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This talk will analyze some very interesting
computability-theoretic and reverse mathematical phenomena
which arise in a long line of work in Ramsey theory of algebraic
structures.

For our analysis the interplay between combinatorics and
algebra will be central.



Early Ramsey Theory

Theorem (Schur)

For every finite coloring of the positive integers, there is a
momnochromatic solution to the equation x +y = z.

Theorem (Van Der Waerden)

For every finite coloring of the positive integers, there are
arbitrarily long monochromatic arithmetic progressions.



Rado’s Thesis

Can Schur’s theorem and Van Der Waerden’s theorem be
generalized to get a characterization of all linear systems that
have monochromatic solutions under any finite coloring of the
positive integers?

If we call these systems partition regular, then Schur’s theorem
can be restated in the following way:

Theorem (Schur, restated)

Let A = [ 1 1 -1 ] and b= 0. Then the system Ax = b is
partition regular.



Partition Regularity over Z

Definition

Let A be an m X n matrix with entries in Z and b € Z™,b # 0.
We say that the system of linear equations Ax = b is partition
regular over Z if for every finite coloring of the integers, the
system has a monochromatic solution.

Examples

x4y = 2 is partition regular over Z.
x 4+ y = 3 is not partition regular over Z.



Theorem (Rado, 1933)

Let A be an m x n matrixz with entries in Z and b € Z™,b # 0 .
The system Ax = b is partition reqular over Z if and only if it
has a constant solution.

Rado gave a complete characterization of partition regular
systems for all b € Z™, but we will be interested in the case

b+#0.

The case when b # 0 is sometimes also called inhomogeneous
partition regularity.



Partition Regularity over a Commutative Ring R

What happens if we replace Z with any other commutative
ring? Can we get a similar characterization?

Definition

Let R be a commutative ring, A an m X n matrix with entries in
Rand be R™, b+# 0. We say that the system of linear
equations Ax = b is partition regular over R if for every
finite coloring of R, the system has a monochromatic solution.

Bergelson, Deuber, Hindman and Leffman (1994) showed that
the same characterization holds for a special class of integral
domains.

Byszewski and Krawczyk (2020) extended the result to all
integral domains.

These papers used an indirect approach to get to these results.



Theorem (Leader, Russell, 2021)

Let R be a commutative ring, A an m X n matriz with entries in
R and b€ R™,b+# 0. The system Ax = b is partition reqular
over R if and only if it has a constant solution.

Leader, Russell - direct approach, thus giving a new proof to
Rado’s theorem.



A Common Theme

Theorem (Straus, 1975)
Let (G,+,0) be an abelian group and b € G,b # 0. Let
n € Z,n > 1. There is a finite k-coloring ¢ of G s.t. the equation

(1 —y) +(@2—y2) +-+ (Tn—yn) =D (1)

has no solution with c(x;) = c(y;) for every i € {1,...,n}, where
. {Zn if ord(b) = oo or 2| ord(b)

[%-‘ if ord(b) is odd and p is the largest prime divisor of ord(b)

Call these solutions pairwise monochromatic solutions.



Theorem (Straus, 1975)

Let (G,+,0) be an abelian group, b € G,b # 0 and n € Z,n > 1.
Let f1, ..., fn be arbitrary mappings from G to G, with m < n of
them being distinct. There is a finite k-coloring ¢ of G s.t. the
equation

(fl(xl) - fl(yl)) + (f2($2) - f2(y2)) +ot (fn(xn) - fn(yn)) T l;
2

has no solution with c(x;) = c(y;) for every i € {1,...,n}, where

k=

{(Qn)m if ord(b) = oo or 2| ord(b)

anﬂm if ord(b) is odd and p is the largest prime divisor of ord(b)



Computability-theoretic Questions

Does Straus’ Theorem hold computably i.e. is it true that for
every computable abelian group, n € N;n > 1 and every

b€ G,b # 0, there is a computable k-coloring that satisfies the
theorem? If not, what is the best computability-theoretic bound
for this problem?

Definition

A group (G, +) is called a computable group if G is a
computable set and the function (z,y) — x + y is computable.



PA Degrees

Turing degrees - measure of complexity of sets in computability
theory. Two sets have the same Turing degree if they are
"equally hard to compute".

Definition

A set X has PA degree if every computable infinite binary tree
has an X-computable path.

Proposition

A degree is PA if and only if it is the degree of a complete
extension of Peano Arithmetic.

Proposition

A degree is PA if and only if it computes a total {0, 1}-valued
extension of the {0, 1}-valued function e — ®.(e).



The Computability of Straus’ Theorem

Theorem (L., 2024)

There is a computable abelian group (G,+,0) and an element
b€ G,b# 0 for which every 2-coloring with no monochromatic
solutions to

r1—y1=">0

has PA degree.

Proposition

For every computable group, there is a 2-coloring of PA degree
with no monochromatic solutions to x1 — y1 = b.

Hence, PA degrees are the best possible bound.



Our theorem gives the best possible result of this sort:
Proposition

Let n > 2,n € Z. Then for every computable group, there is a
computable n-coloring with no monochromatic solutions to
T1—y =b.



Sketch of the Proof

¢ Build a computable group (G, +,0) and a monomorphism
h:G — Z¥) in stages.

® Ensure that for every e, there are z. and vy, s.t.
- if ®.(e) =0 then h(y.) = h(x.) + kh(b) for k even,
- if ®.(e) J=1 then h(ye) = h(x.) + kh(b) for k odd.

e [f ¢ is a 2-coloring of G with no monochromatic solutions to
x —y = b, then the function

{ 0, if C(xe) = C(ye)

TOI= 1, i elee) o clye)

is a {0, 1}—valued extension of the function e — ®.(e).



Does combinatorial complexity imply
computability-theoretic complexity?

Theorem (L., 2024)

Let n € Z,n > 2. There is a computable group (G,+,0) and an
element b € G,b # 0 such that, if ¢ is a 2n-coloring of G for
which the equation

(T1—y1) + o+ (Tn —yn) =0

has no pairwise monochromatic solutions and there is an m > 0
such that for every k € Z, all the mkb are colored with the same
color, then ¢ has PA degree.



Reverse Mathematics

RCAj - usual base system in reverse mathematics (roughly
corresponding to computable mathematics)

Lemma (Weak Konig’s Lemma)

Every infinite binary tree has an infinite path.

Weak Konig’s Lemma does not hold computably.

WKLy = RCAy + Weak Konig’s Lemma



The Reverse Mathematics of Straus’ Theorem

Theorem (L., 2024)
Over RCAg, WKLy is equivalent to the following statement:

For every abelian group G and every element b € G,b # 0, there
is a k—coloring of G for which the equation x —y = b has no
monochromatic solutions, where k = 2 if ord(b) = oo or ord(b)
is even and k = 3 if ord(b) is odd.



Sketch of the Proof

The backwards direction holds by our previous theorem.

For the forward direction, consider the graph on m vertices
ap, at, ..., am—1, where we say that a; and a; are connected
iff |ai — aj| =b.

If ord(b) is infinite, this is a graph with no loops.

If ord(b) is even/odd, there might be loops on an even/odd
number of vertices, respectively.

In all cases, we can color the graph with k£ colors so that no
two neighboring vertices have the same color.



The Path Ahead

. The reverse mathematics of the full Straus’ theorem.

. Computability-theoretic analysis of Leader/Russell
theorem.

. The reverse mathematics of the fact that the DNCy degrees
coincide with the PA degrees.

. What happens in the case b = 0?7

. The nonlinear case.



Thank you!



Main Results
Theorem (L., 2024)

There is a computable abelian group (G,+,0) and an element b € G,b # 0 for
which every 2-coloring with no monochromatic solutions to

T1—y1=>b
has PA degree.

Theorem (L., 2024)
Let n € Z,n > 2. There is a computable group (G,+,0) and an element
b € G,b# 0 such that, if ¢ is a 2n-coloring of G for which the equation

(Il 7?/1) + .+ (In 73/71) =b
has no pairwise monochromatic solutions and there is an m > 0 such that for
every k € Z, all the mkb are colored with the same color, then ¢ has PA degree.
Theorem (L., 2024)

Over RCAg, WKLy is equivalent to the following statement:

For every abelian group G and every element b € G,b # 0, there is a k— coloring
of G for which the equation x — y = b has no monochromatic solutions, where

k =2 if ord(b) = oo or ord(b) is even and k = 3 if ord(b) is odd.



