O-minimal Coherence

Yayi Fu

University of Wisconsin, Madison

Fall 2024

Background

Let $\mathcal{O}_{\mathbb{C}^n}$ denote the sheaf of rings where $\mathcal{O}_{\mathbb{C}^n}(U)$ is the ring of holomorphic functions defined on U, for each $U \subseteq \mathbb{C}^n$ open. It's also an $\mathcal{O}_{\mathbb{C}^n}$ -module. In complex analysis, it is well-known that

Fact

[Oka50] (Oka) For any positive integer n, $\mathcal{O}_{\mathbb{C}^n}$ is a coherent $\mathcal{O}_{\mathbb{C}^n}$ -module. i.e. $\mathcal{O}_{\mathbb{C}^n}$ satisfies that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. $\mathcal{O}_{\mathbb{C}^n}$ locally finite.
- 2. Every relation sheaf of $\mathcal{O}_{\mathbb{C}^n}$ is locally finite.

Background

This result is generalized in [PS08] to the case of any algebraically closed field ${\cal K}$ of characteristic 0.

Fact

(Peterzil, Starchenko) For any positive integer n, $\mathcal{O}_{\mathcal{K}^n}$ is a coherent $\mathcal{O}_{\mathcal{K}^n}$ -module.

In the above results, a sheaf means the usual sheaf in e.g. [Har13, Chapter II].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background

In [BBT22], coherence theorem is proved on the site $\underline{\mathbb{C}}^n$ where the coverings are finite coverings by definable open sets:

Fact

(Bakker, Brunebarbe, Tsimerman) The definable structure sheaf $\mathcal{O}_{\mathbb{C}^n}$ of \mathbb{C}^n is a coherent $\mathcal{O}_{\mathbb{C}^n}$ -module (as a sheaf on the site $\underline{\mathbb{C}^n}$). (The sheaves in [BBT22] are different from the usual sheaves defined in [Har13]. We will explain more later.)

We use different techniques to prove the coherence of $\mathcal{O}_{\mathcal{K}^n}$ as a sheaf on the site $\underline{\mathcal{K}^n}$, where \mathcal{K} is an algebraically closed field of characteristic 0.

Theorem

The definable structure sheaf $\mathcal{O}_{\mathcal{K}^n}$ of \mathcal{K}^n is a coherent $\mathcal{O}_{\mathcal{K}^n}$ -module as a sheaf on the site $\underline{\mathcal{K}^n}$.

Preliminaries

Setting

(The same setting as in [PS01].) Let \mathcal{K} be an algebraically closed field of characteristic zero. Then $\mathcal{K} = \mathcal{R}(\sqrt{-1})$ for some real closed subfield \mathcal{R} . Such \mathcal{R} is not unique. We fix one such \mathcal{R} and fix an o-minimal expansion of the chosen real closed field. The topology on \mathcal{R} is generated by the definable open intervals. The topology on \mathcal{K} is identified with that on \mathcal{R}^2 . When we say definable, we mean definable in the o-minimal structure \mathcal{R} with parameters in \mathcal{R} .

After defining the topological structure on \mathcal{K} , we define the differential structure:

For one variable, differentiability is defined as follows:

Definition

[PS03, Definition 2.1.] Let $U \subseteq \mathcal{K}$ be a definable open set and $F: U \to \mathcal{K}$ a definable function. Let $z_0 \in U$. We say that F is \mathcal{K} -differentiable at z_0 if the limit as z tends to z_0 in \mathcal{K} of $(f(z) - f(z_0))/(z - z_0)$ exists in \mathcal{K} (all operations taken in \mathcal{K} , while the limit is taken in the topology induced on \mathcal{K} by \mathcal{R}^2).

For multi-variables, differentiability is defined as follows:

Definition

[PS03, Definition 2.8.] Let $V \subseteq \mathcal{K}^n$ be a definable open set, $F: V \to \mathcal{K}$ a definable map. F is called \mathcal{K} -differentiable on V if it is continuous on V and for every $(z_1, ..., z_n) \in V$ and i = 1, ..., n, the function $F(z_1, ..., z_{i-1}, -, z_{i+1}, ..., z_n)$ is \mathcal{K} -differentiable in the *i*-th variable at z_i (in other words, F is continuous on V and \mathcal{K} -differentiable in each variable separately).

Spectral Topology

The spectral topology is a topology on the type space:

Definition

[EJP06, Definition 2.2.] Let $X \subseteq \mathbb{R}^m$ be a definable set (with parameters in \mathbb{R}). The o-minimal spectrum \tilde{X} of X is the set of complete *m*-types $S_m(\mathbb{R})$ of the first order theory $Th_{\mathbb{R}}(\mathbb{R})$ which imply a formula defining X. This is equipped with the topology generated by the basic open sets of the form $\tilde{U} = \{\alpha \in \tilde{X} : U \in \alpha\}$, where U is a definable, relatively open subset of X, and $U \in \alpha$ means the formula defining U is in α . We call this topology on X the spectral topology.

Sheaves on $S_n(\mathcal{K})$

Let $S_n(\mathcal{K})$ denote $S_{2n}(\mathcal{R})$. We use this unconventional notation to emphasize that we are considering functions on \mathcal{K}^n .

Definition

For each definable open set $U \subseteq \mathcal{K}^n$, let $\mathcal{O}_{\mathcal{K}^n}(\tilde{U})$ denote the ring of \mathcal{K} -differentiable functions defined on U. It's easy to check that this defines a sheaf on $S_n(\mathcal{K})$.

Let $\mathcal{O}_{\mathcal{K}^n}$ denote the sheaf of rings where $\mathcal{O}_{\mathcal{K}^n}(\tilde{U})$ is the ring of \mathcal{K} -differentiable functions defined on U, for each $U \subseteq \mathcal{K}^n$ open.

Given $p \in S_n(\mathcal{K})$, let \mathcal{O}_p denote the set of germs for functions

 $\{f:U
ightarrow \mathcal{K}:U ext{ is some open definable set such that } p\in ilde{U}$

and f is \mathcal{K} -holomophic on U }.

Sheaves on $S_n(\mathcal{K})$

Definition

Given a definable set $A \subseteq \mathcal{K}^n$, let $\mathcal{I}_p(A) \subseteq \mathcal{O}_p$ denote the set of germs for functions

 $\{f: U
ightarrow \mathcal{K}: U ext{ is some open definable set such that } p \in \widetilde{U},$

f is \mathcal{K} -holomophic on U and $\forall x \in A \cap U$, f(x) = 0 }.

Let $g_1,...,g_t\in \mathcal{O}_p.$ Let $R_p(g_1,...,g_t)$ denote the set

$$\{(f_1,...,f_t) \in \mathcal{O}_p^t : f_1g_1 + ... + f_tg_t = 0\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We translate definitions about sites in [Stacks] into o-minimal context:

Definition

[Stacks, Part 1, Chapter 7, Definition 6.2] Let $X \subseteq \mathcal{K}^n$ be a definable set. The *o-minimal site* \underline{X} on X consists of definable (relative) open subsets of X, together with $Cov(X) := \{(U, \{U_i\}_{i=1}^k) : U, U_1, ..., U_k \subseteq X \text{ definable (relative) open, } \{U_i\}_{i=1}^k \text{ a finite covering of } U \}.$

Presheaf

Definition

[Stacks, Part 1, Chapter 6, Section 5] A *presheaf* of abelian groups (resp. rings) on an o-minimal site \underline{X} is defined the same as usual: Let X be a topological space. A *presheaf* \mathcal{F} of abelian groups (resp. rings) on an o-minimal site \underline{X} consists of the following data:

(a) a collection of non empty abelian groups (resp. rings) $\mathcal{F}(U)$ associated with every definable open set $U \subseteq X$,

(b) a collection of morphisms of abelian groups (resp. rings) $\rho_{U,V}: \mathcal{F}(V) \to \mathcal{F}(U)$ defined whenever $U \subseteq V$ and satisfying the transitivity property,

 $\rho_{U,V} \circ \rho_{V,W} = \rho_{U,W}$ for $U \subseteq V \subseteq W$, $\rho_{U,U} = Id_U$ for every U.

Presheaf

Definition

[Stacks, Part 1, Chapter 6, Definition 6.1] Let X be a topological space. Let \mathcal{O} be a presheaf of rings on the o-minimal site X. A presheaf of \mathcal{O} -modules \mathcal{F} on an o-minimal site X is a presheaf \mathcal{F} of abelian groups with the following additional data:

- (a) For every definable open set $U \subseteq X$, $\mathcal{F}(U)$ is a non empty $\mathcal{O}(U)$ -module;
- (b) for every definable open U ⊆ X the O(U)-module structure of F(U) is compatible with restriction mappings (of F and O).
 i.e. for definable open U ⊆ V ⊆ X, r ∈ O(V), x ∈ F(V), ρ_{U,V}(r)τ_{U,V}(x) = τ_{U,V}(rx), where ρ, τ are the restriction mappings of F and O resp.

Sheaf

Definition

[Stacks, Part 1, Chapter 6, Definition 7.1.] Let X be an o-minimal site, and let F be a presheaf of abelian groups (resp. rings, O-modules) on X. We say F is a sheaf if for every definable open U ⊆ X and every definable open finite covering {U_i}^k_{i=1} of U,
(i) if (s_i)^k_{i=1} satisfies s_i ∈ F(U_i) for each i and s_i|_{U_i∩U_j} = s_j|_{U_i∩U_j} for each pair i, j, then there is a unique s ∈ U such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $s|_{U_i} = s_i$ for each i;

(ii) for $s, t \in \mathcal{F}(U)$, if $s|_{U_i} = t|_{U_i}$ for each *i* then s = t.

Morphism

Definition

[Stacks, Part 1, Chapter 7. Definition 11.1.] Let \underline{X} be an o-minimal site, and let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of sheaves of modules (i.e. compatible with restiction mappings).

- (1) We say that φ is *injective* if for every definable open $U \subseteq X$ the map $\varphi : \mathcal{F}(U) \to \mathcal{G}(U)$ is injective.
- (2) We say that φ is *surjective* if for every definable open U ⊆ X and every section s ∈ G(U) there exists a finite covering {U_i}^k_{i=1} of U such that for each i, U_i is definable open and the restriction s|_{U_i} is in the image of φ : F(U_i) → G(U_i).

Coherence

Definition

([BBT22, Definition 2.13]) Let \underline{X} be an o-minimal site. Given an \mathcal{O}_X -module M, we say that M is of *finite type* (as an \mathcal{O}_X -module) if there exists a finite definable open (relative to X) cover X_i of X and surjections $\mathcal{O}_{X_i}^n \twoheadrightarrow M_{X_i}$ for some positive integer n on each of those open sets. We say that M is *coherent* (as an \mathcal{O}_X -module) if it is of finite type, and given any definable open $U \subseteq X$ and any \mathcal{O}_U -module homomorphism $\varphi : \mathcal{O}_U^n \to M_U$, the kernel of φ is of finite type.

Coherence

Remark

By definitions above, given a definable open U and an \mathcal{O}_U -module M, to show that M is of finite type, it suffices to show that there exist a finite family of definable open sets $U_1, ..., U_k$ covering U and sheaf morphisms $\varphi_i : \mathcal{O}_{U_i}^{N_i} \to M_{U_i}, i = 1, ..., k$ satisfying that for any fixed i, for any definable open $V \subseteq U_i$ and every section $s \in M(V)$, there exist a finite family of definable open sets $V_1, ..., V_l$ covering V and for each $j \in \{1, ..., l\}, t_j \in \mathcal{O}_{U_i}(V_j)$ such that $\varphi(V_j)(t_j) = s|_{V_j}$.

Motivation

Definition

[EJP06, Definition 3.1.] We denote by $Sh_{dtop}(X)$ the category of sheaves of abelian groups on the o-minimal site \underline{X} and by $Sh(\tilde{X})$ the category of usual sheaves of abelian groups on \tilde{X} .

The following fact is the motivation for our proof. It says a sheaf on the site \underline{X} is the same as a usual sheaf in [Har13, Chapter II] on the space $\tilde{X} \subseteq S_n(\mathcal{K})$ with spectral topology.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fact

[EJP06, Proposition 3.2] $Sh(\tilde{X})$ and $Sh_{dtop}(X)$ are isomorphic.

Number of Zeroes

Let $\pi : \mathcal{K}^n \to \mathcal{K}^{n-1}$, $\pi_n : \mathcal{K}^n \to \mathcal{K}$ denote the projection onto the first (n-1) coordinates and the projection onto the *n*-th coordinate resp.

Lemma

Let $p \in S_n(\mathcal{K})$. Fix $f \in \mathcal{O}_p$ and an open neighborhood U of p on which f is defined and is \mathcal{K} -differentiable. Suppose for all $y \in \pi(U)$, there are finitely many zeroes of f(y, -) in $U_y := \{x \in \mathcal{K} : (y, x) \in U\}$, counting multiplicity. Then there exist $i \in \mathbb{N}$ and $V \subseteq U$ a definable open neighborhood of p such that for any $y \in \pi(V)$, there are exactly i zeroes of f(y, -) in V_y counting multiplicity.

Number of Zeroes

Fact

[PS01, Theorem 2.56.] Let $W \subseteq \mathbb{R}^n$, $U \subseteq \mathcal{K}$ be definable open sets, $F : U \times W \to \mathcal{K}$ a definable continuous function such that for every $w \in W$, F(-, w) is a \mathcal{K} - differentiable function on U. Take $(z_0, w_0) \in U \times W$ and suppose that z_0 is a zero of order m of $F(-, w_0)$.

Then for every definable neighborhood V of z_0 there are definable open neighborhoods $U_1 \subseteq V$ of z_0 and $W_1 \subseteq W$ of w_0 such that F(-,w) has exactly m zeroes in U_1 (counted with multiplicity) for every $w \in W_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Number of Zeroes

Fact

[Cos00, Theorem 6.11] (Definable Tubular Neighborhood) Let M be a definable C^k submanifold of \mathcal{R}^n . There exists a definable open neighborhood U of the zero-section $M \times \{0\}$ in the normal bundle NM such that the restriction $\varphi | U$ is a C^{k-1} diffeomorphism onto an open neighborhood Ω of M in \mathcal{R}^n . Moreover, we can take U of the form

$$U = \{(x, v) \in NM : \|v\| < \epsilon(x)\},\$$

where ϵ is a positive definable C^k function on M.

Coherence on Type Space

Theorem

(type version of [PS08, Theorem 11.3.]) Assume that A is a \mathcal{K} -analytic subset of $U \subseteq \mathcal{K}^n$ and assume that $G_1, ..., G_t$ are \mathcal{K} -holomorphic maps from A into \mathcal{K}^N . Then we can write A as a union of finitely many relatively open sets $A_1, ..., A_m$ such that on each A_i the following holds:

There are finitely many tuples of \mathcal{K} -holomorphic functions on A_i ,

$$\{(H_{j,1},...,H_{j,t}): j=1,...,k\}, k=k(i),$$

with the property that for every $p \in S_n(\mathcal{K})$ with $p \in A_i$, the module $R_p(g_1, ..., g_t)$ equals its submodule generated by $\{(h_{j,1}, ..., h_{j,t}) : j = 1, ..., k\}$ over \mathcal{O}_p (where g_i and $h_{i,j}$ are the germs of G_i and $H_{i,j}$ at p, resp).

Main Theorem

Theorem

(o-minimal version of [BBT22, Theorem 2.21]) The definable structure sheaf $\mathcal{O}_{\mathcal{K}^n}$ of \mathcal{K}^n is a coherent $\mathcal{O}_{\mathcal{K}^n}$ -module as a sheaf on the site $\underline{\mathcal{K}^n}$.

Proof.

Use compactness and type version of [PS08, Theorem 11.3], to check the definition.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark

Let $X \subseteq \mathcal{K}^n$ be definable open. Let $Sh^{\mathcal{O}(X)}(\tilde{X})$ denote the category of sheaves of $\mathcal{O}(X)$ -modules on \tilde{X} . Let $Sh_{dtop}^{\mathcal{O}(X)}(X)$ denote the category of sheaves of $\mathcal{O}(X)$ -modules on \underline{X} as an o-minimal site. We show that $Sh^{\mathcal{O}(X)}(\tilde{X})$ and $Sh_{dtop}^{\mathcal{O}(X)}(X)$ are isomorphic categories, and the surjective maps are exactly the epimorphisms in both categories. Hence, from a category-theoretic perspective, type version of [PS08, Theorem 11.3.] immediately implies the main theorem.

Remark

Lemma

[Stacks, Part 1, Chapter 7, Lemma 11.2.] The surjective maps defined above are exactly the epimorphisms of the category $Sh_{dtop}^{\mathcal{O}(X)}(X)$.

Lemma

The surjective maps (i.e. surjective at the stalks) are exactly the epimorphisms of the category $Sh^{\mathcal{O}(X)}(\tilde{X})$.

Proposition

 $Sh^{\mathcal{O}(X)}(\tilde{X})$ and $Sh^{\mathcal{O}(X)}_{dtop}(X)$ are isomorphic categories.

Remark

Another proof of the main theorem: Let $\iota : Sh^{\mathcal{O}(X)}(\tilde{X}) \to Sh^{\mathcal{O}(X)}_{dtop}(X)$ be an isomorphism. Let $U \subseteq \mathcal{K}^n$ be definable open and $\varphi : \mathcal{O}_U^m \to \mathcal{O}_U$ a \mathcal{O}_U -module homomorphism. By the type version of [PS08, Theorem 11.3.], there exists a finite definable open covering $\{U_i\}_{i=1}^k$ of U such that for some $l \in \mathbb{N}$ and for each $i \in \{1, ..., k\}$, there exists $\psi_i : \mathcal{O}_{U_i}^l \twoheadrightarrow ker(\iota^{-1}(\varphi))_{U_i}$. Since surjective morphisms are epimorphisms in $Sh^{\mathcal{O}(X)}(\tilde{X})$, $\iota(\psi_i) : \mathcal{O}_{U_i}^l \to ker(\varphi)_{U_i}$ is an epimorphism and hence a surjective morphism.

References I

[Oka50] Kiyoshi Oka. "Sur les fonctions analytiques de plusieurs variables. VII. Sur quelques notions arithmétiques". In: Bulletin de la Société mathématique de France 78 (1950), pp. 1–27.

- [Cos00] Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa, 2000.
- [PS01] Ya'acov Peterzil and Sergei Starchenko. "Expansions of algebraically closed fields in o-minimal structures". In: Selecta Mathematica 7.3 (2001), pp. 409–445.
- [PS03] Ya'acov Peterzil and Sergei Starchenko. "Expansions of algebraically closed fields II: functions of several variables". In: *Journal of Mathematical Logic* 3.01 (2003), pp. 1–35.

References II

[EJP06] Mário Jorge Edmundo, Gareth O Jones, and Nicholas J Peatfield. "Sheaf cohomology in o-minimal structures". In: Journal of Mathematical Logic (2006), pp. 1–20.

[PS08] Ya'acov Peterzil and Sergei Starchenko. "Complex analytic geometry in a nonstandard setting". In: LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES 349 (2008), p. 117.

- [Har13] Robin Hartshorne. *Algebraic geometry*. Vol. 52. Springer Science & Business Media, 2013.
- [Stacks] The Stacks Project Authors. *Stacks Project*. https://stacks.math.columbia.edu. 2018.

[BBT22] Benjamin Bakker, Yohan Brunebarbe, and Jacob Tsimerman. "o-minimal GAGA and a conjecture of Griffiths". In: *Inventiones mathematicae* (2022), pp. 1–66.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00