The computability of *K*-theory for operator algebras

Timothy H. McNicholl

Department of Mathematics lowa State University mcnichol@iastate.edu

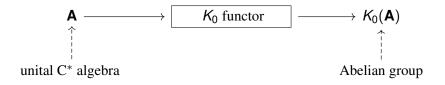
(Joint work with Chris Eagle, Isaac Goldbring, and Russell Miller)

November 5, 2024

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The high-altitude picture

The K₀ functor:



- $K_0(\mathbf{A})$ is countable if **A** separable.
- $K_0(\mathbf{A})$ is an invariant, but not a classifier.

Theorem (EGMM 2024+)

If **A** is a computably presentable and unital C^{*}-algebra, then $K_0(\mathbf{A})$ has a c.e. presentation.

Fix a unital C^* -algebra **A**.

- ► Vector space over C.
- Has a multiplication with a unit 1_A.
 - Left and right distributive.
 - Associative.
 - $\flat \ \forall \alpha \in \mathbb{C} \ \forall a, b \in \mathbf{A} \ \alpha(ab) = (\alpha a)b = a(\alpha b)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- ► Has a submultiplicative norm || ||.
 - ▶ $||ab|| \le ||a|| ||b||.$
- Has isometric adjoint operation $a \mapsto a^*$.

$$\triangleright (\alpha a + b)^* = \overline{\alpha} a^* + b^*$$

$$||\mathbf{1}_{\mathbf{A}}|| = 1.$$

•
$$||aa^*|| = ||a||^2$$
 (C* identity).

Examples:

- C[0, 1] with the supremum norm.
- $M_n(\mathbb{C})$ with the operator norm.

Throughout this talk, $\mathbf{A}^{\#}$ denotes a *presentation* of *A*.

- ► Has a sequence of *distinguished points* of **A**.
- *Requirement*: the distinguished points generate a dense subalgebra of A.

(ロ) (同) (三) (三) (三) (○) (○)

Examples:

- $C[0, 1]^{\#}$: special points are just $t \mapsto 1$ and $t \mapsto t$.
- $M_n(\mathbb{C})^{\#}$: standard basis of matrix units.

These presentations are *standard*. We identify C[0, 1] and $M_n(\mathbb{C})$ with their standard presentations.

(ロ) (同) (三) (三) (三) (○) (○)

Some more vocab

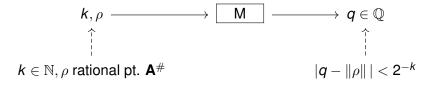
- Rational point of A[#]: p(s₁,..., s_k) where p is a rational
 *-polynomial and each s_i is a special point of A[#].
- 2. Computable point v of $\mathbf{A}^{\#}$: From $k \in \mathbb{N}$ can compute rational point ρ so that $\|\rho v\| < 2^{-k}$. Code of such a Turing machine is an $\mathbf{A}^{\#}$ index of v.
- Computable sequence (a_n)_{n∈ℕ} of A[#]: a_n a computable point of A[#] uniformly in n.

Remark

The rational points of $A^{\#}$ are dense in **A**.

We assume $A^{\#}$ is *computable*; that is $\| \|$ is computable on the rational points of $A^{\#}$.

This means there is a Turing machine M that behaves like this:



(ロ) (同) (三) (三) (三) (○) (○)

A code of such a Turing machine is an *index* of $\mathbf{A}^{\#}$.

Remark

The standard presentations of C[0, 1] and $M_n(\mathbb{C})$ are computable.

Computable maps between presentations

We need to define what mean by a computable map from $A^{\#}$ to a presentation $B^{\#}$. The only maps we care about are *-homomorphisms. Hence, we may (and do) take the following as a definition.

Proposition ('Folklore')

Suppose $B^{\#}$ is a presentation of a C^* algebra B, and suppose f is a *-homomorphism of A into B. Then, f is a computable map from $A^{\#}$ to $B^{\#}$ if and only if f is computable on the rational points of $A^{\#}$.

That is, from a (code of a) rational point ρ of $\mathbf{A}^{\#}$ and $k \in \mathbb{N}$ it is possible to compute a rational point ρ' of $\mathbf{B}^{\#}$ so that $\|\rho' - f(\rho)\|_{\mathbf{B}} < 2^{-k}$.

Fact

If $\phi : \mathbf{A} \to \mathbf{B}$ is a *-homomorphism of C*-algebras, then ϕ is 1-Lipschitz. Hence, if ϕ is a *-isomorphism, then it is an isometry.

Finding projections

Recall $p \in \mathbf{A}$ is a *projection* if $p^2 = p = p^*$.

Proposition (EGMM 2024+)

There is a Π_1^0 set $R \subseteq \mathbb{N}$ so that for all $e \in \mathbb{N}$ and $p \in \mathbf{A}$, if e is an $\mathbf{A}^{\#}$ -index of p, then $p \in R$ iff p is a projection.

Proof sketch.

Via *e*, can enumerate all rational open balls that contain *p*. We then use the following fact: if $a \in \mathbf{A}$ is self-adjoint and $||a^2 - a|| < \epsilon$, then there is a projection *p'* so that $||p' - a|| < 2\epsilon$. We use this fact to enumerate all rational open balls that contain a projection. *R* says that for every rational *r* > 0 *p* is within *r* of a projection.

Proof is uniform: an index of *R* can be computed from an index of $\mathbf{A}^{\#}$.

Amplifications

Notation

 $M_n(\mathbf{A}) = \text{set of all } n \times n \text{ matrices over } \mathbf{A}.$

Fact

There is a C^{*}-norm $\| \|_*$ on $M_n(\mathbf{A})$.

Notation

 $M_n(\mathbf{A})^{\#}$ is the presentation of $M_n(\mathbf{A})$ induced by $\mathbf{A}^{\#}$. That is, the distinguished points of $M_n(\mathbf{A})^{\#}$ are the matrices whose components are all distinguished points of $\mathbf{A}^{\#}$. It follows that the rational points of $M_n(\mathbf{A})^{\#}$ are the matrices whose entries are all rational points of $\mathbf{A}^{\#}$.

Remark

That $M_n(\mathbf{A})^{\#}$ is a presentation is implied by the following well-known inequality.

$$\max_{r,s} \left\| a_{r,s} \right\| \leq \left\| (a_{r,s})_{r,s} \right\|_* \leq \sum_{r,s} \left\| a_{r,s} \right\|.$$

Theorem (EGMM 2024+)

 $M_n(\mathbf{A})^{\#}$ is computable uniformly in n.

Proof sketch (very sketchy).

By a result of Goldbring, $\mathbf{A}^{\#}$ induces a computable presentation $(M_n(\mathbb{C}) \otimes \mathbf{A})^{\#}$. (This is the tricky part.) There is a simple *-isomorphism ψ from $M_n(\mathbb{C}) \otimes \mathbf{A}$ onto $M_n(\mathbf{A})$. In fact, ψ maps rational points to rational points. This transfers the computability of the norm.

(日) (日) (日) (日) (日) (日) (日)

Notation

Let $\mathbf{P}_n(\mathbf{A}) =$ the set of projections in $M_n(\mathbf{A})$, and let $\mathbf{P}_{<\omega}(\mathbf{A}) = \bigcup_n \mathbf{P}_n(\mathbf{A})$.

Murray-von Neumann Equivalence

Definition

Suppose $P \in \mathbf{P}_m(\mathbf{A})$ and $P' \in \mathbf{P}_n(\mathbf{A})$. Write $P \sim_{mvn} P'$ if there exists $V \in M_{m,n}(\mathbf{A})$ so that $P = VV^*$ and $P' = V^*V$.

Fact

 \sim_{mvn} is an equivalence relation on $P_{<\omega}(\mathbf{A})$.

Theorem (EGMM 2024+)

There is a Σ_1^0 relation $Q \subseteq \mathbb{N}^2$ so that for all $P_0, P_1 \in \mathbf{P}_n(\mathbf{A})$ and $e_0, e_1 \in \mathbb{N}$, if e_j is an $M_n(\mathbf{A})^{\#}$ index of P_j , then $Q(e_0, e_1)$ iff $P_0 \sim_{mvn} P_1$.

The ${\mathcal D}$ functor

Notation When $P, P' \in \mathbf{P}_{<\omega}(\mathbf{A})$, let

$$P \oplus P' = \left(egin{array}{cc} P & \mathbf{0} \\ \mathbf{0} & P' \end{array}
ight)$$

Fact

 \sim_{mvn} is a congruence relation on $(P_{<\omega}(\mathbf{A}), \oplus)$.

Notation

Set
$$\mathcal{D}(\mathbf{A}) = (\mathbf{P}_{<\omega}(\mathbf{A}), \oplus) / \sim_{mvn}$$
.

Fact

 ${\cal D}$ is a functor from the category of unital C^* algebras to the category of Abelian semigroups.

Fact If $P, Q \in \mathbf{P}_n(\mathbf{A})$, and if $\|P - Q\|_* < 1$, then $P \sim_{mvn} Q$.

Remark

Since **A** is separable, it follows that $\mathcal{D}(\mathbf{A})$ is a countable Abelian semigroup.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Detour into computable algebra: Presentations of semigroups

Throughout rest of this talk *S* is a semigroup, and $X = \{x_0, x_1, ...\}$ is a set of indeterminates.

FS[X] = the free semigroup generated by X.

Presentation of S: $S^{\#} = (S, \nu)$ where ν is an epimorphism of FS[X] onto *S*.

 $S^{\#}$ is computable (c.e.) if ker(ν) = {(w, w') : $\nu(w) = \nu(w')$ } is computable (c.e.).

If $\nu(w) = a$, then w is an $S^{\#}$ -notation for a.

Presenting $\mathcal{D}(\mathbf{A})$

Remark

Suppose $\mathcal{D}(\mathbf{A})^{\#}$ is a presentation of $\mathcal{D}(\mathbf{A})$. Then, $\mathcal{D}(\mathbf{A})^{\#}$ assigns each $w \in FS[X]$ to an equivalence class $[P]_{\sim mvn}$. But, even if $\mathcal{D}(\mathbf{A})^{\#}$ is computable, we may not be able to compute a representative of $[P]_{\sim mvn}$. This leads to the following definition.

Definition

 $\mathcal{D}(\mathbf{A})^{\#}$ is *supported* by $\mathbf{A}^{\#}$ if from $w \in FS[X]$ we can compute n and an $M_n(\mathbf{A})^{\#}$ index of a $P \in \mathbf{P}_n(\mathbf{A})$ so that w is a $\mathcal{D}(\mathbf{A})^{\#}$ -notation for $[P]_{\sim \text{mvn}}$.

The functor \mathcal{D}^c

Theorem (EGMM 2024+)

There is a unique (up to computable isomorphism) c.e. presentation $\mathcal{D}(\mathbf{A})^{\#}$ that is supported by $\mathbf{A}^{\#}$.

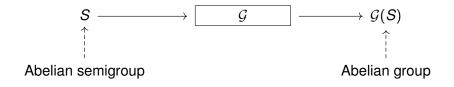
Notation $\mathcal{D}^{c}(\mathbf{A}^{\#}) = \text{this presentation.}$

Theorem (EGMM 2024+)

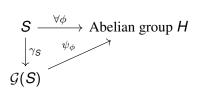
 \mathcal{D}^{c} is a computable functor from the category of computable presentations of C^{*} algebras to the category of c.e. presentations of semigroups.

(ロ) (同) (三) (三) (三) (○) (○)

More algebra: the Grothendieck Functor



Universality: There exists homomorphism $\gamma_{S} : S \to \mathcal{G}(S)$ so that:



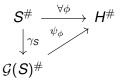
If S has cancellation property, then γ_S is a monomorphism.

Presenting $\mathcal{G}(S)$

Let FG[X] = free group generated by X.

Group presentations are defined like semigroup presentations except use FG[X] instead of FS[X].

Definition (Computable $S^{\#}$ -universality) γ_{S} is a computable map from $S^{\#}$ to $\mathcal{G}(S)^{\#}$ and



(ロ) (同) (三) (三) (三) (○) (○)

AND $\phi \mapsto \psi_{\phi}$ computable.

Proposition (EGMM 2024+)

If $S^{\#}$ is c.e., then there is a unique (up to computable isomorphism) c.e. presentation of $\mathcal{G}(S)$ that is computably $S^{\#}$ -universal.

Proof sketch.

Follow the classical construction of $\mathcal{G}(S)$.

Notation

Let $\mathcal{G}^{c}(S^{\#})$ denote this presentation.

Theorem (EGMM 2024+)

 \mathcal{G}^c is a computable functor from the category of c.e. presentations of semigroups to the category of c.e. presentations of groups.

And now, K_0 !

Notation $\mathcal{K}_0^c(\mathbf{A}^{\#}) = \mathcal{G}^c \mathcal{D}^c(\mathbf{A}^{\#}).$

Corollary (EGMM 2024+)

 K_0^c is a computable functor from the category of computable presentations of C^{*} algebras to the category of c.e. presentations of groups.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

"Application" to AF-algebras

Definition

Suppose $\mathbf{A} = \overline{\bigcup_{n \in \mathbb{N}} \mathbf{A}_n}$ where $\mathbf{1}_{\mathbf{A}} \in \mathbf{A}_n \subseteq \mathbf{A}_{n+1}$. A is *AF* if each \mathbf{A}_n is a finite-dimensional subalgebra of \mathbf{A} .

Fact If **A** is AF, then $K_0(\mathbf{A})$ is torsion-free.

Theorem (Khisamiev 1986)

If a torsion-free Abelian group has a c.e. presentation, then it has a computable presentation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Corollary (EGMM 2024+)

If **A** is AF, then $K_0(\mathbf{A})$ is computably presentable.

"Application" to UHF algebras

Definition

Suppose $\mathbf{A} = \overline{\bigcup_{n \in \mathbb{N}} \mathbf{A}_n}$ where $\mathbf{1}_{\mathbf{A}} \in \mathbf{A}_n \subseteq \mathbf{A}_{n+1}$. A is *UHF* if for each *n* there exists k_n so that \mathbf{A}_n is *-isomorphic to $M_{k_n}(\mathbb{C})$.

(日) (日) (日) (日) (日) (日) (日)

Fact

 $k_n|k_{n+1}.$

Definition (Supernatural "number")

If **A** is UHF, then for every prime *p* we let $\epsilon_{\mathbf{A}}(p) = \sup\{m \in \mathbb{N} : \exists n \in \mathbb{N} \ p^m | k_n\}.$

Notation

Pr = the set of prime numbers.

Thus, $\epsilon_{\mathbf{A}} : \mathsf{Pr} \to \mathbb{N} \cup \{\infty\}.$

Notation

When $\epsilon : \Pr \to \mathbb{N} \cup \{\infty\}$, $\mathbb{Q}(\epsilon) =$ the subgroup of \mathbb{Q} generated by $\{\frac{m}{p^k} : m \in \mathbb{Z} \land k \in \mathbb{N} \land p \in \Pr \land k \leq \epsilon(p)\}$.

Fact

If **A** is UHF, then $K_0(\mathbf{A}) \approx \mathbb{Q}(\epsilon_{\mathbf{A}})$.

Definition

A[#] is *computably UHF* if there is a computable sequence $(k_n)_{n \in \mathbb{N}}$ of positive integers and a sequence $(\phi_n)_{n \in \mathbb{N}}$ so that:

(日) (日) (日) (日) (日) (日) (日)

1. ϕ_n is a unital *-monomorphism of $M_{k_n}(\mathbb{C})$ into **A**.

- **2**. $\operatorname{ran}(\phi_n) \subseteq \operatorname{ran}(\phi_{n+1})$.
- 3. $\mathbf{A} = \overline{\bigcup_{n \in \mathbb{N}} \operatorname{ran}(\phi_n)}$.
- 4. ϕ_n is a computable map of $M_{k_n}(\mathbb{C})$ to $\mathbf{A}^{\#}$.

Let's borrow a definition from computable analysis.

Definition

 $\epsilon : \Pr \to \mathbb{N} \cup \{\infty\}$ is *lower semi-computable* if there is a uniformly computable and nondecreasing sequence $(\epsilon_n)_{n \in \mathbb{N}}$ of functions from \Pr to \mathbb{N} so that $\epsilon(p) = \lim_{n \in n} \epsilon_n(p)$ for all $p \in \Pr$.

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (EGMM 2024+)

Suppose A is UHF. TFAE:

- 1. A is computably presentable.
- 2. ϵ_A is lower semi-computable.
- 3. A has a computably UHF presentation.
- 4. $K_0(\mathbf{A})$ is computably presentable.

Proof sketch.

Suppose $\mathbf{A}^{\#}$ is computable. Thus, $K^{c}(\mathbf{A}^{\#})$ is computable. Search for relations of the form $p^{m} \cdot a = 1$. $m \leq \epsilon_{\mathbf{A}}(p)$ for each such *m*. All such values of *m* will be discovered by this process.

Suppose $\epsilon_{\mathbf{A}}$ is lower semi-computable. We can then build a system $(M_{k_n}(\mathbb{C}), \psi_n)_{n \in \mathbb{N}}$ where $\psi_n : M_{k_n}(\mathbb{C}) \to M_{k_{n+1}}(\mathbb{C})$ is the standard unital *-embedding and **A** is *-isomorphic to the inductive limit of $(M_{k_n}(\mathbb{C}), \psi_n)_{n \in \mathbb{N}}$. By a theorem of Goldbring, this inductive limit has a computable presentation.

Remark Proof is not uniform.

Claim (EGMM 2024+)

If **A** is UHF, then all of its computable presentations are computably UHF.

Adding order

Definition

- 1. A is *finite* if $\mathbf{1}_{\mathbf{A}} = u^* u$ implies $\mathbf{1}_{\mathbf{A}} = uu^*$.
- 2. **A** is stably finite if $M_n(\mathbf{A})$ is finite for all *n*.

Fact

All AF algebras are stably finite.

Notation $K_0(\mathbf{A})^+ = \operatorname{ran}(\gamma_{\mathcal{D}(\mathbf{A})}).$

Fact

If **A** is stably finite, then $K_0(\mathbf{A})^+$ is an order cone; that is:

$$\blacktriangleright \ \mathcal{K}_0(\mathbf{A})^+ + \mathcal{K}_0(\mathbf{A})^+ \subseteq \mathcal{K}_0(\mathbf{A})^+.$$

•
$$K_0(\mathbf{A})^+ - K_0(\mathbf{A})^+ = K_0(\mathbf{A}).$$

•
$$K_0(\mathbf{A})^+ \cap (-K_0(\mathbf{A})^+) = \{0\}.$$

Thus, if **A** is stably finite, $K_0(\mathbf{A})$ admits a partial order. This *partially* ordered group is denoted $(K_0(\mathbf{A}), K_0(\mathbf{A})^+)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Corollary

If **A** is a computably presentable UHF algebra, then $(K_0(\mathbf{A}), K_0(\mathbf{A})^+)$ has a computable presentation.

References

- Kenneth R. Davidson, C*-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012
- Alec Fox, *Computable presentations of C*^{*} *algebras*, To appear in Journal of Symbolic Logic.
- Isaac Goldbring, Computably strongly self-absorbing C*-algebras, Forthcoming.
- N. G. Khisamiev, *Hierarchies of torsion-free abelian groups*, Algebra i Logika **25** (1986), no. 2, 205–226, 244. MR 892835
- M. Rø rdam, F. Larsen, and N. Laustsen, An introduction to K-theory for C*-algebras, London Mathematical Society Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000. MR 1783408