▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniform Martin's Conjecture in the Enumeration Degrees

Antonio Nakid Cordero University of Wisconsin – Madison

> UW Logic Seminar October 15, 2024

Martin's Conjecture

Martin's Conjecture

Assume ZF + AD + DC. Then

- Let $f: 2^{\omega} \to 2^{\omega}$ Turing-invariant. If f is not constant^{*} on a cone, then f is increasing on a cone.
- 2 The non-constant* Turing-invariant functions are pre-well ordered (up to equality on a cone). Moreover, the successor function in the pre-well order is given by the Turing jump.

Where f' is defined by f'(x) = f(x)', for all $x \in 2^{\omega}$.

Intuition

The only "natural" way to build an incomputable set is with the Turing jump (and iterations of it).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What does "natural" mean?

The key idea behind Martin's conjecture is that natural incomputable sets have two properties:

- They are definable
- Their constructions relativize

These two properties can be expressed mathematically!

Relativization

Any natural way to build an incomputable set X should allow me to build an A-incomputable set X^A .

Moreover, if $A \equiv_T B$, then $X^A \equiv_T X^B$.

From sets to functions

The incomputable set X determines a Turing-invariant function $f_X: 2^\omega \to 2^\omega$ given by

$$f_X(A) = X^A.$$

The Axiom of Determinacy

The Gale-Stewart game with payoff set $\mathcal{A} \subseteq \omega^{\omega}$, denoted $G(\mathcal{A})$, is the infinite game where two players, I and II, alternate playing natural numbers. Then I wins if and only if the resulting sequence is in \mathcal{A} .

	a_0		a_2	• • •	a_{2n}		
11		a_1	6	i_3		a_{2n+1}	

We say that $G(\mathcal{A})$ is determined if some player has a winning strategy.

Axiom of Determinacy (AD)

For every $A \subseteq \omega^{\omega}$, $G(\mathcal{A})$ is determined.

A false axiom

There is only one problem ...

Theorem (Gale and Stewart, 1953)

Under ZFC, the Axiom of Determinacy is false.

However,

Theorem (Martin, 1975)

 $ZF \vDash$ "If \mathcal{A} is Borel, then $G(\mathcal{A})$ is determined".

Theorem (Martin, Steel and Woodin; 1988-1989)

Assuming the existence of enough large cardinals (infinitely many Woodin cardinals and a measurable cardinal above them),

 $L(\mathbb{R}) \vDash AD$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Some benefits of Determinacy

Martin's Conjecture is usually stated in terms of ZF + AD + DC. This has several benefits:

- Avoids unnatural counterexamples created by the Axiom of Choice.
- It is a flexible hypothesis, because its use often "localizes".
- *AD* is useful to prove structural properties. For example, under *AD* every set of reals is Lebesgue-measurable and has the perfect set property.
- Allows us to prove Martin's Cone Theorem.

Martin's Cone Theorem

The cone above x is the set $\nabla_x = \{y \in 2^\omega : x \leq_T y\}$

Theorem (Martin, 1968)

Assume AD. Let $\mathcal{A} \subseteq 2^{\omega}$ be closed under Turing equivalence. Either \mathcal{A} contains a cone or $2^{\omega} \setminus \mathcal{A}$ contains a cone.

We can define a countably additive measure in $\ensuremath{\mathcal{D}}$:

$$\mu(\mathcal{A}) = egin{cases} 1 & ext{if } \mathcal{A} ext{ contains a cone} \ 0 & ext{otherwise} \end{cases}$$

Theorem (Martin's Cone Theorem (restated))

 μ is a countably-complete ultrafilter.

Theorem (Martin's Cone Theorem (restated again))

If $\mathcal{A} \subseteq \mathcal{D}_T$ is cofinal, then \mathcal{A} contains a cone.

Working on a cone

We need to work on a cone to avoid getting counterexamples to Martin's conjecture by *Frankensteining* functions.

The moral of Martin's cone theorem is: if you glue together countably many Turing-invariant functions, one prevails on a cone.

Definition

Let $f, g: 2^{\omega} \to 2^{\omega}$. We say that

- $f \leq_T^{\nabla} g$ if $f(x) \leq_T g(x)$ for all x on some cone.
- f is constant on a cone if there is $y \in 2^{\omega}$ such that $f(x) \equiv_T y$ for all x on some cone.
- f is increasing on a cone if $x \leq_T f(x)$ for all x on some cone.

Martin's Conjecture

Martin's Conjecture

Assume ZF + AD + DC. Then

- Let $f: 2^{\omega} \to 2^{\omega}$ Turing-invariant. If f is not constan on a cone, then f is increasing on a cone.
- **2** The relation \leq_T^{∇} pre-well orders the Turing-invariant functions \leq_T^{∇} -above the identity. Moreover, if $\operatorname{rank}_T^{\nabla}(f) = \alpha$, then $\operatorname{rank}_T^{\nabla}(f') = \alpha + 1$.

Where f' is defined by f'(x) = f(x)', for all $x \in 2^{\omega}$.

Partial Results

- Part I and II for uniformly Turing-invariant functions. (Steel, 1982; Slaman and Steel, 1988)
- Part I for regressive functions. (Slaman and Steel, 1988)
- Part I for order-preserving functions. (Lutz and Siskind, 2021)
- Part II for Borel order-preserving functions. Moreover, if f is such a function, there is $\alpha < \omega_1^{CK}$ such that

 $f(x)=x^{\alpha}$ on a cone

(Slaman and Steel, 1988)

- The uniform conjecture is morally true for the many-one degrees. (Kihara and Montalbán, 2018)
- The conjecture is false in the arithmetic degrees. (Slaman and Steel, ?)

Uniform Martin's Conjecture

Definition

A function $f:2^\omega\to 2^\omega$ is uniformly Turing-invariant if there is $u:\omega^2\to\omega^2$ such that for any $x,y\in 2^\omega$

 $x \equiv_T y \operatorname{via}(i, j)$ implies that $f(x) \equiv_T f(y) \operatorname{via} u(i, j)$

Theorem (Slaman and Steel 1988 ; Steel 1982)

Assume ZF + AD + DC. Then

- **1** Let $f: 2^{\omega} \to 2^{\omega}$ uniformly Turing-invariant. If $id \not\leq_T^{\nabla} f$, then f is constant on a cone.
- 2 The relation ≤[∇]_T pre-well-orders the uniformly Turing-invariant functions ≤[∇]_T-above the identity. Moreover, if rank[∇]_T(f) = α, then rank[∇]_T(f') = α + 1.

Here f' is defined by f'(x)=f(x)', for all $x\in 2^\omega$

ふして 山田 ・山田・山田・山口・

The Case for the Uniformity Assumption

Steel's Conjecture

Under AD, if f is Turing-invariant, then there is an uniformly Turing-invariant function g such that $f \equiv_T^{\nabla} g$.

Notice that Steel's conjecture implies Martin's conjecture.

Montalbán argues that all the philosophical motivation behind Martin's conjecture also holds for the uniform Martin's conjecture.

A Local Approach

Theorem (Bard, 2020)

Assume ZF + DC. Let $x \in 2^{\omega}$ and $f : \deg_T(x) \to 2^{\omega}$ be uniformly Turing-invariant. Then, either $x \leq_T f(x)$ or f is constant (literally!).

Theorem (Bard, 2020)

Under ZF + DC + TD, the previous theorem implies part I of the uniform Martin's conjecture.

Turing Determinacy (TD) is the statement "every set of Turing degrees either contains a cone, or is disjoint from a cone".

Martin's cone theorem says " $ZF + AD \models TD$ ".

Metamathematics of the uniform Martin's conjecture

Theorem (Bard, 2020)

Under ZF + DC, the following are equivalent:

- Part I of the uniform Martin's conjecture.
- Turing Determinacy.

Theorem (Bard, Chong, Wang, Woodin, Yu)

The following are equivalent over ZFC:

- 1 Projective Determinacy.
- **2** Projective Turing Determinacy.
- **3** Part 1 of the projective uniform Martin's conjecture.
- **4** Part 2 of the projective uniform Martin's conjecture.

Woodin (unpublished) proved $(1) \Leftrightarrow (2)$. Chong, Wang and Yu (2010) proved $(1) \Leftrightarrow (4)$. The proof of the previous theorem by Bard "localizes" to give $(2) \Leftrightarrow (3)$.

Enumeration Reduction

Definition (Friedberg and Rogers, 1959)

Let $A, B \subseteq \omega$. We say $A \leq_e B$ (via *i*) if there is a program that transforms an enumeration of B into an enumeration of A.

The program is a c.e. table of axioms Γ_i of the form

If
$$\{x_1, \ldots, x_k\} \subseteq B$$
 then $x \in A$

We say that $A = \Gamma_i(B)$.

Intuition

 $A \leq_e B$ means that using positive information about B, we can compute all positive information about A. In contrast, $A \leq_T B$ means that using positive and negative information about B, we can compute positive and negative information about A.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Enumeration Degrees and Turing Degrees

Definition

We say that A is enumeration equivalent to B, denoted by $A \equiv_e B$, if $A \leq_e B$ and $B \leq_e A$.

The Enumeration Degrees are the following structure:

$$\mathcal{D}_e = (2^{\omega} / \equiv_e, \leq)$$

Theorem

For any $A, B \in 2^{\omega}$

 $A \leq_T B$ if and only if $A \oplus \overline{A} \leq_e B \oplus \overline{B}$

This means that the Turing degrees embed into the enumeration degrees via

$$\iota(A) = A \oplus \overline{A}$$

Total and Cototal degrees

Definitions

- A set A is total if $\overline{A} \leq_e A$.
- An enumeration degree is total if it contains a total set.
- A set A is cototal if $A \leq_e \overline{A}$.
- An enumeration degree is cototal if it contains a cototal set.
- Total degrees are exactly the degrees in the range of ι .
- Every total degree is cototal.
- There is a cototal degree that is not total.
- Not every degree is cototal.

Jump and Skip

Definition

- The enumeration jump is the map $A \mapsto K^A \oplus \overline{K^A} = A'$
- The enumeration skip is the map $A \mapsto \overline{K^A} = A^\diamond$

Theorem (AGKLMSS, 2019)

- A <_e A[◊] if and only if deg_e(A) is cototal. Another way to say this, deg_e(A) is cototal iff A' = A[◊].
- There is some A such that $A = (A^{\diamond})^{\diamond}$

The skip is a uniformly enumeration-invariant function that is neither increasing nor constant on any cone!

Martin's Conjecture

Uniformity 0000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Enumeration Cone Theorem?

Theorem (Failure of the cone theorem)

The total degrees, the cototal but non-total degrees, and the non-cototal degrees are all cofinal in \mathcal{D}_e but disjoint.

Local Uniform Martin's Conjeture

Theorem (N. C.)

Let $x\in 2^\omega.$ If $f:\deg_e(x)\to 2^\omega$ is uniformly enumeration-invariant and non-constant, then

$$x \leq_e f(x)$$
 or $x^\diamond \leq_e f(x)$.

Corollary

Part 1 of Martin's Conjecture holds for Turing-to-enumeration uniformly invariant functions.

Global Uniform Martin's Conjecture

Both parts of the conjecture fail if we try to globalize the local result.

Lemma (N. C.)

You can frankenstein countably-many uniformly enumeration-invariant functions into a single uniformly-invariant function.

Theorem (N. C.)

There is a uniformly enumeration-invariant function that is non-constant, not increasing, and incomparable with the identity and the skip on every cone.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank You!