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Most of new results in this talk are joint work with David Gonzalez. There
is also some joint work with Turbo Ho and Ruiyan Chen.



Infinitary logic

In this talk I will use the infinitary logic Lω1ω which allows countable
conjunctions and disjunctions.

A formula is Σin
α if it has α-many alternations of quantifiers and begins

with a disjunction / existential quantifier.

A formula is Πin
α if it has α-many alternations of quantifiers and begins

with a conjunction / universal quantifier.

Example

There is a Πin
2 formula which describes the class of torsion groups. It

consists of the group axioms together with:

(∀x)⩔
n∈N

nx = 0.



The following sentence which says that a vector space is infinite
dimensional is Π3:

⩕
n∈N
(∃x1, . . . , xn) ⩕

c1,...,cn∈Q
[c1x1 +⋯ + cnxn = 0→ [c1 = c2 = ⋯ = cn = 0]]
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Π3

.



Infinitary sentences can characterize countable structures up to
isomorphism.

Theorem (Scott)

Let A be a countable structure. There is an infinitary sentence φ such
that for all countable structures B,

B ⊧ φ ⇐⇒ A ≅ B.

We call such a sentence a Scott sentence for A.



Definition (Montalbán)

The Scott rank of A is the least ordinal α such that A has a Πα+1 Scott
sentence.

Theorem (Montalbán)

Let A be a countable structure and let α a countable ordinal. The
following are equivalent:

A has a Πα+1 Scott sentence.

Every automorphism orbit in A is Σα-definable without parameters.

Isomorphisms between copies of A can be computed in a uniformly
relatively (boldface) ∆0

α way.



Definition (Alvir-Greenberg-HT-Turetsky)

The Scott sentence complexity of a structure A is the least complexity of
a Scott sentence for A.

This is always one of the complexities Πα, Σα, and d −Σα (the
conjunction of a Σα and a Πα formula).

(Lopez-Escobar, A. Miller, and Alvir-Greenberg-HT-Turetsky: This is the
same as the Wadge degree of the isomorphic copies of A.)



Let φ be a Πα sentence. Think of φ as a theory, defining its class of
models

{A ∣ A ⊧ φ}.

Consider all of the models of φ, and their Scott ranks or Scott
complexities.

Must there be a model of Scott rank ≈ α?



More precisely, Montalbán asked at the 2013 BIRS Workshop in
Computable Model Theory:

Question

If φ is a Π2 sentence, must it have a model with a Π3 Scott sentence and
hence Scott rank ≤ 2?



In 2018 I showed that this is very much not true.

Theorem (HT)

For any ordinal α, there is a Π2 sentence all of whose models have Scott
rank ≥ α.



Recently, Gonzalez and Montalbán proved the ω-Vaught’s conjecture for
linear orders.

Theorem (Gonzalez, Montalbán)

For every α and every Πα sentence φ extending the axioms of linear
orders, either:

There are only countably many models of φ and they all have Scott
rank less than α + ω, or

There are uncountably many models of T which are not
Πα+ω-elementary equivalent with each other.

Part of this proof gave improved methods for understanding Scott rank in
linear orders. So Gonzalez and I started talking about whether we could
understand the Scott ranks of the models of a theory of linear orders.



Question

Given a Πα sentence extending the axioms of linear orders, must it have a
model of Scott rank ≈ α?

The first step was to look at my earlier construction of a Π2 sentences all
of whose models have Scott rank ≥ α, and see that it is inherently
incompatible with linear orders.

I will explain why (vaguely).



The construction uses the back-and-forth relations.

Definition

The standard asymmetric back-and-forth relations ≤α, for α < ω1, are
defined by:

(A, ā) ≤0 (B, b̄) if ā and b̄ satisfy the same quantifier-free formulas
from among the first ∣ā∣-many formulas.

For α > 0, (A, ā) ≤α (B, b̄) if for each β < α and d̄ ∈ B there is c̄ ∈ A
such that (B, b̄d̄) ≤β (A, āc̄).

We define ā ≡α b̄ if ā ≤α b̄ and b̄ ≤α ā.



Theorem (Karp)

A ≤α B if and only if every Σα sentence true of B is true of A
if and only if every Πα sentence true of A is true of B.

So if A has a Πα Scott sentence, then

A ≤α BÔ⇒ A ≅ B.

There are other notions of Scott rank using the back-and-forth relations,
e.g., the Scott rank of A is the least α such that

A ≡α BÔ⇒ A ≅ B.

These are all coarsely equivalent.



Given α, we want a Π2 sentence all of whose models have Scott rank ≥ α.

The language will have relations ∼β for β ≤ α and unary relations Rn.

The Π2 sentence says that the ∼β satisfy the definition of the
back-and-forth relations, using the atomic type in the Rn as the base case:
ā ∼0 b̄ if and only if each ai satisfies the same relations Rn as bi .

We also say that there are elements a,b satisfying a ∼β b for all β < α, but
a ≁α b.

Then we show that the ∼β really are the back-and-forth relations on the
structure, even though they did not reference themselves in the base case.



This type of construction cannot build a linear order.

Linear orders have the following back-and-forth property:

Lemma

Given linear orders A and B, and a1 < ⋯ < an in A and b1 < ⋯ < bn in B:

(A, ā) ≤α (B, b̄)⇐⇒ for i = 0, . . . ,n, (ai , ai+1)
A ≤α (bi ,bi+1)

B.

This implies that if a < b < c , there is no relationship between a and c that
does not come from a relationship between a and b, and a relationship
between b and c .



Theorem (Gonzalez, HT)

Let φ be a Πα theory in the language of linear orders extending the linear
order axioms.

Then φ has a model with a Πα+4 Scott sentence and hence Scott rank
α + 3.



Theorem (Gonzalez, HT, Ho)

Let λ be a limit ordinal. There is a Πλ sentence φ such that all models of
φ have Scott complexity Σλ+1.

This is already a counterexample to Montalbán’s question at BIRS.

Theorem (Gonzalez, HT)

Let λ be a limit ordinal. There is a Πλ sentence φ such that all models of
φ have Scott complexity Πλ+2.

Theorem (Gonzalez, HT)

For any ordinal α, there is a Πα+4 sentence φ such that all models of φ
have Scott complexity Πα+6.

Thus there is a gap of size 2 between our upper bounds and our lower
bounds.



I am going to talk about the proof a bit to describe what we need to know
to decrease this gap.

Given a Πα sentence φ, we want to show that it has a model A ⊧ φ with a
Πα+4 Scott sentence.

We build A using a Henkin construction, using formulas of bounded
complexity.



There are two key facts about linear orders that we use. The first was
already introduced:

Lemma

Given linear orders A and B, and a1 < ⋯ < an in A and b1 < ⋯ < bn in B:

(A, ā) ≤α (B, b̄)⇐⇒ for i = 0, . . . ,n, (ai , ai+1)
A ≤α (bi ,bi+1)

B.

We build A to have the property that if (a1, a2) ≡α+1 (b1,b2) then
(a1, a2) ≅ (b1,b2).

This implies that A has a Πα+4 Scott sentence.



Question

If A has the property that

A ≤α B Ô⇒ A ≡α B

then is it true that
A ≤α B Ô⇒ A ≅ B.

Question

If A has the property that

A ≤α B Ô⇒ A ≅ B

then does A have a Πα Scott sentence.



The second fact is the key tool that allows us to deal with intervals
(a1, a2) and (b1,b2) that are not disjoint.

Theorem (Tarski and Lindenbaum)

If N and L are order types, and N ⋅ k is an initial segment of L for all k ,
then N ⋅ ω is an initial segment of L, and so L ≅ N + L.



We might try to apply a similar argument in other classes of structures
such as Boolean algebras.

Back-and-forth relations in Boolean algebras break up into relationships
between subalgebras (like back-and-forth relations in linear orders break up
into relationships between subintervals).

However:

Theorem (Ketonen)

There are Boolean algebras A and B such that for every n there is C such
that A ≅ C ⊕Bn, but A ≇ A⊕B.

Question

Given a Πα sentence extending the axioms of Boolean algebras, must there
be a model of Scott rank ≈ α?



There is one more aspect of the proof that I want to talk about. To do the
Henkin construction, we actually want a more fine-grained version of this
lemma:

Lemma

Given linear orders A and B, and a1 < ⋯ < an in A and b1 < ⋯ < bn in B:

(A, ā) ≤α (B, b̄)⇐⇒ for i = 0, . . . ,n, (ai , ai+1)
A ≤α (bi ,bi+1)

B.

Conjecture

Let L be a countable linear order and a1 < ⋯ < an elements of L. Suppose
that L ⊧ φ(a1, . . . , an) with φ a Πα formula in the language of linear
orders. Then there are Πα sentences θ0, . . . , θn such that

for every k = 0, . . . ,n we have (ak , ak+1) ⊧ θk , and

if B is any linear order and b1 < ⋯ < bn, if for every k = 0, . . . ,n we
have (bk ,bk+1) ⊧ θk then B ⊧ φ(b1, . . . ,bn).



There is one more aspect of the proof that I want to talk about. To do the
Henkin construction, we actually want a more fine-grained version of this
lemma:

Lemma

Given linear orders A and B, and a1 < ⋯ < an in A and b1 < ⋯ < bn in B:

(A, ā) ≤α (B, b̄)⇐⇒ for i = 0, . . . ,n, (ai , ai+1)
A ≤α (bi ,bi+1)

B.

Conjecture

Let L be a countable linear order and a1 < ⋯ < an elements of L. Suppose
that L ⊧ φ(a1, . . . , an) with φ a Πα formula in the language of linear
orders. Then there are Πα sentences θ0, . . . , θn such that

for every k = 0, . . . ,n we have (ak , ak+1) ⊧ θk , and

if B is any linear order and b1 < ⋯ < bn, if for every k = 0, . . . ,n we
have (bk ,bk+1) ⊧ θk then B ⊧ φ(b1, . . . ,bn).

FALSE



Theorem (Gonzalez, HT)

There is a Π4 sentence θ expanding the theory of linear orders such that
for any consistent Π4 sentences φ and ψ there are A ⊧ φ and B ⊧ ψ such
that A + 1 + B ⊭ θ.



Instead, we must use a complexity class Eα/Aα of formulas that is
different from the Σα/Πα hierarchy.

Lemma (Gonzalez, HT)

Let L be a countable linear order and a1 < ⋯ < an elements of L. Suppose
that L ⊧ φ(a1, . . . , an) with φ a Eα formula in the language of linear
orders. Then there are Eα sentences θ0, . . . , θn such that

for every k = 0, . . . ,n we have (ak , ak+1) ⊧ θk , and

if B is any linear order and b1 < ⋯ < bn, if for every k = 0, . . . ,n we
have (bk ,bk+1) ⊧ θk then B ⊧ φ(b1, . . . ,bn).



Definition

All connectives below are countable.

A1 ∶= Π1

E1 ∶= Σ1

Aα ∶= closure of ⋃β<αEβ under ∀ and ⋀⋀

Eα ∶= closure of ⋃β<αAβ under ∃ and ⋁⋁

Eα ∶= closure of Eα under ⋁⋁,⋀⋀

Aα ∶= closure of Aα under ⋁⋁,⋀⋀



We had previously discovered these formulas with Ronnie Chen due to
their connections with the back-and-forth relations. (It would be
interesting to know if anyone else has seen these before?)

Theorem (Chen, Gonzalez, HT)

Suppose that (A, ā) ≤α (B, b̄) for α ≥ 1. Then given a Eα formula φ(x̄)
and a Aα formula ψ(x̄),

B ⊧ φ(b̄)Ô⇒ A ⊧ φ(ā)

and
A ⊧ ψ(ā)Ô⇒ B ⊧ ψ(b̄)



Theorem (Chen, Gonzalez, HT)

For A a countable structure, ā ∈ A, and α ≥ 1, there are Eα formulas
φā,A,α(x̄) and Aα formulas ψā,A,α(x̄) such that for B any structure,

B ⊧ φā,A,α(b̄)⇐⇒ (B, b̄) ≤α (A, ā)

and
B ⊧ ψā,A,α(b̄)⇐⇒ (B, b̄) ≥α (A, ā).



We cannot define the back-and-forth relations using the Π/Σ hierarchy
without doubling the size of the ordinal.

Theorem (Chen, Gonzalez, HT)

There is a structureM such that

{N ∶ N ≥2M}

is Π0
4-complete.



Lemma (Gonzalez, HT)

Let L be a countable linear order and a1 < ⋯ < an elements of L. Suppose
that L ⊧ φ(a1, . . . , an) with φ a Eα formula in the language of linear
orders. Then there are Eα sentences θ0, . . . , θn such that

for every k = 0, . . . ,n we have (ak , ak+1) ⊧ θk , and

if B is any linear order and b1 < ⋯ < bn, if for every k = 0, . . . ,n we
have (bk ,bk+1) ⊧ θk then B ⊧ φ(b1, . . . ,bn).

To prove the main theorem, given a Πα sentence, the Henkin construction
works with Eα+1 formulas.



Theorem (Gonzalez, HT)

Let φ be a Πα theory in the language of linear orders extending the linear
order axioms.

Then φ has a model with a Πα+4 Scott sentence and hence Scott rank
α + 3.



Thanks!


