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Graph combinatorics

A graph is a pair G = (V ,E ), where V is a set (vertices) and E is
a set of unordered pairs of elements of V (edges).

The chromatic number of a graph G , denoted χ(G ), is the smallest
cardinality of a set C (colors) such that there exists a (proper
coloring) map c : V (G ) → C with c(x) ̸= c(y) if xy ∈ E (G ).

The edge chromatic number of G , denoted χ′(G ), is the smallest
cardinality of a set C such that there exists a (proper edge coloring)
map c : E (G ) → C with c(e) ̸= c(f ) if e ̸= f and e ∩ f ̸= ∅.

A perfect matching of G is a set M ⊆ E (G ) (viewed as an induced
subgraph of G ) such that V (M) = V (G ) and every vertex has
degree 1 in M.
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Topological graph combinatorics

A topological graph is a graph G where V (G ) is a topological
space.

The continuous chromatic number of a topological graph G ,
denoted χc(G ), is the smallest cardinality of a set C such that
there exists a continuous proper coloring c : V (G ) → C , where C
has the discrete topology.

The continuous edge chromatic number of a topological graph G ,
denoted χ′

c(G ), is the smallest cardinality of a set C such that
there exists a continuous proper edge coloring c : E (G ) → C ,
where C has the discrete topology.

A perfect matching M of G is clopen (open, etc.) if M is a
relatively clopen (open, etc.) subset of E (G ).

Su Gao Continuous Combinatorics



An example: irrational rotation

Let α ∈ (0, 1) be an irrational number. Define a graph G = (T,E ),
where

xy ∈ E ⇐⇒ y/x = e±2παi .

▶ Every connected component looks liker r r r r r r r r
▶ χ(G ) = 2

▶ χ′(G ) = 2

▶ χc(G ) is undefined

▶ χ′
c(G ) is undefined
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An example: irrational rotation

Let α ∈ (0, 1) be an irrational number. Consider a subgraph
G0 = (T \ [0],E ) of G , where

[0] = {e2πkαi : k ∈ Z}.

▶ Every connected component still looks liker r r r r r r r r
▶ χ(G0) = χ′(G0) = 2

▶ T \ [0] is a Polish space, i.e., a separable completely
metrizable space

▶ T \ [0] is 0-dimensional

▶ Using Lebesgue density or Baire category, one can show
χc(G0), χ

′
c(G0) > 2

▶ χc(G0) = χ′
c(G0) = 3
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Marked groups and Cayley graphs

A marked group is a pair (Γ,S) where Γ is a group and S is a finite
generating set; typically we require 1Γ ̸∈ S and S to be symmetric,
i.e., S = S−1.

The Cayley graph of (Γ,S) is G = G (Γ,S) with

V (G ) = Γ
E (G ) = {(g , h) ∈ Γ2 : ∃s ∈ S gs = h}.
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An example

The Cayley graph of the marked group (Z2, {(±1, 0), (0,±1)}):

r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r

(0, 0)
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An example

The Cayley graph of the marked group (Z2, {(±1, 0), (0,±1)}):

r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
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Bernoulli shifts and Schreier graphs

For a countable group Γ, the Bernoulli shift action of Γ is the
action · : Γ× 2Γ → 2Γ defined by

(g · x)(h) = x(hg).

For a marked group (Γ, S), one can define a Schreier graph
G = G (Γ, S , 2Γ) on 2Γ = V (G ) by

xy ∈ E (G ) ⇐⇒ ∃s ∈ S (s · x = y).

Examples
2Z

n
, F (2Z

2
), 2Fn , F (2Fn)
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Bernoulli shifts and Schreir graphs

The free part of the Bernoulli shift action of Γ is

F (2Γ) = {x ∈ 2Γ : ∀g ∈ Γ (g ̸= 1Γ −→ g · x ̸= x)}.

When there is no danger of confusion, we use F (2Γ) to denote the
Schreier graph G (Γ,S ,F (2Γ)).
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An example (?)

The Schreier graph on F (2Z
2
) consists of continuum many

components, with each component a copy of the Cayley graph of
Z2.

r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
r r r r r r r r r
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The chromatic number

Question What is the chromatic number of the Schreier graph on
F (2Z

2
)?

Answer 1: With AC, the chromatic number of F (2Z
2
) is 2

There are no Baire measurable or Lebesgue measurable proper
2-colorings on F (2Z

2
)

Answer 2: (GJKS) The Borel chromatic number of F (2Z
2
) is 3

Answer 3: (GJKS) The continuous chromatic number of F (2Z
2
) is

4
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The edge chromatic number

Question What is the edge chromatic number of the Schreier
graph on F (2Z

2
)?

Answer 1: with AC, the edge chromatic number of F (2Z
2
) is 4

Answer 2: (Bencs–Hrušková–Tóth; Chandgotia–Unger;
Greb́ık–Rozhoň; Weilacher) The Borel edge chromatic number of
F (2Z

2
) is 4

Answer 3: (GJKS) The continuous edge chromatic number of
F (2Z

2
) is 5
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Z2-subshifts of finite type

Consider kZ
2
for some natural number k ≥ 2.

▶ A pattern p is a partial function p : dom(p) → k , where
dom(p) ⊆ Z2 is finite.

▶ For x ∈ kZ
2
and p a pattern, we say that p occurs in x if there

is h ∈ Z2 such that for all g ∈ dom(p), x(h + g) = p(g).

▶ A Z2-subshift of finite type is a dynamical system

Xp1,...,pn = {x ∈ kZ
2
: p1, . . . , pn do not occur in x}

where p1, . . . , pn are patterns, with the shift action

(g · x)(h) = x(h + g).

▶ The patterns p1, . . . , pn in the definition of Xp1,...,pn are called
forbidden patterns.
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Z2-subshifts of finite type

Example Question
Is there a continuous proper 3-coloring of F (2Z

2
)?

Consider the Z2-subshift of finite type X ⊆ 3Z
2
, where the

forbidden patterns are

0

0

1

1

2

2

0 0 1 1 2 2

Equivalent Question
Is there a continuous equivariant map from F (2Z

2
) to X?

f : F (2Z
2
) → 3Z

2
is equivariant if for all g ∈ Z2 and x ∈ F (2Z

2
),

f (g · x) = g · f (x).
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Z2-subshifts of finite type

Example Question
Is there a continuous proper edge 5-coloring of F (2Z

2
)?

Consider the Z2-subshift of finite type Y ⊆ AZ2
, where

A = {(a, b, c , d) : a, b, c , d ∈ {0, 1, 2, 3, 4} are distinct},

a
b

c
d

and the forbidden patterns are
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Z2-subshifts of finite type

(a, b, c , d)

(a′, b′, c ′, d ′)
where d ′ ̸= b

and

(a, b, c , d) (a′, b′, c ′, d ′)

where a ̸= c ′

Equivalent Question
Is there a continuous equivariant map from F (2Z

2
) to Y ?
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The Subshift Problem

Problem
Given a Z2-subshift of finite type X , is there a continuous
equivariant map from F (2Z

2
) to X?

We give a complete (but theoretical) answer to the Subshift
Problem for F (2Z

2
).
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The Twelve Tiles Theorem

Theorem (GJKS)
There are finite Z2-graphs Gn,p,q, for each triple (n, p, q) of
positive integers with n < p, q, such that for any Z2-subshift of
finite type X , the following are equivalent:

1. There is a continuous equivariant map from F (2Z
2
) to X ;

2. There is an equivariant map from Gn,p,q to X for some
n < p, q with gcd(p, q) = 1;

3. For all n and sufficiently large p, q, there is an equivariant
map from Gn,p,q to X .
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The Twelve Tiles Theorem

Fix n < p, q, we define Gn,p,q.

The definition involves 12 tiles (finite grid graphs):

▶ 4 torus tiles

▶ 4 commutativity tiles

▶ 2 long horizontal tiles

▶ 2 long vertical tiles
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Torus Tiles

R×

R×

R×

R×

Ra Ra

Rc

Rc

Gca=ac

R×

R×

R×

R×

Rb Rb

Rc

Rc

Gcb=bc

R× : n × n, Ra : n × (p − n), Rb : n × (q − n)
Rc : (p − n)× n, Rd : (q − n)× n
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Torus Tiles (continued)

R×

R×

R×

R×

Ra Ra

Rd

Rd

Gda=ad

R×

R×

R×

R×

Rb Rb

Rd

Rd

Gdb=bd
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Commutativity Tiles

R× R× R×

R× R× R×

Ra Ra

Rd

RdRc

Rc

Gdca=acd

R×

R×

R×

R×

R×

R×

Rc

Rc

Ra

Ra

Rb

Rb

Gcba=abc
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Commutativity Tiles (continued)

R× R× R×

R× R× R×

Ra Ra

Rc

RcRd

Rd

Gcda=adc

R×

R×

R×

R×

R×

R×

Rc

Rc

Rb

Rb

Ra

Ra

Gcab=bac
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Long Horizontal Tiles

R× R× R× R× R× R×

R× R× R× R× R×

Ra Ra

Rc Rc Rc Rc Rc

Rd Rd Rd Rd Rd

· · ·

q copies of Rc , q + 1 copies of R×

p copies of Rd , p + 1 copies of R×

Gcqa=adp
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Long Horizontal Tiles (continued)

R× R× R× R× R× R×

R× R× R× R× R×

Ra Ra

Rc Rc Rc Rc Rc

Rd Rd Rd Rd Rd

· · ·

p copies of Rd , p + 1 copies of R×

q copies of Rc , q + 1 copies of R×

Gdpa=acq
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R×

R×

R×

R×

R×

R×

R×

R×

R×

R×

R×

Rc

Rc

Ra

Ra

Ra

Ra

Ra

Rb

Rb

Rb

Rb

Rb

...
q
cop

ies
of

R
a ,

q
+
1
cop

ies
of

R
×

p
cop

ies
of

R
b ,

p
+
1
cop

ies
of

R
×

Gcbp=aqc

Figure: The long vertical tiles in Γn,p,q.
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R×

R×

R×

R×

R×

R×

R×

R×

R×

R×

R×

Rc

Rc

Ra

Ra

Ra

Ra

Ra

Rb

Rb

Rb

Rb

Rb

...

q
cop

ies
of

R
a ,

q
+
1
cop

ies
of

R
×

Gcaq=bpc

Figure: The long vertical tiles in Γn,p,q.

Su Gao Continuous Combinatorics



G1,2,3: torus tiles
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G1,2,3: commutativity tiles
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G1,2,3: long tiles
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G1,2,3
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The Twelve Tiles Theorem

Theorem
For any Z2-subshift of finite type X ⊆ kZ

2
, the following are

equivalent:

1. There is a continuous equivariant map from F (2Z
2
) to X ;

2. For some n < p, q with gcd(p, q) = 1, there is a map
θ : Gn,p,q → k which respects X ;

3. For all n and sufficiently large p, q, there is a map
θ : Gn,p,q → k which respects X .
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Undecidability of the Subshift Problem

There are only countably many Z2-subshifts of finite type, each of
which can be coded by a tuple ⟨k; p1, . . . , pn⟩.

The Twelve Tiles Theorem implies that the set of all tuples
⟨k ; p1, . . . , pn⟩ for which there is a continuous equivariant map
from F (2Z

2
) to Xp1,...,pn ⊆ kZ

2
is Σ0

1.

Theorem (GJKS)
The set of all tuples ⟨k ; p1, . . . , pn⟩ for which is there a continuous
equivariant map from F (2Z

2
) to Xp1,...,pn ⊆ kZ

2
is not computable.

There is not a computable bound of how large p and q will be for
the first Gn,p,q to admit an equivariant map to Xp1,...,pn .
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The Graph Homomorphism Problem

Problem
Given a finite graph G , is there a continuous graph homomorphism
from F (2Z

2
) to G?

This is a subproblem of the Subshift Problem. If the Graph
Homomorphism Problem is undecidable, so is the Subshift
Problem.
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Undecidability of the Graph Homomorphism Problem

Theorem (GJKS)
The set of all finite graphs G for which there is a continuous
homomorphism from F (2Z

2
) to G is undecidable.

We use

Theorem (folklore)
The word problem for finitely presented torsion-free groups is
undecidable.

We define a computable reduction of this word problem to the
Continuous Graph Homomorphism Problem for F (2Z

2
).
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Undecidability of the Graph Homomorphism Problem

Start with a finite presentation

Pn = ⟨a1, . . . , ak | r1, . . . , rl⟩

of a torsion-free group Γn, and

a distinguished word w = w(a1, . . . , ak).

(*) There is (a lower bound) α > 0 such that, if the distinguished
word w ̸= e in Γn, then for all integer m ≥ 1, wm is not equal in
Γn to any word of length ≤ αm.
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Undecidability of the Graph Homomorphism Problem

Consider

Γ′ = ⟨a1, . . . , ak , z |r1, . . . , rl , z2w−1⟩ = ⟨a1, . . . , ak+1 | r1, . . . , rl , rl+1⟩.

Construct a graph G ′. G ′ will have a distinguished vertex v0. For
each of the generators of Γ′, we add a sufficiently long cycle βi of
length ℓi > 4 that starts and ends at the vertex v0. We make the
edge sets of these cycles pairwise disjoint. This gives a natural
notion of length ℓ(ai ) = ℓi which extends in the obvious manner to
reduced words in the free group generated by the ai . For each
word rj , we wish to add to G ′ a rectangular grid-graph Rj whose
length and width are both > 4 and whose perimeter is equal to
ℓ(rj). In order for this to be possible, we will need to make certain
that each ℓ(rj) is a large enough even number.
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Undecidability of the Graph Homomorphism Problem

The edges used in the various Rj are pairwise disjoint, and are
disjoint from the edges used in the cycles corrresponding to the
generators ai . We then label the edges (say going clockwise,
starting with the upper-left vertex) of the boundary of Rj with the
edges occurring in the concatenation of the paths corrresponding
to the generators in the word rj .
Finally, G is obtained from G ′ by forming the quotient graph where
vertices on the perimeters of the Rj are identified with the
corresponding vertex in one of the ai .
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Undecidability of the Graph Homomorphism Problem

Instead of using the Twelve Tiles Theorem directly, the proof uses
some corollaries of the Twelve Tiles Theorem that give positive
and negative conditions in terms of the homotopy group of the
graph G .

Theorem If there is an odd-length cycle γ which has finite order in
π∗
1(G ), then there is a continuous graph homomorphism from

F (2Z
2
) to G .

Theorem Suppose for every n there are p, q > n with (p, q) = 1
such that, for any p-cycle γ in G , γq is not a p-th power in π∗

1(G ).

Then there is no continuous graph homomorphism from F (2Z
2
) to

G .
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What about F (2Z)?

Theorem The Subshift Problem for F (2Z) is decidable.
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Question What about F (2Z
n
) for n > 2?

Question What about F (2Γ) for other groups Γ?

Question What about the Borel Subshift Problem, namely the
existence of Borel equivariant maps from F (2Z

2
) to a Z2-subshift

of finite type?

Su Gao Continuous Combinatorics



Question Is the conjugacy relation between Z-subshifts of finite
type computable?

(Berger 1964) The conjugacy relation between Z2-subshifts of
finite type is undecidable.

(Williams 1973) The conjugacy relation between one-sided
Z-subshifts of finite type is decidable.
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Thanks!

Su Gao Continuous Combinatorics




