Countable Ordered Groups and Weihrauch Reducibility

Ang Li

University of Wisconsin-Madison

June 21, 2024

Ang Li

Countable Ordered Groups and Weihrauch Reducibility

June 21, 2024 1 / 32

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

1 Reverse Mathematics

2 Order Type of Countable Ordered Group

3 Weihrauch Reducibility

4 Weihrauch Problem

5 References

イロト イボト イヨト イヨト 一日

Reverse mathematics

- Reverse mathematics study the strength of axioms that is needed to prove theorems of ordinary mathematics over a weak base theory.
- It is usually studied using subsystems of second order arithmetic.
- In the appropriate base theory, we can code well-orders, groups etc in N. Codings can be different. We say it is an ω-presentation or ω-copy for one coding.

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Big five

- **1** RCA₀: PA⁻ + I Σ_1^0 + Δ_1^0 -CA
- 2 WKL₀: RCA₀ + some form of weak könig lemma
- **3** ACA₀: RCA₀ + arithmetical comprehension axiom
- 4 ATR₀: ACA₀ + arithmetical transfinite recursion scheme
- **6** Π_1^1 -CA₀: RCA₀ + Π_1^1 -comprehension axiom

Theorem

The following are equivalent over RCA₀*:*

- Π₁¹-CA₀
- Por any sequence of trees (*T_k* : *k* ∈ N), *T_k* ⊆ N^{<N}, there exists a set X such that ∀k(k ∈ X ↔ *T_k* has a path).

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Theorem (Maltsev, 1949)

The order type of a countable ordered group is $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$ *, where* α *is an ordinal and* $\varepsilon = 0$ *or* 1.

Definition

An ordered group is a pair (G, \leq_G) , where *G* is a group, \leq_G is a linear order on *G*, and for all $a, b, g \in G$, if $a \leq b$ then $ag \leq bg$ and $ga \leq gb$.

イロト イポト イヨト イヨト

Theorem (Maltsev, 1949)

The order type of a countable ordered group is $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$ *, where* α *is an ordinal and* $\varepsilon = 0$ *or* 1.

Definition

Let (X, \leq_X) and (Y, \leq_Y) be linear orders. The product *XY* is the linear order (Z, \leq_Z) where

$$Z = \{ \langle x, y \rangle : x \in X \land y \in Y \},\$$

 $\langle x_1, y_1 \rangle \leq_Z \langle x_2, y_2 \rangle \leftrightarrow y_1 <_Y y_2 \lor (y_1 = y_2 \land x_1 \leq_X x_2).$

 \mathbb{Z}^X is the set of functions $f : X \to \mathbb{Z}$ with finite support. If $f \neq g$, then f < g if and only if $f(x) <_{\mathbb{Z}} g(x)$ where x is the maximum value of X on which f and g disagree.

イロト 不得 とくほ とくほう

Theorem (Solomon, 2001)

The following are equivalent under RCA_0 :

- $\textcircled{1} \Pi_1^1 \text{-} CA_0$
- **2** Let *G* be a countable ordered group. There is a well-order α and $\varepsilon \in \{0, 1\}$ such that $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$ is the order type of *G*.
- **3** Let *G* be a countable abelian ordered group. There is a well-order α and $\varepsilon \in \{0, 1\}$ such that $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$ is the order type of *G*.

Definition

For any *a*, *b* in an ordered group *G*, they are Achimedean equivalent if there exists $m, n \in \mathbb{N}$ such that $|a^n| \ge |b|$ and $|b^m| \ge |a|$. Denoted, $a \approx b$. Also, *a* is Archimedean less than *b* if no such *n* exists. Denoted $a \ll b$.

Given an ω -copy of G, Arch $(G) := \{g \in G : (\forall h \in G) [h <_{\mathbb{N}} g \to \neg(h \approx g)]\}$, and $W(\operatorname{Arch}(G))$ is the well-ordered initial segment of Arch(G).

・ロット (雪) () () ()

Theorem (Solomon, 2001)

The following are equivalent over RCA₀*:*

- Π₁¹-CA₀
- 2 Let G be a countable ordered group. There is a well-order α and ε ∈ {0,1} such that Z^αQ^ε is the order type of G.
- **3** Let *G* be a countable abelian ordered group. There is a well-order α and $\varepsilon \in \{0, 1\}$ such that $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$ is the order type of *G*.

Proof.

Idea: " \Rightarrow " Find Arch(*G*) and W(Arch(*G*)). Find the least strictly positive element if possible. Take the quotient and repeat until there is no strictly positive element.

ヘロア 人間 アイヨア 人間 アー

Proof.

Idea: " \Leftarrow " Given a sequence $\{T_i\}_{i\in\mathbb{N}}$ of trees in Baire space, let $T = \{\varepsilon_0\} \cup \{i^{\frown}\sigma : \sigma \in T_i\}$. Let *G* be the free abelian group on generators $g_{\sigma}, \sigma \in T$. Consider the Kleene-Brouwer order KB(*T*) of *T*. Order the generators so that $g_{\sigma} \ll g_{\tau}$ when $\sigma <_{\text{KB}} \tau$. We can show the following:

- The order type of *G* is $\mathbb{Z}^{KB(T)}$.
- $\varepsilon = 0$ if and only if KB(*T*) is a well-order.
- When $\varepsilon = 1$, T_i has a path if and only if the \mathbb{Q} -coordinates of $f(g_{i-1})$ and $f(g_i)$ (f(e) and $f(g_0)$ when i = 0) are different.

・ロト ・ ア・ ・ マト・ マート

Theorems as problems

Statements like the ones in the previous theorem can be written as follows:

$$(\forall x \in X) (\exists y \in Y) [\varphi(x) \to \psi(x, y)].$$

We can naturally translate it to a computational problem, i.e. given an input *x* such that $\varphi(x)$, the black box produce an output *y* such that $\psi(x, y)$.

Notice that for many statements, there could be multiple natural ways to phrase them as a computational problem.

For our purposes, we consider problems on Baire space $\mathbb{N}^{\mathbb{N}}$, i.e. relations $f \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$, or equivalently partial multi-valued functions $f :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$.

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Computability on $\mathbb{N}^{\mathbb{N}}$

Definition

A single-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is computable if there is a total computable function $g : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}^{<\mathbb{N}}$ such that:

- $g(\sigma) \preccurlyeq g(\tau)$ when $\sigma \preccurlyeq \tau$,
- f(x) = y if and only if for any *n*, there exists *m* such that $y \upharpoonright n \preccurlyeq g(x \upharpoonright m)$.

Definition

A single-valued function $f :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer for a multi-valued function $g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ if

 $(\forall p \in \operatorname{dom}(g))[f(p) \in g(p)].$

g is computable if it has a computable realizer.

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Weihrauch reducibility

Definition

Let *f*, g be partial multi-valued functions on Baire space. *f* is Weihrauch reducible to *g*, denoted $f \leq_W g$ if there are computable Φ , Ψ on Baire space such that:

- given $p \in \operatorname{dom}(f)$, $\Phi(p) \in \operatorname{dom}(g)$, and
- given $q \in g(\Phi(p))$, $\Psi(p,q) \in f(p)$.

 Φ,Ψ are called forward functional and backward functional respectively.

$$p \xrightarrow{\Phi} \Phi(p)$$

$$\downarrow^{f} \qquad \qquad \downarrow^{g}$$

$$f(p) \xleftarrow{\Psi(p,\cdot)} q$$

イロト 不得 とくほ とくほ とうほ

Represented space

Weihrauch reducibility is defined in a more general way.

Definition

A represented space is a pair (X, δ_X) where δ_X is a surjection: $\subseteq \mathbb{N}^{\mathbb{N}} \to X$.

If $\delta_X(p) = x$, then we call p a name for x.

A single-valued function *F* on Baire space is a realizer of a multi-valued function $f :\subseteq X \Rightarrow Y$ if and only if

$$(\forall p \in \operatorname{dom}(f \circ \delta_X))[\delta_Y \circ F(p) \in f(p)].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ○

Represented space

Weihrauch reducibility is defined in a more general way.

Definition

A represented space is a pair (X, δ_X) where δ_X is a surjection: $\subseteq \mathbb{N}^{\mathbb{N}} \to X$.

If $\delta_X(p) = x$, then we call p a name for x.

A single-valued function *F* on Baire space is a realizer of a multi-valued function $f :\subseteq X \Rightarrow Y$ if and only if

 $(\forall p \in \operatorname{dom}(f \circ \delta_X))[\delta_Y \circ F(p) \in f(p)].$

Weihrauch reducibility $f \leq_W g$ is defined using names and realizers:

$$p \xrightarrow{\Phi} \Phi(p)$$

$$\downarrow_F \qquad \qquad \downarrow_G$$

$$F(p) \xleftarrow{\Psi(p,\cdot)} q$$

Ang Li

Countable Ordered Groups and Weihrauch Reducibility

イロト イポト イヨト イヨト 三日

Algebraic operations

Definition

Let $f :\subseteq X \Rightarrow Y$, $g :\subseteq Z \Rightarrow W$, and $h :\subseteq Y \Rightarrow Z$ be multi-valued functions. We define the following operations:

• composition $h \circ f :\subseteq X \Longrightarrow Z$, $(h \circ f)(x) := \{z \in Z : (\exists y \in f(x)) [z \in h(y)]\}$, and $\operatorname{dom}(h \circ f) := \{x \in \operatorname{dom}(f) : f(x) \subseteq \operatorname{dom}(h)\};$

2 product
$$f \times g :\subseteq X \times Z \Rightarrow Y \times W$$
,
 $(f \times g)(x, z) := f(x) \times g(z)$, and
 $\operatorname{dom}(f \times g) := \operatorname{dom}(f) \times \operatorname{dom}(g)$;

③ finite parallelization
$$f^* : \subseteq X^* \implies Y^*$$
,
 $f^*(i, x) := i \times f^i(x)$, and
 $\operatorname{dom}(f^*) := \operatorname{dom}(f)^*$;

④ parallelization
$$\hat{f} :\subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}$$
,
 $\hat{f}(\bigotimes_{i} x_{i}) := \bigotimes_{i \in \mathbb{N}} f(x_{i})$, and
 $\operatorname{dom}(\hat{f}) := \operatorname{dom}(f)^{\mathbb{N}}$.

イロト イポト イヨト イヨト

Algebraic operations

Definition

Let $f :\subseteq X \Rightarrow Y$, $g :\subseteq Z \Rightarrow W$, and $h :\subseteq Y \Rightarrow Z$ be multi-valued functions. We define the following operations:

1 parallelization
$$\widehat{f} :\subseteq X^{\mathbb{N}} \rightrightarrows Y^{\mathbb{N}}$$
,
 $\widehat{f}(\bigotimes_{i} x_{i}) := \bigotimes_{i \in \mathbb{N}} f(x_{i})$, and
 $\operatorname{dom}(\widehat{f}) := \operatorname{dom}(f)^{\mathbb{N}}$.

Theorem

Let f and g be problems. The Weihrauch degree $f * g := \max_{\leq_{\mathsf{W}}} \{f_0 \circ g_0 : f_0 \leq_{\mathsf{W}} f, g_0 \leq_{\mathsf{W}} g\}$ exists.

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Big five and Weihrauch reducibility

- 1 RCA₀: Id_{$\mathbb{N}^{\mathbb{N}}$}.
- **2** WKL₀: C_{2^N} .
- **3** ACA₀: iterations of lim.
- **4** ATR₀: many candidates, $C_{\mathbb{N}^{\mathbb{N}}}$, $UC_{\mathbb{N}^{\mathbb{N}}}$, etc.
- **6** Π_1^1 -CA₀: \widehat{WF} .

Definition

 $C_{\mathbb{N}^{\mathbb{N}}}$: Given an ill-founded tree in Baire space, find a path through it.

WF: Given a tree in Baire space, tell whether it is well-founded.

・ロト ・御ト ・ヨト ・ヨト 三日

A small part of the zoo

▲ 三 → 三 → へへ
 June 21, 2024
 18 / 32

ヘロト ヘロト ヘヨト ヘヨト

Weihrauch problem

- **1** OG $\mapsto \alpha \varepsilon f$ and AOG $\mapsto \alpha \varepsilon f$: given a countable (abelian) ordered group *G*, output the ordinal α and $\varepsilon \in \{0, 1\}$ in its order type $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$ with an order-preserving function from *G* to $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$.
- **2** OG $\mapsto \alpha \varepsilon$
- \bigcirc OG $\mapsto \varepsilon$
- OGαε → f: given a countable ordered group G with the ordinal α and ε ∈ {0,1} in its order type Z^αQ^ε, output an order-preserving function from G to Z^αQ^ε.
- OG → α0 and OG → α1: given a countable ordered group G with ε ∈ {0,1} in its order type Z^αQ^ε, output the ordinal α.

イロト イポト イヨト イヨト 三日

Output everthing

Proposition

 $\mathsf{OG} \mapsto \alpha \varepsilon \mathsf{f} \geq_\mathsf{W} \widehat{\mathsf{WF}}$

Proof.

>>

What about the other direction? Suppose we are given a computable ω -copy of the group, the output we need includes an ω -copy of the ordinal α . Notice that $\widehat{\mathsf{WF}}$ can be used to compute sets that are Π_1^1 -complete. Therefore, it is natural to ask the question: what can the computational complexity of α be?

ヘロト 人間 とくほとく ほど

What can α be?

Theorem

If a computable ordered group has order type \mathbb{Z}^{α} , then α is computable.

Proof.

Idea: Build a tree $T \in \mathbb{N}^{<\mathbb{N}}$ by trying to embed $\mathbb{Q}_2 \cap [0,1]$ into the group. This tree has rank $\omega \alpha$.

Lemma

Given two trees $T_0, T_1 \subseteq \omega^{<\omega}$, if there is a map f from T_1 to T_0 such that $f^{-1}(\sigma)$ has a finite rank as a partial order for any σ , $\operatorname{rk}(f^{-1}(\sigma)) \leq c_l$ for all σ of length l for some constant c_l , and $f(\sigma) \preccurlyeq f(\tau)$ when $\sigma \preccurlyeq \tau$, then $\operatorname{rk}(T_1) \leq^+ \operatorname{rk}(T_0)$. In particular, $\operatorname{rk}(T_1) \leq \operatorname{rk}(T_0)$ when the latter is a limit.

・ロト ・ 同ト ・ ヨト ・ ヨト

What can α be?

Theorem

If a computable ordered group has order type $\mathbb{Z}^{\alpha}\mathbb{Q}$, then $\alpha \leq \omega_{1}^{CK}$.

Proof.

For each positive element *g* in the group, we build a tree that tries to embed $\mathbb{Q}_2 \cap [0, 1]$ into the interval between the identity *e* and *g*. Then, $\alpha \leq \omega_1^{CK}$. Otherwise, there is a *g* mapped to $(0, \ldots, 0, 1, 0, \ldots)$ where 1 is at the ω_1^{CK} position.

Theorem

There exists a computable countable ordered group with order type $\mathbb{Z}^{\omega_1^{CK}}\mathbb{Q}$.

Proof.

There is a group with order type \mathbb{Z}^H where $H = \omega_1^{CK}(1 + \mathbb{Q})$ is the Harrison linear order.

Ang Li

イロト イポト イヨト イヨト

Another way to see this...

Theorem (Gandy Basis Theorem)

If a non-empty set A of reals is Σ_1^1 and, then A contains a real x such that $\omega_1^x = \omega_1^{CK}$ and $x <_T O$.

There is some computable input of $\widehat{\mathsf{WF}}$ such that its output is Π_1^1 -complete, which computes \mathcal{O} .

Feed this input to $\widehat{\mathsf{WF}}$. we get a computable countable ordered group from the forward functional of $\widehat{\mathsf{WF}} \leq_{\mathsf{W}} \mathsf{OG} \mapsto \alpha \varepsilon \mathsf{f}$. If α cannot be non-computable, then the set of order-preserving bijections from the group to its order type is Π_2^0 .

By Gandy Basis Theorem, there is one element of this set that cannot compute Kleene's \mathcal{O} . Then, the backward functional cannot compute \mathcal{O} using α, ε, f .

・ロト ・ ア・ ・ マト・ マート

One point information

Proposition

 $\mathsf{OG} \mapsto \varepsilon \equiv_\mathsf{W} \mathsf{WF}$

Proof.

" \leq_W " Build a tree *T* by trying to embed the rationals into the order. Fix a list of rational numbers $\{q_i\}_{i < \omega}$. Define *T* as follows: any σ is in *T* if and only if the map from q_i to $\sigma(i) \in G$ for $i < |\sigma|$ preserves the order. Then, *T* is well-founded if and only if $\varepsilon = 0$.

・ロト ・ ア・ ・ マト・ マート

$\mathsf{OG} \mapsto \alpha \varepsilon \mathsf{f} \leq_{\mathsf{W}} \widehat{\mathsf{WF}}$

Proof.

- " \leq_{W} " Assume that the input of $\mathsf{OG} \mapsto \alpha \varepsilon \mathsf{f}$ is computable and $\varepsilon = 1$.
 - The forward functional simply makes countably many trees so that the output of $\widehat{\mathsf{WF}}$ is Π^1_1 -complete.
 - The backward functional will identify which \mathbb{Z}^{α} copy each group element is in.
 - It will also make new guesses of *α* for a copy of Z^α whenever a new group element is known to be in this copy.
 - It will build the partial order-preserving map according to the current guess of α .
 - All the questions the backward functional ask in order to do so are Π_1^1 .

イロト イボト イヨト イヨト 一日

On the side

Proposition

- OG $\mapsto \alpha \not\geq_W \lim_{2} \infty$.
- $OG \mapsto \alpha \varepsilon \not\geq_W \lim_2 \times \lim_2$.

Definition

 $\lim_{2} :\subseteq 2^{\mathbb{N}} \to 2$ is the limit operation on $\{0, 1\}$.

<ロ> (四) (四) (三) (三) (三)

First-order part

Definition (Dzhfarov, Solomon, & Yokoyama)

For a Weihrauch problem P, the first-order part of P, denoted by ¹P, is the following first-order problem:

- the ¹P-instances are all triples $\langle f, \Phi, \Psi \rangle$, where $f \in \omega^{\omega}$ and Φ and Ψ are Turing functionals such that $\Phi(f) \in \text{dom}(\mathsf{P})$ and $\Psi^{f \oplus g}(0) \downarrow$ for all $g \in \mathsf{P}(\Phi(f))$;
- the ¹*P*-solutions to any such $\langle f, \Phi, \Psi \rangle$ are all *y* such that $\Psi^{f \oplus g}(0) \downarrow = y$ for some $g \in \mathsf{P}(\Phi(f))$.

$$\begin{array}{cccc} \langle f, \Phi, \Psi \rangle & \stackrel{\Phi}{\longrightarrow} & \Phi(f) \\ & & \downarrow^{1_{p}} & & \downarrow^{p} \\ \ell = \Psi^{f \oplus g}(0) \downarrow & \xleftarrow{\Psi} & g \end{array}$$

Intuitively, the first-order part of a problem P is the strongest problem with codomain ω that is Weihrauch reducible to P.

l

Ang Li

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

First-order part

Definition

$$\mathsf{LPO}: \mathbb{N}^{\mathbb{N}} \to \{0, 1\}, \ \mathsf{LPO}(p) = \begin{cases} 0 \text{ if } (\exists k)[p(k) = 0], \\ 1 \text{ otherwise.} \end{cases}$$

Theorem (Brattka, Gherardi, Marcone, & Pauly)

- LPO* \equiv_W Min.
- lim₂|_WLPO*.
- \lim_{2} , LPO^{*} <_W C_N.

Proposition

- ${}^{1}\text{OG} \mapsto \alpha \equiv_{W} \text{LPO}^{*}.$
- ${}^{1}\text{OG} \mapsto \alpha \varepsilon \equiv_{W} \text{LPO}^{*} \times \text{WF}.$

Corollary

 $\mathsf{OG} \mapsto \alpha \not\geq_{\mathsf{W}} \mathsf{lim}_2. \mathsf{OG} \mapsto \alpha \varepsilon \not\geq_{\mathsf{W}} \mathsf{lim}_2 \times \mathsf{lim}_2.$

How much is needed to output α ?

Proposition

 $OG\alpha \varepsilon \mapsto f \leq_W C_{\mathbb{N}^{\mathbb{N}}}$

Idea: build a tree such that the first level maps the first element of the group to a point in $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$, and the second level maps the first point of $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$ to an element of the group.

Proposition

 $\mathsf{OG} \mapsto \alpha \varepsilon \not\leq_{\mathsf{W}} \mathsf{C}_{\mathbb{N}^{\mathbb{N}}} * \mathsf{WF}$

Corollary

 $\mathsf{OG} \mapsto \alpha \not\leq_\mathsf{W} \mathsf{C}_{\mathbb{N}^{\mathbb{N}}}, \mathsf{OG} \mapsto \alpha \mathsf{1} \not\leq_\mathsf{W} \mathsf{C}_{\mathbb{N}^{\mathbb{N}}}, \mathsf{OG} \mapsto \alpha \mathsf{0} \leq_\mathsf{W} \mathsf{lim} \ast \mathsf{lim}.$

イロト イポト イヨト イヨト 三日

A slightly bigger part of the zoo

Countable Ordered Groups and Weihrauch Reducibility

References

- Chris J Ash and Julia Knight, *Computable structures and the hyperarithmetical hierarchy*, Elsevier, 2000.
- Vasco Brattka, Matthew de Brecht, and Arno Pauly, Closed choice and a uniform low basis theorem, Ann. Pure Appl. Log. 163 (2010), 986–1008.
- Vasco Brattka, Guido Gherardi, and Alberto Marcone, *The bolzano–weierstrass theorem is the jump of weak kőnig's lemma*, Annals of Pure and Applied Logic **163** (2012), no. 6, 623–655, Computability in Europe 2010.
- Vittorio Cipriani, Alberto Marcone, and Manlio Valenti, *The* weihrauch lattice at the level of Π_1^1 -CA₀: the cantor-bendixson theorem, 2022.
- Damir D Dzhafarov, Reed Solomon, and Keita Yokoyama, On the first-order parts of problems in the weihrauch degrees, Computability (2023), no. Preprint, 1–13.
 - **Reed** Solomon, Π_1^1 -CA₀ and order types of countable ordered groups, The Journal of Symbolic Logic **66** (2001), no. 1,192–206.

Ang Li

Countable Ordered Groups and Weihrauch Reducibility

June 21, 2024 31 / 32

Thank You!

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで