The computability of *K*-theory for operator algebras

Timothy H. McNicholl

Department of Mathematics Iowa State University mcnichol@iastate.edu

(Joint work with Chris Eagle, Isaac Goldbring, and Russell Miller)

November 5, 2024

KORKARYKERKE PORCH

The high-altitude picture

The K_0 **functor**:

- \blacktriangleright $K_0(\mathbf{A})$ is countable if **A** separable.
- \triangleright $K_0(\mathbf{A})$ is an invariant, but not a classifier.

Theorem (EGMM 2024+)

If **A** *is a computably presentable and unital* C ∗ *-algebra, then* K_0 (A) has a c.e. presentation.

KORK ERKER ADAM ADA

Fix a unital *C* ∗ -algebra **A**.

- \blacktriangleright Vector space over $\mathbb C$.
- \blacktriangleright Has a multiplication with a unit **1** \blacktriangle .
	- \blacktriangleright Left and right distributive.
	- \blacktriangleright Associative.
	- \triangleright ∀α ∈ ℂ ∀*a*, *b* ∈ **A** α(*ab*) = (α*a*)*b* = *a*(α*b*)

KORK ERKER ADAM ADA

- \blacktriangleright Has a submultiplicative norm $\|\ \|$.
	- \blacktriangleright $\|ab\| \leq \|a\| \|b\|.$
- ► Has isometric adjoint operation $a \mapsto a^*$.

$$
\blacktriangleright (ab)^* = b^* a^*
$$

$$
\blacktriangleright (\alpha a + b)^* = \overline{\alpha} a^* + b^*
$$

$$
\blacktriangleright \|1_A\|=1.
$$

$$
\blacktriangleright \|\mathsf{aa}^*\| = \| \mathsf{a} \|^2 \ (\mathrm{C}^* \text{ identity}).
$$

Examples:

- ► *C*[0, 1] with the supremum norm.
- $\blacktriangleright M_n(\mathbb{C})$ with the operator norm.

Throughout this talk, **A** # denotes a *presentation* of *A*.

- ▶ Has a sequence of *distinguished points* of **A**.
- **Requirement:** the distinguished points generate a dense subalgebra of **A**.

KOD KOD KED KED E VAN

Examples:

- ▶ *C*[0, 1][#]: special points are just $t \mapsto 1$ and $t \mapsto t$.
- $\blacktriangleright M_n(\mathbb{C})^{\#}$: standard basis of matrix units.

These presentations are *standard*. We identify *C*[0, 1] and $M_n(\mathbb{C})$ with their standard presentations.

KORKARA KERKER DAGA

Some more vocab

- 1. *Rational point of* $A^{\#}$: $p(s_1, \ldots, s_k)$ where p is a rational ∗-polynomial and each *s^j* is a special point of **A** #.
- 2. *Computable point v of* $A^{\#}$: From $k \in \mathbb{N}$ can compute rational point ρ so that $\Vert \rho - \nu \Vert < 2^{-k}.$ Code of such a Turing machine is an **A** # *index* of *v*.
- 3. *Computable sequence* (*an*)*n*∈^N *of* **A** #*: aⁿ* a computable point of **A** # uniformly in *n*.

KORKAR KERKER E VOOR

Remark

The rational points of **A** # are dense in **A**.

We assume $\mathsf{A}^{\#}$ is *computable*; that is $\|\ \|$ is computable on the rational points of **A** #.

This means there is a Turing machine *M* that behaves like this:

KORK ERKER ADAM ADA

A code of such a Turing machine is an *index* of **A** #.

Remark

The standard presentations of *C*[0, 1] and *Mn*(C) are computable.

Computable maps between presentations

We need to define what mean by a computable map from **A** # to a presentation **B** #. The only maps we care about are ∗-homomorphisms. Hence, we may (and do) take the following as a definition.

Proposition ('Folklore')

Suppose **B** # *is a presentation of a* C [∗] *algebra* **B***, and suppose f is a* ∗*-homomorphism of* **A** *into* **B***. Then, f is a computable map from* **A** # *to* **B** # *if and only if f is computable on the rational points of* **A** #*.*

That is, from a (code of a) rational point ρ of $\mathsf{A}^{\#}$ and $k\in\mathbb{N}$ it is possible to compute a rational point ρ' of $\mathsf{\mathbf{B}}^{\#}$ so that $\|\rho' - f(\rho)\|_{\mathbf{B}} < 2^{-k}.$

Fact

If ϕ : **A** \rightarrow **B** *is a* $*$ *-homomorphism of* C $*$ *-algebras, then* ϕ *is* 1*-Lipschitz. Hence, if* φ *is a* ∗*-isomorphism, then it is an isometry.***KORK ERKEY EL POLO**

Finding projections

Recall $p \in \mathbf{A}$ is a *projection* if $p^2 = p = p^*$.

Proposition (EGMM 2024+)

There is a Π_1^0 *set* $R \subseteq \mathbb{N}$ *so that for all e* $\in \mathbb{N}$ *and* $p \in \mathbf{A}$ *, if e is an* **A** #*-index of p, then p* ∈ *R iff p is a projection.*

Proof sketch.

Via *e*, can enumerate all rational open balls that contain *p*. We then use the following fact: if $a \in A$ is self-adjoint and $||a^2 - a|| < \epsilon$, then there is a projection *p*' so that $||p' - a|| < 2\epsilon$. We use this fact to enumerate all rational open balls that contain a projection. *R* says that for every rational *r* > 0 *p* is within *r* of a projection. Ш

Proof is uniform: an index of *R* can be computed from an index of $A^{\#}$.

Amplifications

Notation

 $M_n(\mathbf{A}) =$ set of all $n \times n$ matrices over **A**.

Fact

```
There is a C^*-norm \|\ \|_* on M_n(\mathbf{A}).
```
Notation

 $\mathcal{M}_n(\mathbf{A})^{\#}$ is the presentation of $\mathcal{M}_n(\mathbf{A})$ induced by $\mathbf{A}^{\#}$. That is, the distinguished points of *Mn*(**A**) # are the matrices whose components are all distinguished points of **A** #. It follows that the rational points of $\mathit{M_{n}}(\mathbf{A})^{\#}$ are the matrices whose entries are all rational points of $\mathsf{A}^{\#}.$

Remark

That *Mn*(**A**) # *is* a presentation is implied by the following well-known inequality.

$$
\max_{r,s} \|a_{r,s}\| \leq \| (a_{r,s})_{r,s} \|_* \leq \sum_{r,s} \|a_{r,s}\|.
$$

LED KAP KIED KIED IE VOOR

Theorem (EGMM 2024+)

Mn(**A**) # *is computable uniformly in n.*

Proof sketch (very sketchy).

By a result of Goldbring, **A** # induces a computable presentation $(M_n(\mathbb{C})\otimes \mathsf{A})^{\#}.$ (This is the tricky part.) There is a simple $*$ -isomorphism ψ from $M_n(\mathbb{C}) \otimes \mathbf{A}$ onto $M_n(\mathbf{A})$. In fact, ψ maps rational points to rational points. This transfers the computability of the norm.

KORK ERKER ADAM ADA

Notation

Let $P_n(A)$ = the set of projections in $M_n(A)$, and let $P_{\lt}\omega}(A) = \bigcup_{n} P_n(A).$

Murray-von Neumann Equivalence

Definition

Suppose $P \in \mathbf{P}_m(\mathbf{A})$ and $P' \in \mathbf{P}_n(\mathbf{A})$. Write $P \sim_{\text{mVn}} P'$ if there exists $V \in M_{m,n}(\mathbf{A})$ so that $P = VV^*$ and $P' = V^*V$.

Fact

∼*mvn is an equivalence relation on P*<ω(**A**)*.*

Theorem (EGMM 2024+)

There is a Σ_1^0 *relation* $Q \subseteq \mathbb{N}^2$ *so that for all* $P_0, P_1 \in \mathbf{P}_n(\mathbf{A})$ *and* $e_0, e_1 \in \mathbb{N}$, if e_j is an $M_n(\mathbf{A})^{\#}$ index of P_j , then $Q(e_0, e_1)$ iff *P*⁰ ∼*mvn P*1*.*

KORK ERKER ADAM ADA

The D functor

Notation $\mathsf{When}~\mathsf{P},\mathsf{P}'\in \mathsf{P}_{<\omega}(\mathsf{A}),$ let

$$
P \oplus P' = \left(\begin{array}{cc} P & \mathbf{0} \\ \mathbf{0} & P' \end{array} \right)
$$

Fact

∼*mvn is a congruence relation on* (*P*<ω(**A**), ⊕)*.*

Notation

$$
\text{Set }\mathcal{D}(\textbf{A})=(P_{<\omega}(\textbf{A}),\oplus)/\sim_{\text{mvn}}.
$$

Fact

D *is a functor from the category of unital* C [∗] *algebras to the category of Abelian semigroups.*

Fact *If P*, *Q* ∈ **P**_{*n*}(**A**)*,* and *if* $||P - Q||_* < 1$ *, then P* ∼*mvn Q*.

Remark

Since **A** is separable, it follows that $D(A)$ is a countable Abelian semigroup.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Detour into computable algebra: Presentations of semigroups

Throughout rest of this talk *S* is a semigroup, and $X = \{x_0, x_1, \ldots\}$ is a set of indeterminates.

 $FS[X]$ = the free semigroup generated by X.

Presentation of S: $S^{\#} = (S, \nu)$ where ν is an epimorphism of *FS*[*X*] onto *S*.

S[#] is *computable* (*c.e.*) if ker(ν) = {(*w*, *w'*) : ν (*w*) = ν (*w'*)} is computable (c.e.).

KORK ERKER ADAM ADA

If $\nu(w) = a$, then *w* is an $S^{\#}$ -notation for a.

Presenting D(**A**)

Remark

Suppose $\mathcal{D}(\mathsf{A})^{\#}$ is a presentation of $\mathcal{D}(\mathsf{A})$. Then, $\mathcal{D}(\mathsf{A})^{\#}$ assigns each $w \in FS[X]$ to an equivalence class $[P]_{\sim m \vee n}$. But, even if $\mathcal{D}(\mathsf{A})^{\#}$ is computable, we may not be able to compute a representative of [P]_{∼mvn}. This leads to the following definition.

Definition

 $\mathcal{D}(\mathsf{A})^{\#}$ is *supported* by $\mathsf{A}^{\#}$ if from $w\in FS[X]$ we can compute n and an $M_n({\bf A})^\#$ index of a $P \in {\bf P}_n({\bf A})$ so that w is a D(**A**) #-notation for [*P*]∼mvn.

KORKAR KERKER E VOOR

The functor D*^c*

Theorem (EGMM 2024+)

There is a unique (up to computable isomorphism) c.e. presentation D(**A**) # *that is supported by* **A** #*.*

Notation $\mathcal{D}^{\boldsymbol{c}}(\mathsf{A}^{\#}) =$ this presentation.

Theorem (EGMM 2024+)

D*^c is a computable functor from the category of computable presentations of* C [∗] *algebras to the category of c.e. presentations of semigroups.*

KORK ERKER ADAM ADA

More algebra: the Grothendieck Functor

Universality: There exists homomorphism $\gamma_S : S \to \mathcal{G}(S)$ so that:

If *S* has cancellation p[r](#page-16-0)operty, then γ_S γ_S γ_S is a mo[no](#page-16-0)[mo](#page-18-0)r[ph](#page-17-0)[is](#page-18-0)m[.](#page-28-0)

Presenting G(*S*)

Let $FG[X]$ = free group generated by X.

Group presentations are defined like semigroup presentations except use *FG*[*X*] instead of *FS*[*X*].

Definition (Computable *S* #-universality) $\gamma_\mathcal{S}$ is a computable map from $\mathcal{S}^\#$ to $\mathcal{G}(\mathcal{S})^\#$ and

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

AND $\phi \mapsto \psi_{\phi}$ computable.

Proposition (EGMM 2024+)

If S# *is c.e., then there is a unique (up to computable isomorphism) c.e. presentation of* $G(S)$ *that is computably S* #*-universal.*

Proof sketch.

Follow the classical construction of $G(S)$.

Notation

Let $\mathcal{G}^c(\mathcal{S} ^\#)$ denote this presentation.

Theorem (EGMM 2024+)

G *c is a computable functor from the category of c.e. presentations of semigroups to the category of c.e. presentations of groups.*

KORK ERKER ADAM ADA

And now, $K_0!$

Definition $K_0(\mathbf{A}) = \mathcal{G}\mathcal{D}(\mathbf{A}).$

Notation $K_0^c(\mathbf{A}^{\#}) = \mathcal{G}^c \mathcal{D}^c(\mathbf{A}^{\#}).$

Corollary (EGMM 2024+)

 K_0^c is a computable functor from the category of computable *presentations of* C [∗] *algebras to the category of c.e. presentations of groups.*

KOD KARD KED KED BE YOUR

"Application" to AF-algebras

Definition

 $\mathsf{Suppose}\ \mathsf{A}=\bigcup_{n\in\mathbb{N}}\mathsf{A}_n$ where $\mathsf{1}_\mathsf{A}\in\mathsf{A}_n\subseteq\mathsf{A}_{n+1}.$ A is $A\mathsf{F}$ if each **A***ⁿ* is a finite-dimensional subalgebra of **A**.

Fact *If* **A** *is AF, then* K_0 **A**) *is torsion-free.*

Theorem (Khisamiev 1986)

If a torsion-free Abelian group has a c.e. presentation, then it has a computable presentation.

KORK ERKER ADAM ADA

Corollary (EGMM 2024+)

If **A** is AF, then $K_0(\mathbf{A})$ is computably presentable.

"Application" to UHF algebras

Definition

 $\mathsf{Suppose}\ \mathsf{A}=\bigcup_{n\in\mathbb{N}}\mathsf{A}_n$ where $\mathsf{1}_\mathsf{A}\in\mathsf{A}_n\subseteq\mathsf{A}_{n+1}.$ A is UHF if for each *n* there exists k_n so that \mathbf{A}_n is \ast -isomorphic to $M_{k_n}(\mathbb{C})$.

KOD KARD KED KED BE YOUR

Fact

 $k_n | k_{n+1}$.

Definition (Supernatural "number")

If **A** is UHF, then for every prime *p* we let $\epsilon_{\mathbf{A}}(p) = \sup\{m \in \mathbb{N} \ : \ \exists n \in \mathbb{N} \ p^m | k_n \}.$

Notation

 $Pr =$ the set of prime numbers.

Thus, $\epsilon_{\mathbf{A}}$: Pr $\rightarrow \mathbb{N} \cup \{\infty\}$.

Notation

When ϵ : Pr $\rightarrow \mathbb{N} \cup {\infty}$, $\mathbb{Q}(\epsilon) =$ the subgroup of \mathbb{Q} generated by { *m* $\frac{m}{p^k}$: $m \in \mathbb{Z} \land k \in \mathbb{N} \land p \in \mathsf{Pr} \land k \leq \epsilon(p)\}.$

Fact

If **A** *is UHF, then* $K_0(\mathbf{A}) \approx \mathbb{O}(\epsilon_{\mathbf{A}})$.

Definition

A # is *computably UHF* if there is a computable sequence $(k_n)_{n\in\mathbb{N}}$ of positive integers and a sequence $(\phi_n)_{n\in\mathbb{N}}$ so that:

1. ϕ_n is a unital $*$ -monomorphism of $M_{k_n}(\mathbb{C})$ into **A**.

- 2. ran (ϕ_n) \subset ran (ϕ_{n+1}) .
- 3. $A = \bigcup_{n \in \mathbb{N}} \text{ran}(\phi_n).$
- 4. ϕ_n is a computable map of $M_{k_n}(\mathbb{C})$ to $\mathbf{A}^{\#}$.

Let's borrow a definition from computable analysis.

Definition

 : Pr → N ∪ {∞} is *lower semi-computable* if there is a uniformly computable and nondecreasing sequence $(e_n)_{n \in \mathbb{N}}$ of functions from Pr to N so that $\epsilon(\rho) = \lim_{n \in \mathbb{N}} \epsilon_n(\rho)$ for all $\rho \in \mathbb{R}^n$.

KORK ERKER ADAM ADA

Theorem (EGMM 2024+) *Suppose* **A** *is UHF. TFAE:*

- 1. **A** *is computably presentable.*
- 2. $\epsilon_{\mathbf{A}}$ *is lower semi-computable.*
- 3. **A** *has a computably UHF presentation.*
- 4. $K_0(\mathbf{A})$ *is computably presentable.*

Proof sketch.

Suppose $\mathsf{A}^{\#}$ is computable. Thus, $\mathcal{K}^c(\mathsf{A}^{\#})$ is computable. Search for relations of the form $\rho^m\cdot a=1.$ $m\leq \epsilon_{\mathbf{A}}(\rho)$ for each such *m*. All such values of *m* will be discovered by this process.

Suppose $\epsilon_{\mathbf{\Delta}}$ is lower semi-computable. We can then build a $\mathsf{system}\ (M_{k_n}(\mathbb C),\psi_n)_{n\in\mathbb N}$ where $\psi_n:M_{k_n}(\mathbb C)\to M_{k_{n+1}}(\mathbb C)$ is the standard unital ∗-embedding and **A** is ∗-isomorphic to the inductive limit of $(M_{k_n}(\mathbb{C}), \psi_n)_{n\in\mathbb{N}}$. By a theorem of Goldbring, this inductive limit has a computable presentation.

Remark

Proof is not uniform.

Claim (EGMM 2024+)

If **A** *is UHF, then all of its computable presentations are computably UHF.*

KORK ERKEY EL POLO

Adding order

Definition

- 1. **A** is *finite* if $\mathbf{1}_A = u^*u$ implies $\mathbf{1}_A = uu^*$.
- 2. **A** is *stably finite* if *Mn*(**A**) is finite for all *n*.

Fact *All AF algebras are stably finite.*

Notation $K_0(\mathbf{A})^+$ = ran $(\gamma_{\mathcal{D}(\mathbf{A})}).$

Fact

If **A** is stably finite, then $K_0(A)^+$ is an order cone; that is:

$$
\blacktriangleright \ \mathcal{K}_0(\boldsymbol{A})^+ + \mathcal{K}_0(\boldsymbol{A})^+ \subseteq \mathcal{K}_0(\boldsymbol{A})^+.
$$

$$
\blacktriangleright \ K_0(\mathbf{A})^+ - K_0(\mathbf{A})^+ = K_0(\mathbf{A}).
$$

$$
\blacktriangleright \ K_0({\bm A})^+ \cap (-K_0({\bm A})^+) = \{0\}.
$$

Thus, if **A** is stably finite, $K_0(A)$ admits a partial order. This $\bm{\rho}$ artially ordered group is denoted $(\mathcal{K}_0(\mathbf{A}),\mathcal{K}_0(\mathbf{A})^+)$.

KORK ERKER ADAM ADA

Corollary

If **A** *is a computably presentable UHF algebra, then* $(K_0({\bf A}), K_0({\bf A})^+)$ has a computable presentation.

References

- Kenneth R. Davidson, *C* ∗ *-algebras by example*, Fields F. Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012
- Alec Fox, *Computable presentations of C*[∗] *algebras*, To appear in Journal of Symbolic Logic.
- 量 Isaac Goldbring, *Computably strongly self-absorbing C*-algebras*, Forthcoming.
- N. G. Khisamiev, *Hierarchies of torsion-free abelian groups*, Algebra i Logika **25** (1986), no. 2, 205–226, 244. MR 892835
- M. Rø rdam, F. Larsen, and N. Laustsen, *An introduction to* 計 *K -theory for C*[∗] *-algebras*, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000. MR 1783408