Universal Sets for Projections

Jacob B. Fiedler (joint with Don Stull)

University of Wisconsin-Madison

Midwest Computability Seminar, November 12th, 2024

4 0 8

[Effective dimension](#page-10-0)

D F

1 [Projections in geometric measure theory](#page-2-0)

[Effective dimension](#page-10-0)

4 **D F**

 QQ

The basic question: How large are sets?

Usually, by size we mean measure or some notion of dimension (e.g. Hausdorff, packing, box-counting, Assouad...).

More precisely, what can we say about sets that we know have a certain geometric property, or that are obtained by some natural geometric operation on a set with known size?

Let $E \subset \mathbb{R}^n$ and $\{B_i\}_{i \in \mathbb{N}}$ be a collection of open balls in \mathbb{R}^n .

We call $\{B_i\}_{i\in\mathbb{N}}$ a δ -cover for E if

\n- $$
E \subseteq \bigcup_{i=1}^{\infty} B_i
$$
\n- $diam(B_i) \leq \delta$
\n

We call ${B_i}_{i\in\mathbb{N}}$ a δ -packing for E if

- The balls are pairwise disjoint
- The balls have centers in F

• diam $(B_i) < \delta$

Hausdorff dimension $\mathcal{H}_{\delta}^{\mathcal{S}}(E) = \inf_{\delta-\text{ covers}} \{\sum_{i=1}^{\infty}$ $i=1$ $\textsf{diam}(B_i)^s\}$ $\mathcal{H}^{\boldsymbol{s}}(E)=\lim_{\delta\to 0^+}\mathcal{H}^{\boldsymbol{s}}_\delta(E)$ Packing dimension $\bar{\mathcal{P}}^{\boldsymbol{s}}_{\delta}(\mathit{E}) = \sup_{\mathcal{P}} \mathsf{sup}$ $\delta-$ packings $\{\sum_{i=1}^{\infty}$ $i=1$ $\textsf{diam}(B_i)^s\}$ $\bar{\mathcal{P}}^{s}(E)=\lim_{\delta\to 0^+}\bar{\mathcal{P}}^{s}_{\delta}(E)$ $\mathcal{P}^s(E) = \inf \{ \sum_{n=1}^{\infty}$ $i=1$ $\bar{\mathcal{P}}^{s}(E_i): E \subseteq \bigcup^{\infty} E_i\}$ $i=1$

 $\dim_H(E) = \inf\{s : \mathcal{H}^s(E) = 0\}$

 $\dim_P(E) = \inf\{s : \mathcal{P}^s(E) = 0\}$

 QQ

 $\left\{ \bigoplus_{i=1}^n x_i \in \mathbb{R} \right| x_i \in \mathbb{R} \right\}$

"Regularity" refers to a set looking the same (or at least the same size) at different scales.

- \bullet E is weakly regular if dim $_P(E) = \dim_H(E)$
- \bullet E is α -AD regular if there exists some C such that $C^{-1}r^{\alpha} \leq \mathcal{H}^{\alpha}(E \cap B(x,r)) \leq Cr^{\alpha}, \quad x \in A, 0 < r < \text{diam}(A)$

AD-regularity can be thought of as a generalization of self-similarity. Weak regularity is in turn a generalization of AD regularity.

 QQQ

Size of projections

We work in \mathbb{R}^2 and consider projections onto lines. In particular, for $e\in\mathcal{S}^1$, let $p_eE=\{x\cdot e:x\in E\}$

Question: How does the Hausdorff dimension of a set change under projections?

We have the upper bound

 $dim_H(p_eE)$ < min $\{1, dim_H(E)\}$

Theorem (Marstrand, 1954)

Let $E \subseteq \mathbb{R}^2$ be Borel. For Lebesgue almost every $e \in S^1$,

 $dim_H(p_eE) = min\{1, dim_H(E)\}\$

Call $e\in\mathcal{S}^1$ maximal for E if

```
\dim_H(p_eE) = \min\{1, \dim_H(E)\}.
```
Suppose $\mathcal C$ is some class of subsets of $\mathbb R^2$, i.e. the Borel sets, the weakly regular sets, the AD regular sets...

Call a set of directions $D\subseteq S^1$ such that every $E\in \mathcal{C}$ has a maximal direction in D a C -universal set.

Are there small universal sets?

Small universal sets

All the results apply to sets in \mathbb{R}^2

Theorem (F. and Stull, 2024)

The class of sets with optimal oracles has a Lebesgue measure zero universal set

Theorem (F. and Stull, 2024)

For any $\varepsilon > 0$, the class of weakly regular sets has a Hausdorff dimension ε universal set.

Theorem (F. and Stull, 2024)

The class of AD regular sets has a Hausdorff dimension 0 universal set.

4 0 F

[Projections in geometric measure theory](#page-2-0)

[Effective dimension](#page-10-0)

[Some proof ideas](#page-15-0)

4 **D F**

 QQ

Fix a universal prefix-free oracle Turing machine U. Given $A \subseteq \mathbb{N}$, the (prefix-free) Kolmogorov complexity of a string σ relative to A is

$$
\mathsf{K}^{\mathsf{A}}(\sigma) = \min\{|\pi| : \mathsf{U}^{\mathsf{A}}(\pi) = \sigma\}
$$

We can encode rational vectors $q \in \mathbb{R}^n$ as binary strings, and hence can talk about $\mathcal{K}^\mathcal{A}(q).$ This in turn allows us to define the complexity of arbitrary points in \mathbb{R}^n at any given precision.

$$
K_r^A(x) = \min\{K^A(q) : q \in B_{2^{-r}}(x)\}
$$

Definition

The effective Hausdorff dimension of a point $x \in \mathbb{R}^n$ relative to an oracle $A \subseteq \mathbb{N}$ is given by

$$
\dim^A(x) = \liminf_{r \to \infty} \frac{K_r^A(x)}{r}
$$

Definition

The effective packing dimension of a point $x \in \mathbb{R}^n$ relative to an oracle $A \subseteq \mathbb{N}$ is given by

$$
\text{Dim}^A(x) = \limsup_{r \to \infty} \frac{K_r^A(x)}{r}
$$

 Ω

_{何♪ イ}ヨ _▶ ィヨ

4 **D F**

Effective dimension is directly related to classical dimension through the following "point-to-set" principle(s):

Theorem (J. Lutz and N. Lutz, 2015)

For all $E \subset \mathbb{R}^n$,

$$
\dim_H(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x)
$$

and

$$
\dim_P(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \text{Dim}^A(x)
$$

4 **D F**

Let E be weakly regular. If A is the join of a Hausdorff and a packing oracle for E, for any $\varepsilon > 0$, there is some $x \in E$ such that

$$
\text{Dim}^A(x) - \text{dim}^A(x) < \varepsilon
$$

If E is AD-regular, we have something stronger: call a point $x \in \mathbb{R}^n$ α -AD regular with respect to an oracle $A \subseteq \mathbb{N}$ if there exists some C such that

$$
\alpha r - C \log r \leq K_r^A(x) \leq \alpha r + C \log r
$$

Proposition

If E is compact and α -AD regular, then there exists an oracle A relative to which \mathcal{H}^{α} -almost every point in E is α -AD regular.

[Projections in geometric measure theory](#page-2-0)

[Effective dimension](#page-10-0)

4 **D F**

 QQ

For any E in our class, it suffices to find some e in D with the following property: for every $\varepsilon > 0$, there exists some $x \in E$ such that

$$
\dim^B(p_e x) \geq \min\{1,\dim_H(E)\} - \varepsilon
$$

where B is a Hausdorff oracle for p_eE .

To show this bound holds, we need a few assumptions.

- e has high complexity at certain precisions, and low complexity at other precisions. In particular, e is the result of appropriately adding 0s to a ML random.
- \bullet A, the Hausdorff oracle for the set E, does not help in the computation of e
- \bullet Oracle access to e does not help in the computation of x

Partitioning

Let a sequence of precisions $1 = r_0, r_1, r_2, ..., r_m = r$ be given. Then

$$
K_r^A(x) = \sum_{i=1}^m \left(K_{r_i}^A(x) - K_{r_{i-1}}^A(x) \right) + K_1^A(x)
$$

$$
\approx \sum_{i=1}^m K_{r_i, r_{i-1}}^A(x)
$$

Let $x \in \mathbb{R}^2$ and $a \leq b$. We say that $[a, b]$ is (σ, c) -teal if

$$
\mathcal{K}_{b,s}^A(x \mid x) \leq \sigma(b-s) + c \log b,
$$

for all $a \leq s \leq b$. We say that [a, b] is (σ, c) -yellow if

$$
\mathcal{K}^A_{s,a}(x \mid x) \ge \sigma(s-a) - c \log b,
$$

for all $a < s < b$.

Lemma

Let $x\in \mathbb{R}^2,$ $e\in\mathcal{S}^1$, $\,c\in\mathbb{N},\,\sigma\in\mathbb{Q}\cap(0,1],\,A\subseteq\mathbb{N}$ and $\,a < b \in\mathbb{R}_+.$ Suppose that b is sufficiently large (depending on e, x, and σ) and $\mathcal{K}^{A}_{s,b}(e \mid x) \geq s - c \log b$, for all $s \leq b - a$. Then the following hold.

1 If [a, b] is (σ, c) -yellow, $\mathcal{K}^{A}_{b,b,b,a}(\textcolor{black}{x} \mid \textcolor{black}{p_{e}x},\textcolor{black}{e},\textcolor{black}{x}) \leq \mathcal{K}^{A}_{b,a}(\textcolor{black}{x} \mid \textcolor{black}{x}) - \sigma(b-a) + O_{c}(\log b)^{2}.$

2 If [a, b] is (σ, c) -teal, $\mathcal{K}^{A}_{b,b,b,a}(x \mid p_e x, e, x) \leq O_c(\log b)^2$.

 Ω

AD * * E * * E * *

Recall, we are interested in lower bounding the quantity $\kappa_{r}^{A,B,e}(p_{e}x)$. Using symmetry of information and the assumptions on our points, we have

$$
K_r^A(x \mid e, p_e x) \ge K_r^{A,e}(x \mid p_e x) - O(\log r)
$$

\n
$$
\ge K_r^{A,B,e}(x \mid p_e x) - O(\log r)
$$

\n
$$
= K_r^{A,B,e}(x, p_e x) - K_r^{A,B,e}(p_e x) - O(\log r)
$$

\n
$$
\ge K_r^{A,B,e}(x) - K_r^{A,B,e}(p_e x) - O(\log r)
$$

\n
$$
\ge K_r^A(x) - K_r^{A,B,e}(p_e x) - \text{small error}
$$

Then, we can use the upper bound on $\mathcal{K}^{\mathcal{A}}_r(x \mid e, p_{e}x)$ that comes from partitioning.

Thank you!

D

Þ

不自下

 \mathcal{A} × ×. 299

Þ