co-ceer

However, a class C may have universal member even if C
cannot be effectively enumerated.

Theorem (Ng, Yu)
There is an effective enumeration (Ee)e∈ω of co-ceers so that
every co-ceer S reduces to some Ee.

It immediately follows that there is a universal co-ceer. Denote
its degree by π.

Interestingly, the existence of an effective enumeration of all
degrees of co-ceers seems to be an open problem.
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Realizing π

π has natural realizations.

Recall that (unary) quadratic time functions over the alphabet
{0, 1} are represented by Turing machines equipped with a
counter forcing them to stop in time O(n2), where n is the
length of the input.

Theorem (Ianovski, R. Miller, Ng, Nies)
Equality of quadratic time computable functions is a universal
co-ceer.

Can we do better? Uri and I believe so.
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Realizing π, continued

Andrews, S.: Equality of linear time computable functions is a
universal co-ceer (in fact, the same holds for any time bound
you wish).

Proof idea: Given a co-ceer E, we shall construct a family of linear
time computable functions (fe) so that u E v iff fu = fv. Say that a
stage s is z-consistent, if E ↾≤z satisfies transitivity. The key idea is to
meet the following requirements:

1. Each fz is defined at a z-consistent stage, by first prescribing
that fz copies fx for the least x in [z]E;

2. Whenever we witness a failure of transitivity on the functions
fz’s currently defined, we restrain from defining new ones and
we extend each fz as previously prescribed until consistency is
restored. At that point, we update the behavior of such
functions by mimicking that of E.
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Climbing the Π-levels

On the other hand, universality disappears at the next Π-level
of the arithmetical hierarchy.

Theorem (Ianovski, R. Miller, Ng, Nies)

There is no universal Π0n equivalence relation, for n > 1.

The result seems in sharp constrast with the existence of
universal co-ceers. However, it can be explained by observing
that the last construction (in fact, a simplified version of it)
shows that each co-ceer S can be encoded into the columns of
a suitable computable set YS:

i S j⇔ Y[i]S = Y[j]S , (†)

and of course this equation relativizes.
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Climbing the Π-levels, continued

In particular, we have that each Π02 equivalence relation S can
be encoded into the columns of a ∆0

2 equivalence relation YS.

But then, it’s clear that no Π02 equivalence relation can be
universal. Suppose otherwise, and this witnessed by S. Then
YS, being ∆0

2 , must be α-c.e. for some α. Thus, S cannot be
above, say, the equality (of indices) of α+ 1-c.e. sets (=α+1-c.e.).

It suffices to relativize again to deduce that there is no Π0n+2
which is universal for 0(n) reducibility—let alone computable
reducibility.

Moral: co-ceers are stange. Feel free to explore them!
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Effectivizing the Borel theory
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Effectivizing benchmark relations, I

Following Coskey, Hamkins, and R. Miller (2012), we adapt
benchmark relations from the Borel theory by restricting them
to the c.e. sets. This naturally give rise to equivalence relations
on the natural numbers. Indeed, if E is on the c.e. sets, then we
let, for all e, i ∈ ω,

e Ece i⇔ We EWi.
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Effectivizing benchmark relations, II

So, Id(2ω) translates to the equality of c.e. sets, given by

e =ce i⇔ We = Wi.

Similarly, we let

e Ece0 i⇔ We△Wi is finite.

Ece1 is defined by regarding at c.e. sets as subsets of ω × ω:

e Ece1 i⇔ (∀∞n)(W[n]
e = W[n]

i ).
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Reductions between Ece’s, I

Theorem (Coskey, Hamkins, R. Miller)
Id(ω) <c=

ce<c Ece0 .

Proof idea: The reductions closely resemble the Borel ones.
Nonreductions are far easier to get than in the Borel
framework. Calculating the complexity of the relations involved
(as set of pairs) suffices:

• Id(ω) is ∆0
1 ,

• =ce is Π02 ,
• Ece0 is Σ03 .
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Reductions between Ece’s, II

Theorem (Coskey, Hamkins, R. Miller)
Ece0 ∼c Ece1 .

That Ece1 reduces to Ece0 is surprising and it breaks with the Borel
theory. In fact, it turns out that Ece0 is as complex as possible:

Theorem (Ianovski, R. Miller, Ng, Nies)

Ece0 is Σ03 universal.
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Silver’s dichotomy fails for computable reducibility

There is no analog of Silver’s dichotomy for ≤c. For all e, i ∈ ω,
define

• e Emin i⇔ (minWe = minWi),
• e Emax i⇔ (maxWe = maxWi or |We| = |Wi| = ∞).

Theorem (Coskey, Hamkins, R. Miller)
Emin and Emax are c-incomparable and they both reduce to =ce.

Other dichotomies fail as well (stay tuned). However, the
failure of dichotomies is to be expected: first, contrary to ≤B,
computable reducibility is sensible to the complexity of
relations/classes involved; secondly, controlling fixed points
given by the recursion theorem is a formidable tool for
diagonalizing.
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Introducing cbers

A fundamental subclass of Borel equivalence relations, named
countable Borel equivalence relations (cbers), consists of
those with countable equivalence classes. This study is
intertwined with that of the equivalence relations which can be
realized by Borel actions of countable groups.

Let G be a group acting on a standard Borel space. Then the
orbit equivalence relation EG is given by

x EG y⇔ (∃γ ∈ G)(γ · x = y).
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Group actions

For example,

• The action of Z on 2ω induced by the odometer map (i.e.,
+1mod 2 with right carry) produces an equivalence
relation which almost coincides with E0, but it glues [1∞]E0
with [0∞]E0 .

• For each countable group G, the shift action of G on the
space 2G is given by

(g · p)h = pg−1h,

for g,h ∈ G and p ∈ 2G. (If G = Z, this corresponds to left
shift of doubly-infinite binary sequences).
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Realizing cbers by group actions

Theorem (Feldman, Moore)
If E is a cber on a standard Borel space X, then there is a
countable group G and a Borel action of G on X such that
E = EG.

The proof relies on Luzin-Novikov Uniformization, which
ensures that every countable Borel equivalence relation has a
uniform Borel enumeration of each class.

The hierarchy of cbers is rich and complicated. However, it has
a top element. Denote by E∞ the shift action F2 (the free group
with 2-generators) on 2F2 .

Theorem (Dougherty, Jackson, Kechris)

E∞ is a universal cber (that is, E ≤B E∞ for all cbers E).
19



Orbit equivalence relations under computable lenses

Denote by CE, the collection of c.e. sets (to be understood
extensionally, i.e., as just subsets of ω).

Coskey, Hamkins, R. Miller (2012):

• The action of a computable group G acting on CE is
computable in indices if there is computable α so that

Wα(g,e) = g ·We.

The induced orbit equivalence relation is denoted EceG .
• Ece is enumerable in indices if there is computable α so
that, for all i ∈ ω,

e Ece i⇔ (∃n)(Wα(e,n) = Wi).
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Realizing Ece0 via a group action, I

Is there an effective analog of Feldman-Moore? That is, is it the
case that any Ece enumerable in indices is the orbit relation of
an action computable in the indices? The answer is (again): no.

Theorem (Coskey, Hamkins, R. Miller)
Ece0 is enumerable in indices but there is no group action G
computable in the indices so that Ece0 = EceG .

One way to see this is by using the following lemma. Say that a
given EceG is permutation induced if there is a computable
subgroup H of S∞ so that

x EceG y⇔ (∃π ∈ H)(Wy = {π(n) : n ∈ Wx}).
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Realizing Ece0 via a group action, II

Lemma (Andrews, S.)
Every orbit relation of a group action computable in indices is
permutation induced.

So, when dealing with EceG , we shall assume that G is a subgroup
of S∞ whose action on the c.e. sets is given, for all π ∈ G, by

π ·Wx = {π(n) : n ∈ Wx}.

From the lemma, it immediately follows that no EceG glues c.e.
sets of different size. So, e.g., neither Ece0 nor Ece1 can be realized
by group actions computable in indices. To overcome this
limitation, it is natural to relax the notion of realizability and
reasoning up to ≤c. Then, the next question arises:

Is there G so that Ece0 ∼c EceG ?
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Realizing Ece0 via a group action, III

Since Ece0 is Σ03 universal, then all EceG reduce to it. So, the
question is really whether Ece0 can be encoded into some EceG .

Let P be the subgroup of S∞ generated by all permutations
with finite support (i.e., those that move only finitely many
elements).

Theorem (Andrews, S.)
Ece0 ∼c EP.

The proof is a priority construction dealing with Σ03
approximations. Yet, note that EP is, in a sense, the closest you
may get to Ece0 by using permutations. Indeed, i EP j if and only
if there is n so that:

• |Wi ∩ [0,n]| = |Wj ∩ [0,n]| and Wi ∖ [0,n] = Wj ∖ [0,n].
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A new dichotomy

At this point, one may suspect that “few” orbit relations would
be of the highest complexity (i.e., that of Ece0 ). This is not the
case.

In fact, we have obtained the following neat – and quite
unexpected – dichotomy:

Theorem (Andrews, S.)

For all groups G acting computably in indices (and faithfully),

• If G is finite, then EceG ∼c=
ce,

• If G is infinite, then EceG ∼c Ece0 .

Hence, Ece∞ has many natural realizations.
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Failures of Feldman-Moore and Glimm-Effros

Anyway, the analog of Feldman-Moore theorem fails also
working up to ≤c, e.g., Emin and Emax are enumerable indices
but, being stricly below =ce, they cannot be equivalent to any
EceG . In fact,

Theorem (Andrews, S.)

1. There is an infinite chain of equivalence relations which
are enumerable in the indices between =ce and Ece0 .

2. There is an infinite antichain of equivalence relations
enumerable in indices between =ce and Ece0 .

Thus, there is no computable analog of Glimm-Effros.
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Thank you!
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