When $A + xA = \mathbb{R}$?

Liang Yu

School of Mathematics Nanjing University

07 Oct. 2024

The First Result

Theorem (Steinhaus)

If $A \subseteq \mathbb{R}$ is a measurable additive group, then either $A = \mathbb{R}$ or A is null.

Proof.

By Lebesgue's density. Actually if $\mu(A) > 0$, then $A - A = \mathbb{R}$.

2 / 19

Volkmann and Erdös's results

Theorem (Volkmann and Erdoös)

For any $\alpha \in [0,1]$, there is an additive group A so that $\operatorname{Dim}_H(A) = \alpha$.

Question (Volkmann and Erdös)

Is there a field A so that $Dim_H(A) \in (0,1)$?

Analytic Rings

Theorem (Edgar and Miller; Bourgain)

If A is an analytic ring, then either $A = \mathbb{R}$ or $Dim_H(A) = 0$.

Mauldin's Result

Theorem

Assuming CH, for any $\alpha \in [0,1]$, there is a field F so that $\operatorname{Dim}_{H}(F) = \alpha$.

Volkmann and Erdös's question is still open.

Some related questions

Volkmann and Erdös's question is still open.

Question

- Does there exist an ideal of Turing degrees having Hausdorff dimension in (0,1) How about hyperarithmetic degrees?
- Does there are two models $\mathcal{M} \subseteq \mathcal{N}$ of ZFC so that $\mathrm{Dim}_{\mathrm{H}}((\mathbb{R})^{\mathcal{M}}) \in (0,1)$ in \mathcal{N} ?

A note on VE's question.

Proposition

Assuming ZF + AD, Volkmann and Erdös's question has a negative answer.

Proof.

If A is a ring with $\operatorname{Dim}_{H}(A) > 0$, then A has a compact subset B with positive dimension. Then the ring generated by B is analytic and so is \mathbb{R} .

The Motivation

Why a ring is different than a group?

The multiplication operator seems rather complicated.

A + xA for Rings

Proposition (Ye, Y. and Zhao)

If A is a ring so that $A + xA = \mathbb{R}$ for some real x, then $A = \mathbb{R}$.

Proof.

If A is a ring so that $A+xA=\mathbb{R}$ for some real x, then A is a field. By Artin-Schreier, $A=\mathbb{R}$.

9 / 19

Point to Set Theorem

Definition

Let
$$\dim_H^{\times}(y) = \underline{\lim}_{n \to \infty} \frac{K^{\times}(y \upharpoonright n)}{n}$$
.

Theorem (Lutz and Lutz)

For any set A of reals, $Dim_H(A) = min_x max_{r \in A} dim_H^x(r)$.

Corollary

If f is a Lipschitz function, then for any set A, $\operatorname{Dim}_{\mathrm{H}}(f(A)) \leq \operatorname{Dim}_{\mathrm{H}}(A)$. Moreover if A is null, then so is f(A).

A + pA for Groups

Proposition (Ye, Y. and Zhao)

If A is a group, then for any rational p, $\operatorname{Dim}_{H}(A) = \operatorname{Dim}_{H}(A + pA)$. Moreover if A is null, then so is A + pA.

Proof.

Since A is a group, $A + pA \subseteq \frac{A}{n}$ for some number n. But $x \mapsto \frac{x}{n}$ is a Lipschitz function.

A + xA for Groups

Theorem (Ye, Y. and Zhao)

There is a Borel group A with $Dim_H(A) = \frac{1}{2}$ and a real x so that $A + xA = \mathbb{R}$.

Proof.

 $y \in \tilde{A}$ if for any n and $m \in [2 \cdot 3^n, 3^{n+1}]$, y(m) = 0. \tilde{A} is a Π_1^0 set. Let A be the group generated by \tilde{A} . Then A is a Borel group with Hausdorff dimension $\frac{1}{2}$.

x(m) = 1 if and only if $m = 3^n$ for some n.

Now given any real $z \in (0,1)$, let $b \in \tilde{A}$ be a real so that $b(3^n + k) = z(2 \cdot 3^n + k)$ for any $k \in (0,3^n]$. Then we can find some $a \in \tilde{A}$ so that a + bx = z.

More on A + xA

Actually we can make A have Hausdorff dimension arbitrarily $\left[\frac{1}{2},1\right]$.

Theorem (Barthelemy Le Gac)

If G and H are additive groups so that $G \cap H = \{0\}$ and $G + H = \mathbb{R}$, then either $G = \mathbb{R}$ or $G = \{0\}$.

So $x = \frac{a}{b}$ for some $a, b \in A$.

Question

Is there a Borel group A with $Dim_H(A) = 0$ so that there is a real x for which $A + xA = \mathbb{R}$?

A Pathological Example (1)

Definition

A real g is weakly-x-generic if for any dense x-r.e. open set U, $x \in U$.

Lemma

If g is weakly- $a \oplus b \oplus x$ -generic, then so are a + g, $b \cdot g$, and g^n .

A Pathological Example (2)

Lemma

The collection of weakly-generic reals has Hausdorff dimension 0.

A Pathological Example (3)

Theorem (Ye, Y. and Zhao)

Assuming CH. There is a group A so that $A + xA = \mathbb{R}$ if and only if $x \notin \mathbb{Q}$.

Proof.

Fix an enumeration of $\mathbb{R} \times (\mathbb{R} \setminus \mathbb{Q})$. We do it by a transfinite induction:

At stage α : Let g_{α} be a real weakly generic to all the reals belonging to the idea (in the Turing reduction sense) generated by the reals before and x_{α} and y_{α} . Let $h_{\alpha} = \frac{x_{\alpha} - g_{\alpha}}{y_{\alpha}}$.

Set A to be the group generated by g_{α} and h_{α} .

A Pathological Example (4)

Proof.

Any real $g \in A$ can be read as $\sum_{i=0}^{n} (s_i g_{\alpha_i} + t_i h_{\alpha_i})$, where s_i and t_i are integers. Since y_{α} is not rational, g must be weakly-generic.

So
$$Dim_H(A) = 0$$
.

By induction, for any irrational y_{α} and real x_{α} , $g_{\alpha}+y_{\alpha}h_{\alpha}=x_{\alpha}$.

If x is rational, then $A + xA \neq \mathbb{R}$ due to $A \neq \mathbb{R}$.

The Last Question

Question

Can CH in the theorem be removed?

Thanks