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Martin’s Conjecture

Martin’s Conjecture

Assume ZF +AD +DC. Then
1 Let f : 2ω → 2ω Turing-invariant. If f is not constant∗ on a

cone, then f is increasing on a cone.
2 The non-constant∗ Turing-invariant functions are pre-well

ordered (up to equality on a cone). Moreover, the successor
function in the pre-well order is given by the Turing jump.

Where f ′ is defined by f ′(x) = f(x)′, for all x ∈ 2ω.

Intuition

The only “natural” way to build an incomputable set is with the
Turing jump (and iterations of it).
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What does “natural” mean?

The key idea behind Martin’s conjecture is that natural
incomputable sets have two properties:

• They are definable

• Their constructions relativize

These two properties can be expressed mathematically!
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Relativization

Any natural way to build an incomputable set X should allow me
to build an A-incomputable set XA.

Moreover, if A ≡T B, then XA ≡T XB.

From sets to functions

The incomputable set X determines a Turing-invariant function
fX : 2ω → 2ω given by

fX(A) = XA.
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The Axiom of Determinacy

The Gale-Stewart game with payoff set A ⊆ ωω, denoted G(A), is
the infinite game where two players, I and II, alternate playing
natural numbers. Then I wins if and only if the resulting sequence
is in A.

I a0 a2 . . . a2n . . .

II a1 a3 . . . a2n+1 . . .

We say that G(A) is determined if some player has a winning
strategy.

Axiom of Determinacy (AD)

For every A ⊆ ωω, G(A) is determined.
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A false axiom

There is only one problem...

Theorem (Gale and Stewart, 1953)

Under ZFC, the Axiom of Determinacy is false.

However,

Theorem (Martin, 1975)

ZF ⊨ “If A is Borel, then G(A) is determined”.

Theorem (Martin, Steel and Woodin; 1988-1989)

Assuming the existence of enough large cardinals (infinitely many
Woodin cardinals and a measurable cardinal above them),

L(R) ⊨ AD
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Some benefits of Determinacy

Martin’s Conjecture is usually stated in terms of ZF +AD +DC.
This has several benefits:

• Avoids unnatural counterexamples created by the Axiom of
Choice.

• It is a flexible hypothesis, because its use often “localizes”.

• AD is useful to prove structural properties. For example,
under AD every set of reals is Lebesgue-measurable and has
the perfect set property.

• Allows us to prove Martin’s Cone Theorem.
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Martin’s Cone Theorem

The cone above x is the set ∇x = {y ∈ 2ω : x ≤T y}

Theorem (Martin, 1968)

Assume AD. Let A ⊆ 2ω be closed under Turing equivalence.
Either A contains a cone or 2ω \ A contains a cone.

We can define a countably additive measure in D:

µ(A) =

{
1 if A contains a cone

0 otherwise

Theorem (Martin’s Cone Theorem (restated))

µ is a countably-complete ultrafilter.

Theorem (Martin’s Cone Theorem (restated again))

If A ⊆ DT is cofinal, then A contains a cone.
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Working on a cone

We need to work on a cone to avoid getting counterexamples to
Martin’s conjecture by Frankensteining functions.

The moral of Martin’s cone theorem is: if you glue together
countably many Turing-invariant functions, one prevails on a cone.

Definition

Let f, g : 2ω → 2ω. We say that
• f ≤∇

T g if f(x) ≤T g(x) for all x on some cone.
• f is constant on a cone if there is y ∈ 2ω such that f(x) ≡T y

for all x on some cone.
• f is increasing on a cone if x ≤T f(x) for all x on some cone.
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Martin’s Conjecture

Martin’s Conjecture

Assume ZF +AD +DC. Then
1 Let f : 2ω → 2ω Turing-invariant. If f is not constan on a

cone, then f is increasing on a cone.
2 The relation ≤∇

T pre-well orders the Turing-invariant functions
≤∇

T -above the identity. Moreover, if rank∇T (f) = α, then
rank∇T (f

′) = α+ 1.

Where f ′ is defined by f ′(x) = f(x)′, for all x ∈ 2ω.
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Partial Results

• Part I and II for uniformly Turing-invariant functions. (Steel,
1982; Slaman and Steel, 1988)

• Part I for regressive functions. (Slaman and Steel, 1988)

• Part I for order-preserving functions. (Lutz and Siskind, 2021)

• Part II for Borel order-preserving functions. Moreover, if f is
such a function, there is α < ωCK

1 such that

f(x) = xα on a cone

(Slaman and Steel, 1988)

• The uniform conjecture is morally true for the many-one
degrees. (Kihara and Montalbán, 2018)

• The conjecture is false in the arithmetic degrees. (Slaman and
Steel, ?)
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Uniform Martin’s Conjecture

Definition

A function f : 2ω → 2ω is uniformly Turing-invariant if there is
u : ω2 → ω2 such that for any x, y ∈ 2ω

x ≡T y via(i, j) implies that f(x) ≡T f(y) viau(i, j)

Theorem (Slaman and Steel 1988 ; Steel 1982)

Assume ZF +AD +DC. Then
1 Let f : 2ω → 2ω uniformly Turing-invariant. If id ≰∇

T f , then
f is constant on a cone.

2 The relation ≤∇
T pre-well-orders the uniformly Turing-invariant

functions ≤∇
T -above the identity. Moreover, if rank∇T (f) = α,

then rank∇T (f
′) = α+ 1.

Here f ′ is defined by f ′(x) = f(x)′, for all x ∈ 2ω
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The Case for the Uniformity Assumption

Steel’s Conjecture

Under AD, if f is Turing-invariant, then there is an uniformly
Turing-invariant function g such that f ≡∇

T g.

Notice that Steel’s conjecture implies Martin’s conjecture.

Montalbán argues that all the philosophical motivation behind
Martin’s conjecture also holds for the uniform Martin’s conjecture.
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A Local Approach

Theorem (Bard, 2020)

Assume ZF +DC. Let x ∈ 2ω and f : degT (x) → 2ω be
uniformly Turing-invariant. Then, either x ≤T f(x) or f is
constant (literally!).

Theorem (Bard, 2020)

Under ZF +DC + TD, the previous theorem implies part I of the
uniform Martin’s conjecture.

Turing Determinacy (TD) is the statement “every set of Turing
degrees either contains a cone, or is disjoint from a cone”.

Martin’s cone theorem says “ZF +AD ⊨ TD”.
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Metamathematics of the uniform Martin’s conjecture

Theorem (Bard, 2020)

Under ZF +DC, the following are equivalent:
• Part I of the uniform Martin’s conjecture.
• Turing Determinacy.

Theorem (Bard, Chong, Wang, Woodin, Yu)

The following are equivalent over ZFC:

1 Projective Determinacy.

2 Projective Turing Determinacy.

3 Part 1 of the projective uniform Martin’s conjecture.

4 Part 2 of the projective uniform Martin’s conjecture.

Woodin (unpublished) proved (1) ⇔ (2). Chong, Wang and Yu
(2010) proved (1) ⇔ (4). The proof of the previous theorem by
Bard “localizes” to give (2) ⇔ (3).
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Enumeration Reduction

Definition (Friedberg and Rogers, 1959)

Let A,B ⊆ ω. We say A ≤e B (via i) if there is a program that
transforms an enumeration of B into an enumeration of A.

The program is a c.e. table of axioms Γi of the form

If {x1, . . . , xk} ⊆ B then x ∈ A

We say that A = Γi(B).

Intuition

A ≤e B means that using positive information about B, we can
compute all positive information about A. In contrast, A ≤T B
means that using positive and negative information about B, we
can compute positive and negative information about A.
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Enumeration Degrees and Turing Degrees

Definition

We say that A is enumeration equivalent to B, denoted by
A ≡e B, if A ≤e B and B ≤e A.

The Enumeration Degrees are the following structure:

De = (2
ω
/≡e,≤)

Theorem

For any A,B ∈ 2ω

A ≤T B if and only if A⊕A ≤e B ⊕B

This means that the Turing degrees embed into the enumeration
degrees via

ι(A) = A⊕A
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Total and Cototal degrees

Definitions

• A set A is total if A ≤e A.
• An enumeration degree is total if it contains a total set.
• A set A is cototal if A ≤e A.
• An enumeration degree is cototal if it contains a cototal set.

• Total degrees are exactly the degrees in the range of ι.

• Every total degree is cototal.

• There is a cototal degree that is not total.

• Not every degree is cototal.
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Jump and Skip

Definition

• The enumeration jump is the map A 7→ KA ⊕KA = A′

• The enumeration skip is the map A 7→ KA = A⋄

Theorem (AGKLMSS, 2019)

• A <e A
⋄ if and only if dege(A) is cototal. Another way to say

this, dege(A) is cototal iff A′ = A⋄.
• There is some A such that A = (A⋄)⋄

The skip is a uniformly enumeration-invariant function that is
neither increasing nor constant on any cone!
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Enumeration Cone Theorem?

Theorem (Failure of the cone theorem)

The total degrees, the cototal but non-total degrees, and the
non-cototal degrees are all cofinal in De but disjoint.
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Local Uniform Martin’s Conjeture

Theorem (N. C.)

Let x ∈ 2ω. If f : dege(x) → 2ω is uniformly enumeration-invariant
and non-constant, then

x ≤e f(x) or x⋄ ≤e f(x).

Corollary

Part 1 of Martin’s Conjecture holds for Turing-to-enumeration
uniformly invariant functions.
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Global Uniform Martin’s Conjecture

Both parts of the conjecture fail if we try to globalize the local
result.

Lemma (N. C.)

You can frankenstein countably-many uniformly
enumeration-invariant functions into a single uniformly-invariant
function.

Theorem (N. C.)

There is a uniformly enumeration-invariant function that is
non-constant, not increasing, and incomparable with the identity
and the skip on every cone.
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Thank You!
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