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Background

Let OCn denote the sheaf of rings where OCn(U) is the ring of
holomorphic functions defined on U, for each U ⊆ Cn open. It’s
also an OCn -module.
In complex analysis, it is well-known that

Fact
[Oka50] (Oka) For any positive integer n, OCn is a coherent
OCn -module. i.e. OCn satisfies that

1. OCn locally finite.

2. Every relation sheaf of OCn is locally finite.



Background

This result is generalized in [PS08] to the case of any algebraically
closed field K of characteristic 0.

Fact
(Peterzil, Starchenko) For any positive integer n, OKn is a coherent
OKn -module.

In the above results, a sheaf means the usual sheaf in e.g. [Har13,
Chapter II].



Background

In [BBT22], coherence theorem is proved on the site Cn where the
coverings are finite coverings by definable open sets:

Fact
(Bakker, Brunebarbe, Tsimerman) The definable structure sheaf
OCn of Cn is a coherent OCn -module (as a sheaf on the site Cn).

(The sheaves in [BBT22] are different from the usual sheaves
defined in [Har13]. We will explain more later.)

We use different techniques to prove the coherence of OKn as a
sheaf on the site Kn, where K is an algebraically closed field of
characteristic 0.

Theorem
The definable structure sheaf OKn of Kn is a coherent OKn -module
as a sheaf on the site Kn.



Preliminaries

Setting

(The same setting as in [PS01].) Let K be an algebraically closed
field of characteristic zero. Then K = R(

√
−1) for some real

closed subfield R. Such R is not unique. We fix one such R and
fix an o-minimal expansion of the chosen real closed field. The
topology on R is generated by the definable open intervals. The
topology on K is identified with that on R2. When we say
definable, we mean definable in the o-minimal structure R with
parameters in R.

After defining the topological structure on K, we define the
differential structure:



Preliminaries

For one variable, differentiability is defined as follows:

Definition
[PS03, Definition 2.1.] Let U ⊆ K be a definable open set and
F : U → K a definable function. Let z0 ∈ U. We say that F is
K-differentiable at z0 if the limit as z tends to z0 in K of
(f (z)− f (z0))/(z − z0) exists in K (all operations taken in K,
while the limit is taken in the topology induced on K by R2).



Preliminaries

For multi-variables, differentiability is defined as follows:

Definition
[PS03, Definition 2.8.] Let V ⊆ Kn be a definable open set,
F : V → K a definable map. F is called K-differentiable on V if it
is continuous on V and for every (z1, ..., zn) ∈ V and i = 1, ..., n,
the function F (z1, ..., zi−1,−, zi+1, ..., zn) is K-differentiable in the
i-th variable at zi (in other words, F is continuous on V and
K-differentiable in each variable separately).



Spectral Topology

The spectral topology is a topology on the type space:

Definition
[EJP06, Definition 2.2.] Let X ⊆ Rm be a definable set (with
parameters in R). The o-minimal spectrum X̃ of X is the set of
complete m-types Sm(R) of the first order theory ThR(R) which
imply a formula defining X . This is equipped with the topology
generated by the basic open sets of the form
Ũ = {α ∈ X̃ : U ∈ α}, where U is a definable, relatively open
subset of X , and U ∈ α means the formula defining U is in α. We
call this topology on X the spectral topology.



Sheaves on Sn(K)

Let Sn(K) denote S2n(R). We use this unconventional notation to
emphasize that we are considering functions on Kn.

Definition
For each definable open set U ⊆ Kn, let OKn(Ũ) denote the ring
of K-differentiable functions defined on U. It’s easy to check that
this defines a sheaf on Sn(K).

Let OKn denote the sheaf of rings where OKn(Ũ) is the ring of
K-differentiable functions defined on U, for each U ⊆ Kn open.

Given p ∈ Sn(K), let Op denote the set of germs for functions

{f : U → K : U is some open definable set such that p ∈ Ũ

and f is K-holomophic on U }.



Sheaves on Sn(K)

Definition
Given a definable set A ⊆ Kn, let Ip(A) ⊆ Op denote the set of
germs for functions

{f : U → K : U is some open definable set such that p ∈ Ũ,

f is K-holomophic on U and ∀x ∈ A ∩ U, f (x) = 0 }.

Let g1, ..., gt ∈ Op. Let Rp(g1, ..., gt) denote the set

{(f1, ..., ft) ∈ Ot
p : f1g1 + ...+ ftgt = 0}.



O-minimal Site

We translate definitions about sites in [Stacks] into o-minimal
context:

Definition
[Stacks, Part 1, Chapter 7, Definition 6.2] Let X ⊆ Kn be a
definable set. The o-minimal site X on X consists of definable
(relative) open subsets of X , together with
Cov(X ) := {(U, {Ui}ki=1) : U,U1, ...,Uk ⊆ X definable (relative)
open, {Ui}ki=1 a finite covering of U }.



Presheaf

Definition
[Stacks, Part 1, Chapter 6, Section 5] A presheaf of abelian groups
(resp. rings) on an o-minimal site X is defined the same as usual:
Let X be a topological space. A presheaf F of abelian groups
(resp. rings) on an o-minimal site X consists of the following data:

(a) a collection of non empty abelian groups (resp. rings) F(U)
associated with every definable open set U ⊆ X ,

(b) a collection of morphisms of abelian groups (resp. rings)
ρU,V : F(V ) → F(U) defined whenever U ⊆ V and satisfying
the transitivity property,
ρU,V ◦ ρV ,W = ρU,W for U ⊆ V ⊆ W , ρU,U = IdU for every
U.



Presheaf

Definition
[Stacks, Part 1, Chapter 6, Definition 6.1] Let X be a topological
space. Let O be a presheaf of rings on the o-minimal site X . A
presheaf of O-modules F on an o-minimal site X is a presheaf F
of abelian groups with the following additional data:

(a) For every definable open set U ⊆ X , F(U) is a non empty
O(U)-module;

(b) for every definable open U ⊆ X the O(U)-module structure of
F(U) is compatible with restriction mappings (of F and O).
i.e. for definable open U ⊆ V ⊆ X , r ∈ O(V ), x ∈ F(V ),
ρU,V (r)τU,V (x) = τU,V (rx), where ρ, τ are the restriction
mappings of F and O resp.



Sheaf

Definition
[Stacks, Part 1, Chapter 6, Definition 7.1.] Let X be an o-minimal
site, and let F be a presheaf of abelian groups (resp. rings,
O-modules) on X . We say F is a sheaf if for every definable open
U ⊆ X and every definable open finite covering {Ui}ki=1 of U,

(i) if (si )
k
i=1 satisfies si ∈ F(Ui ) for each i and si |Ui∩Uj

= sj |Ui∩Uj

for each pair i , j , then there is a unique s ∈ U such that
s|Ui

= si for each i ;

(ii) for s, t ∈ F(U), if s|Ui
= t|Ui

for each i then s = t.



Morphism

Definition
[Stacks, Part 1, Chapter 7. Definition 11.1.] Let X be an
o-minimal site, and let φ : F → G be a map of sheaves of modules
(i.e. compatible with restiction mappings).

(1) We say that φ is injective if for every definable open U ⊆ X
the map φ : F(U) → G(U) is injective.

(2) We say that φ is surjective if for every definable open U ⊆ X
and every section s ∈ G(U) there exists a finite covering
{Ui}ki=1 of U such that for each i , Ui is definable open and
the restriction s|Ui

is in the image of φ : F(Ui ) → G(Ui ).



Coherence

Definition
([BBT22, Definition 2.13]) Let X be an o-minimal site. Given an
OX -module M, we say that M is of finite type (as an OX -module)
if there exists a finite definable open (relative to X ) cover Xi of X
and surjections On

Xi
↠ MXi

for some positive integer n on each of
those open sets. We say that M is coherent (as an OX -module) if
it is of finite type, and given any definable open U ⊆ X and any
OU -module homomorphism φ : On

U → MU , the kernel of φ is of
finite type.



Coherence

Remark
By definitions above, given a definable open U and an OU -module
M, to show that M is of finite type, it suffices to show that there
exist a finite family of definable open sets U1, ...,Uk covering U
and sheaf morphisms φi : ONi

Ui
→ MUi

, i = 1, ..., k satisfying that
for any fixed i , for any definable open V ⊆ Ui and every section
s ∈ M(V ), there exist a finite family of definable open sets
V1, ...,Vl covering V and for each j ∈ {1, ..., l}, tj ∈ OUi

(Vj) such
that φ(Vj)(tj) = s|Vj

.



Motivation

Definition
[EJP06, Definition 3.1.] We denote by Shdtop(X ) the category of
sheaves of abelian groups on the o-minimal site X and by Sh(X̃ )
the category of usual sheaves of abelian groups on X̃ .

The following fact is the motivation for our proof. It says a sheaf
on the site X is the same as a usual sheaf in [Har13, Chapter II] on
the space X̃ ⊆ Sn(K) with spectral topology.

Fact
[EJP06, Proposition 3.2] Sh(X̃ ) and Shdtop(X ) are isomorphic.



Number of Zeroes

Let π : Kn → Kn−1, πn : Kn → K denote the projection onto the
first (n − 1) coordinates and the projection onto the n-th
coordinate resp.

Lemma
Let p ∈ Sn(K). Fix f ∈ Op and an open neighborhood U of p on
which f is defined and is K-differentiable. Suppose for all
y ∈ π(U), there are finitely many zeroes of f (y ,−) in
Uy := {x ∈ K : (y , x) ∈ U}, counting multiplicity.
Then there exist i ∈ N and V ⊆ U a definable open neighborhood
of p such that for any y ∈ π(V ), there are exactly i zeroes of
f (y ,−) in Vy counting multiplicity.



Number of Zeroes

Fact
[PS01, Theorem 2.56.] Let W ⊆ Rn, U ⊆ K be definable open
sets, F : U ×W → K a definable continuous function such that for
every w ∈ W , F (−,w) is a K- differentiable function on U. Take
(z0,w0) ∈ U ×W and suppose that z0 is a zero of order m of
F (−,w0).
Then for every definable neighborhood V of z0 there are definable
open neighborhoods U1 ⊆ V of z0 and W1 ⊆ W of w0 such that
F (−,w) has exactly m zeroes in U1 (counted with multiplicity) for
every w ∈ W1.



Number of Zeroes

Fact
[Cos00, Theorem 6.11] (Definable Tubular Neighborhood) Let M
be a definable C k submanifold of Rn. There exists a definable
open neighborhood U of the zero-section M × {0} in the normal
bundle NM such that the restriction φ|U is a C k−1 diffeomorphism
onto an open neighborhood Ω of M in Rn. Moreover, we can take
U of the form

U = {(x , v) ∈ NM : ∥v∥ < ϵ(x)},

where ϵ is a positive definable C k function on M.



Coherence on Type Space

Theorem
(type version of [PS08, Theorem 11.3.]) Assume that A is a
K-analytic subset of U ⊆ Kn and assume that G1, ...,Gt are
K-holomorphic maps from A into KN . Then we can write A as a
union of finitely many relatively open sets A1, ...,Am such that on
each Ai the following holds:
There are finitely many tuples of K-holomorphic functions on Ai ,

{(Hj ,1, ...,Hj ,t) : j = 1, ..., k}, k = k(i),

with the property that for every p ∈ Sn(K) with p ∈ Ãi , the
module Rp(g1, ..., gt) equals its submodule generated by
{(hj ,1, ..., hj ,t) : j = 1, ..., k} over Op (where gi and hi ,j are the
germs of Gi and Hi ,j at p, resp).



Main Theorem

Theorem
(o-minimal version of [BBT22, Theorem 2.21]) The definable
structure sheaf OKn of Kn is a coherent OKn -module as a sheaf on
the site Kn.

Proof.
Use compactness and type version of [PS08, Theorem 11.3], to
check the definition.



Remark

Let X ⊆ Kn be definable open. Let ShO(X )(X̃ ) denote the

category of sheaves of O(X )-modules on X̃ . Let Sh
O(X )
dtop (X )

denote the category of sheaves of O(X )-modules on X as an

o-minimal site. We show that ShO(X )(X̃ ) and Sh
O(X )
dtop (X ) are

isomorphic categories, and the surjective maps are exactly the
epimorphisms in both categories. Hence, from a category-theoretic
perspective, type version of [PS08, Theorem 11.3.] immediately
implies the main theorem.



Remark

Lemma
[Stacks, Part 1, Chapter 7, Lemma 11.2.] The surjective maps
defined above are exactly the epimorphisms of the category

Sh
O(X )
dtop (X ).

Lemma
The surjective maps (i.e. surjective at the stalks) are exactly the
epimorphisms of the category ShO(X )(X̃ ).

Proposition

ShO(X )(X̃ ) and Sh
O(X )
dtop (X ) are isomorphic categories.



Remark

Another proof of the main theorem:

Let ι : ShO(X )(X̃ ) → Sh
O(X )
dtop (X ) be an isomorphism. Let U ⊆ Kn

be definable open and φ : Om
U → OU a OU -module

homomorphism. By the type version of [PS08, Theorem 11.3.],
there exists a finite definable open covering {Ui}ki=1 of U such that
for some l ∈ N and for each i ∈ {1, ..., k}, there exists
ψi : Ol

Ũi
↠ ker(ι−1(φ))Ũi

. Since surjective morphisms are

epimorphisms in ShO(X )(X̃ ), ι(ψi ) : Ol
Ui

→ ker(φ)Ui
is an

epimorphism and hence a surjective morphism.
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