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Problems in Geometric Measure Theory

The basic question: How large are sets?

Usually, by size we mean measure or some notion of dimension (e.g.
Hausdorff, packing, box-counting, Assouad... ).

More precisely, what can we say about sets that we know have a
certain geometric property, or that are obtained by some natural
geometric operation on a set with known size?
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Covers and packings

Let E ⊂ Rn and {Bi}i∈N be a collection of open balls in Rn.

We call {Bi}i∈N a δ-cover for E if

E ⊆
∞⋃
i=1

Bi

diam(Bi ) ≤ δ

We call {Bi}i∈N a δ-packing for E if

The balls are pairwise disjoint

The balls have centers in E

diam(Bi ) ≤ δ
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Hausdorff and packing dimension

Hausdorff dimension

Hs
δ(E ) = inf

δ−covers
{

∞∑
i=1

diam(Bi )
s}

Hs(E ) = lim
δ→0+

Hs
δ(E )

dimH(E ) = inf{s : Hs(E ) = 0}

Packing dimension

P̄s
δ (E ) = sup

δ−packings
{

∞∑
i=1

diam(Bi )
s}

P̄s(E ) = lim
δ→0+

P̄s
δ (E )

Ps(E ) = inf{
∞∑
i=1

P̄s(Ei ) : E ⊆
∞⋃
i=1

Ei}

dimP(E ) = inf{s : Ps(E ) = 0}
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Complexity of points in Euclidean space

Fix a universal prefix-free oracle Turing machine U. Given A ⊆ N, the
(prefix-free) Kolmogorov complexity of a string σ relative to A is

KA(σ) = min{|π| : UA(π) = σ}

We can encode rational vectors q ∈ Rn as binary strings, and hence can
talk about KA(q). This in turn allows us to define the complexity of
arbitrary points in Rn at any given precision.

KA
r (x) = min{KA(q) : q ∈ B2−r (x)}
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Effective dimension

Definition

The effective Hausdorff dimension of a point x ∈ Rn relative to an oracle
A ⊆ N is given by

dimA(x) = lim inf
r→∞

KA
r (x)

r

Definition

The effective packing dimension of a point x ∈ Rn relative to an oracle
A ⊆ N is given by

DimA(x) = lim sup
r→∞

KA
r (x)

r
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The point-to-set principle

Effective dimension is directly related to classical dimension through the
following “point-to-set” principle(s):

Theorem (J. Lutz and N. Lutz, 2015)

For all E ⊂ Rn,
dimH(E ) = min

A⊆N
sup
x∈E

dimA(x)

and
dimP(E ) = min

A⊆N
sup
x∈E

DimA(x)
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The Kayeya conjecture

Call E ⊆ Rn a Besicovitch set if E contains a unit line segment in every
direction.

This is a geometric requirement that should force sets to be large, but how
large?

Kakeya conjecture

Any Besicovitch set E ⊆ Rn has Hausdorff dimension n.

Question: Does it matter if we use line segments or full lines in the
definition of Besicovitch sets?
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Line segment extension

More general question: Does the dimension of a set of line segments
increase when we replace them with full lines?

In 2014, Keleti showed (in the plane) that Hausdorff dimension does
not increase under line segment extension. He also showed this is
false for box dimension.

Theorem (Bushling and F., 2024)

If E ⊆ R2 is a union of Hausdorff dimension 1 subsets of lines, and L(E ) is
the union of the corresponding full lines, then dimP(E ) = dimP(L(E ))
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Effectivization of line segment extension

Using the point-to-set principle

dimP(E ) = min
A⊆N

sup
z∈E

DimA(z) = min
A⊆N

sup
ℓ∈Λ

sup
z∈Eℓ

DimA(z)

dimP(L(E )) = min
A⊆N

sup
z∈L(E)

DimA(z) = min
A⊆N

sup
ℓ∈Λ

sup
z∈ℓ

DimA(z).

So it suffices to show that for every A ⊆ N, a, b ∈ R, and S a
Hausdorff dimension 1 subset of R,

sup
x∈S

DimA(x , ax + b) = sup
x∈R

DimA(x , ax + b)
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More effectivization

The points in S that we want to use are the ones that are complex
relative to (A, a, b).

By the point-to-set principle, for any ε > 0, we can find a point
xε ∈ S satisfying

dimA,a,b(xε) ≥ 1− ε

Hence, it suffices to show that

lim
ε→0

DimA(xε, axε + b) = sup
x∈R

DimA(x , ax + b)
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Ideas of the pointwise proof

The reason we needed the Hausdorff dimension of xε to be large is
that this guarantees that at every sufficiently large precision

KA,a,b
r (xε) ≥ r − 2εr

i.e. close to maximal. This lets us focus on the complexity properties
of the line (a, b).

Most of the proof entails understanding how the complexity function
KA
r (a, b) relates to upper bounds on KA

r (x , ax + b) and lower bounds
on KA

r (xε, axε + b).
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Partitioning to get upper bounds

Suppose t < r . Then by symmetry of information,

KA
r (x , ax + b) ≈ KA

t (x , ax + b) + KA
r ,t(x , ax + b)

So we can consider the complexity of (a, b) on intervals of precisions.

On the first interval: KA
t (x , ax + b) ⪅ KA

t (a, b, x) ⪅ KA
t (a, b) + t

On arbitrary intervals: KA
r ,t(x , ax + b) ⪅ 2(r − t)

Let cr be a minimizer of KA
t (a, b)− t. Then combining these bounds,

KA
r (x , ax + b) ⪅ KA

cr (a, b) + cr + 2(r − cr )
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Lower bounds

We want to show that this upper bound is essentially a lower bound for
the points (xε, axε + b) as well, which will complete the proof. This is
harder, and relies on two remarkable lemmas of N. Lutz and Stull.

First lemma: An “enumeration” lemma that gives sufficient
technical conditions for KA

r (x , ax + b) ⪆ KA
r (x , a, b). The main

condition is that for lines (u, v) such that ux + v = ax + b, (u, v) is
either close to (a, b) or has appreciably higher complexity

Second lemma: A geometric lemma. If ax + b = ux + v , and (a, b)
agrees with (u, v) to precision s,

KA
r (u, v) ≥ KA

s (a, b) + KA
r−s,r (x |a, b)

The second lemma will allow us to show the key condition of the first
lemma is satisfied, since we picked xε such that

KA
r (u, v) ≥ KA

s (a, b) + KA
r−s,r (xε|a, b) ≥ KA

s (a, b) + (1− 2ε)(r − s)
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Choosing an appropriate oracle

We may need to reduce the complexity of (a, b) so that the conditions of
the enumeration lemma hold. We can temporarily introduce an oracle D
for this purpose.
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Finishing the proof of the main theorem

This teal property ensures KA,D
s (a, b) is appropriately large compared to

KA,D
r (a, b), hence

KA,D
r (u, v) ≥ KA,D

s (a, b) + (1− 2ε)(r − s)

is large enough that we can apply the enumeration lemma, which gives the
bound

KA
r (xε, axε + b) ≥ KA,D

r (xε, axε + b)

⪆ KA,D(a, b, xε)

⪆ KA,D
r (a, b) + r

≥ KA
cr (a, b) + cr + 2(r − cr )

Comparing to the upper bound for arbitrary x completes the proof.
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The generalized Kakeya conjecture for packing dimension
in the plane

Theorem (Bushling and F., 2024)

Let E ⊆ R2 and let D ⊆ S1 be the set of directions of lines intersecting E
in a set of Hausdorff dimension 1. If D ̸= ∅, then

dimP D + 1 ≤ dimP E .

Using a similar reduction, it suffices to show that for all a, b ∈ R and
A ⊆ N,

DimA(a) + 1 ≤ lim
ε→0

DimA(xε, axε + b)

Using our lower bound,

KA
r (xε, axε + b) ⪆ KA

cr (a, b) + cr + 2(r − cr )

≥ KA
cr (a) + cr + 2(r − cr )

≥ KA
r (a) + r
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Bounds in higher dimensions

Theorem (Bushling and F., 2024)

Let E ⊆ Rn be a union of line segments, and L(E ) be the union of the
corresponding full lines. Then

dimP(L(E )) ≤ 2 dimP(E )− 1

Idea: if z = x + t(y − x), then KA
r (z) ⪅ KA

r (x , y , t). Automatically, this
gives

dimP(L(E )) ≤ 2 dimP(E ) + 1

But, we can freely choose the first coordinates of x and y so that x , y , and
t share lots of information.
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Sketch of the proof

First, choose y so that its first coordinate is the same as z ’s after some
precision. t is easily computed from the first coordinates of x , y , and z , so

KA
r (x , y , t) ≈ KA

r (x , y)

Lemma

For all y ∈ Rn, A ⊆ N, and ε > 0, there exists a dense set of points x ∈ R
such that, for all sufficiently large r (depending on x),

KA
r (y |x) ≤ max

{
KA
r (y)− (1− ε)r , εr

}
. (1)

Choose x so that its first coordinate helps in the computation of y as
above, which will ensure

KA
r (x , y) ≈ KA

r (x) + KA
r (y)− r (2)
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Further directions

Keleti, 2014

If the line segment extension conjecture (for Hausdorff dimension) holds,
then Besicovitch sets have Hausdorff dimension at least n − 1 and packing
dimension n.

The proof of the above is quantitative, so bounds on how much the
Hausdorff dimension increases under line segment extension imply bounds
on the Kakeya conjecture.

Jake Fiedler (UW Madison) Lineal extensions UW Logic Seminar 25 / 26



Thank you!
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