Countable Ordered Groups and Weihrauch Reducibility

Ang Li

University of Wisconsin–Madison

Midwest Computability Seminar XXXIII November 12, 2024

Ang Li [Countable Ordered Groups and Weihrauch Reducibility](#page-23-0) Nov 12, 2024 1/24

KORK EXTERNATIONAL

Outline

[Reverse Mathematics](#page-1-0)

[Order Type of Countable Ordered Groups](#page-5-0)

[Weihrauch Reducibility](#page-6-0)

[Weihrauch Problems](#page-11-0)

イロト (個) (毛) (毛) (毛) (毛) のQ (V)

Reverse mathematics

- Reverse mathematics studies the axiomatic strength needed to prove theorems of ordinary mathematics over a weak base theory.
- It is usually studied using subsystems of second order arithmetic.
- Although we work in the language of arithmetic, other objects such as well-orders and groups can be coded as appropriate subsets of N. We call such coding an ω -presentation or an ω -copy.

 Ω

◆ロト→伊ト→ミト→ミト ヨ

Big five

- **D** RCA₀: PA⁻ + I Σ_1^0 + Δ_1^0 -CA
- \bullet WKL₀: RCA₀ + some form of weak könig lemma
- \odot ACA₀: RCA₀ + arithmetical comprehension axiom
- \bigcirc ATR₀: ACA₀ + arithmetical transfinite recursion scheme
- **5** Π_1^1 -CA₀: RCA₀ + Π_1^1 -comprehension axiom

Theorem

The following are equivalent over $RCA₀$ *:*

- \blacksquare Π_1^1 -CA₀
- \bullet For any sequence of trees $\langle T_k:k\in\mathbb{N}\rangle$, $T_k\subseteq\mathbb{N}^{<\mathbb{N}}$, there exists a set X *such that* $\forall k (k \in X \leftrightarrow T_k \text{ has a path}).$

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Order Type of Countable Ordered Groups

Theorem (Maltsev, 1949)

The order type of a countable ordered group is $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$, where α is an ordinal *and* $\varepsilon = 0$ *or* 1*.*

Definition

An ordered group is a pair (G, \leq_G) , where *G* is a group, \leq_G is a linear order on *G*, and for all $a, b, g \in G$, if $a \leq b$ then $ag \leq bg$ and $ga \leq gb$.

For \mathbb{Z}^{α} and products of linear orders, we order by the rightmost coordinate on which two elements differ.

 $\left\{ \begin{array}{ccc} \square & \times & \left\langle \bigcap \mathbb{R} \right\rangle \times \left\langle \bigcap \mathbb{R} \right\rangle \times \left\langle \bigcap \mathbb{R} \right\rangle \end{array} \right.$

Order Type of Countable Ordered Groups

Theorem (Solomon, 2001)

The following are equivalent under $RCA₀$ *:*

- \blacksquare Π^1_1 -CA₀
- **2** If G is a countable ordered group, there is a well-order α and $\varepsilon \in \{0,1\}$ *such that* Z ^αQ^ε *is the order type of G.*
- **3** If G is a countable abelian ordered group, there is a well-order α and $\varepsilon \in \{0,1\}$ such that $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$ is the order type of G.

 $\left\{ \begin{array}{ccc} \square & \times & \left\langle \bigcap \mathbb{R} \right\rangle \times \left\langle \bigcap \mathbb{R} \right\rangle \times \left\langle \bigcap \mathbb{R} \right\rangle \end{array} \right.$

Theorems as problems

Statements like the ones in the previous theorem can be written as follows:

$$
(\forall x \in X)(\exists y \in Y)[\varphi(x) \to \psi(x, y)].
$$

We can naturally translate it to a computational problem, i.e., given an input *x* such that $\varphi(x)$, the output is *y* such that $\psi(x, y)$.

For our purposes, we consider problems on Baire space $\mathbb{N}^{\mathbb{N}}$, i.e., relations $f\subseteq \mathbb{N}^\mathbb{N}\times \mathbb{N}^\mathbb{N}$, or equivalently partial multi-valued functions $f:\subseteq{\Bbb{N}}^{\Bbb{N}}\rightrightarrows{\Bbb{N}}^{\Bbb{N}}.$

Remark: for many statements, there could be multiple natural ways to phrase them as a computational problem.

KORK (FRAGER CER CER POLO)

Weihrauch reducibility

Definition

Let f, g be partial multi-valued functions on Baire space. *f* is Weihrauch reducible to *g*, denoted $f \leq_W g$ if there are computable Φ , Ψ on Baire space such that:

- given $p \in \text{dom}(f)$, $\Phi(p) \in \text{dom}(g)$, and
- given $q \in g(\Phi(p))$, $\Psi(p,q) \in f(p)$.

Φ, Ψ are called forward functional and backward functional respectively.

$$
\begin{array}{ccc}\np & \xrightarrow{\Phi} & \Phi(p) \\
\downarrow f & & \downarrow g \\
f(p) & \xleftarrow{\Psi(p, \cdot)} & q\n\end{array}
$$

 Ω

K □ ▶ K @ ▶ K ミ ▶ K ミ ▶ ...

Algebraic operations

Definition

Among the many operations in Weihrauch degrees, we will use the following:

- ¹ compositional product *f* ∗ *g*: allows us to "use" *g* first, then *f*
- **2** product $f \times g$: allows us to use both f and g in parallel
- **3** finite parallelization *f*[∗]: allows us to use *f* finitely many times in parallel
- \bullet parallelization \hat{f} : allows us to use f countably many times in parallel

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶

Big five and Weihrauch reducibility

There are imperfect analogies between the big five and Weihrauch degrees:

- **1 RCA₀: Id_{NN}.**
- **2** WKL₀: $C_{2^{\mathbb{N}}}$.
- \bigcirc ACA₀: iterations of lim.
- **4** ATR₀: many candidates, C_{NN} , UC_{NN}, etc.
- **5** Π_1^1 -CA₀: WF.

Definition

 $C_{\mathbb{N}^N}$: Given an ill-founded tree in Baire space, find a path through it.

WF: Given a tree in Baire space, tell whether it is well-founded.

 Ω

イロト イ押 トイヨ トイヨ トーヨ

A small part of the zoo

 \equiv

 299

イロト 不優 トイミト 不差人

Weihrauch problems

We have choices to make when formulating Malstev Theorem into Weihrauch problems.

- **0 OG** \mapsto $\alpha \in \mathsf{f}$ and AOG $\mapsto \alpha \in \mathsf{f}$: given a countable (abelian) ordered group *G*, output the ordinal α and $\varepsilon \in \{0,1\}$ in its order type $\mathbb{Z}^\alpha\mathbb{Q}^\varepsilon$ with an order-preserving function from G to $\mathbb{Z}^\alpha\mathbb{Q}^\varepsilon.$
- Ω OG $\mapsto \alpha \varepsilon$

As part of our analysis, we also consider the following problems:

- \bullet OG $\mapsto \varepsilon$
- \bullet OG $\mapsto \alpha$
- **6** OG $\alpha \in \mathcal{F}$ f: given a countable ordered group *G* with the ordinal α and $\varepsilon \in \{0,1\}$ in its order type $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$, output an order-preserving function from *G* to $\mathbb{Z}^{\alpha} \mathbb{Q}^{\varepsilon}$.

KORK (FRAGER CER CER POLO)

Output everthing

Proposition

 $OG \mapsto \alpha \varepsilon f >_W \widehat{WF}$

What about the other direction? Suppose we are given a computable $ω$ -copy of the group, the output we need includes an $ω$ -copy of the ordinal α . It is natural to ask: what can α be?

 Ω

◆ロト→伊ト→ミト→ミト ヨ

What can α be?

Theorem

If a computable ordered group has order type Z ^α*, then* α *is computable.*

Proof.

Idea: Build a tree $T \in \mathbb{N}^{<\mathbb{N}}$ by trying to embed $\mathbb{Q}_2 \cap [0,1]$ into the group. This tree has rank $\omega \alpha$.

Lemma

Given two trees $T_0, T_1 \subseteq \omega^{\leq \omega}$, if there is a map f from T_1 to T_0 such that $f^{-1}(\sigma)$ has a finite rank as a partial order for any σ , $\mathrm{rk}(f^{-1}(\sigma))\leq c_l$ for all σ of length l for some constant c_l , and $f(\sigma) \preccurlyeq f(\tau)$ when $\sigma \preccurlyeq \tau$, then $rk(T_1) <^+ r k(T_0)$. In particular, $rk(T_1) < rk(T_0)$ when the latter is a limit.

 Ω

What can α be?

Theorem

If a computable ordered group has order type $\mathbb{Z}^{\alpha}\mathbb{Q}$, then $\alpha \leq \omega_{1}^{\text{CK}}$.

Proof.

For each positive element *g* in the group, we build a tree that tries to embed $\mathbb{Q}_2 \cap [0, 1]$ into the interval between the identity *e* and *g*. Then, $\alpha \leq \omega_1^{\text{CK}}$. Otherwise, there is a *g* mapped to $(0, \ldots, 0, 1, 0, \ldots)$ where 1 is at the ω_1^{CK} position.

Theorem

There exists a computable countable ordered group with order type $\mathbb{Z}^{\omega_1^{\text{CK}}} \mathbb{Q}.$

Proof.

There is a group with order type \mathbb{Z}^H where $H \cong \omega_1^{CK}(1+\mathbb{Q})$ is the Harrison linear order.

Remark: this can also be seen by the Gandy Ba[sis](#page-13-0) [T](#page-15-0)[h](#page-13-0)[eo](#page-14-0)[re](#page-15-0)[m](#page-11-0)

Ang Li [Countable Ordered Groups and Weihrauch Reducibility](#page-0-0) Nov 12, 2024 15 / 24

 Ω

П

One point information

Proposition

 $OG \mapsto \varepsilon \equiv_W WF$

Proof.

" $\leq w''$ Build a tree *T* by trying to embed the rationals into the order. Fix a list of rational numbers ${q_i}_{i\leq w}$. Define *T* as follows: any σ is in *T* if and only if the map from q_i to $\sigma(i) \in G$ for $i < |\sigma|$ preserves the order. Then, *T* is well-founded if and only if $\varepsilon = 0$.

" \geq_W " Follows from the proof of the reverse math result.

つへへ

◆ロト→伊ト→ミト→ミト ヨ

$OG \mapsto \alpha \varepsilon f \leq_W WF$

Proof.

- " \leq_W " Assume that the input of OG $\mapsto \alpha \in \mathfrak{f}$ is computable and $\varepsilon = 1$.
	- The forward functional simply makes countably many trees so that the output of WF is Π^1_1 -complete.
	- Using this Π_1^1 -complete set, the backward functional can identify if two elements are in the same \mathbb{Z}^{α} copy, and build α via a sequence of approximations.
	- It will build the partial order-preserving map according to the current guess of α .
	- All the questions the backward functional ask in order to do so are Π^1_1 .

KORK (FRAGER CER CER POLO)

On the side

If we do not output the isomorphism *f*, then our Weihrauch problems turn out to be incomparable with fairly weak problems.

Proposition

- OG $\mapsto \alpha \ngtrly{y}$ lim₂.
- OG $\mapsto \alpha \varepsilon \not>_{\mathsf{W}}$ lim₂ \times lim₂.

Definition

 $\lim_{2} : \subseteq 2^{\mathbb{N}} \to 2$ is the limit operation on $\{0, 1\}.$

We will show this by looking at the first-order parts of these problems.

KORK (FRAGER CER CER POLO)

First-order part

Definition (Dzhfarov, Solomon, & Yokoyama)

A problem P is first-order if the codomain of P is N. We let F denote the class of all first-order problems.

For every Weihrauch problem P, there is a first order problem ¹P such that $^1\mathsf{P}\equiv_\mathsf{W}\sup_{\leq_\mathsf{W}}\{{\mathsf Q}\in\mathcal{F}:{\mathsf Q}\leq_\mathsf{W}\mathsf{P}\}.$ It is called the first-order part of P.

つのへ

First-order part

Definition

$$
\mathsf{LPO}: \mathbb{N}^{\mathbb{N}} \to \{0, 1\}, \; \mathsf{LPO}(p) = \begin{cases} 0 \text{ if } (\exists k)[p(k) = 0], \\ 1 \text{ otherwise.} \end{cases}
$$

Theorem (Brattka, Gherardi, Marcone, & Pauly)

- LPO[∗] ≡^W Min*.*
- lim2|WLPO[∗] *.*
- lim₂, LPO^{*} <w C_N.

Proposition

- 1 OG $\mapsto \alpha \equiv_W \mathsf{LPO}^*.$
- ${}^{1}OG \mapsto \alpha \varepsilon \equiv_W \mathsf{LPO}^* \times \mathsf{WF}$.

Corollary

OG $\mapsto \alpha \ngeq w$ lim₂. OG $\mapsto \alpha \geq w$ lim₂ \times lim₂.

 $Q \cap$

How much is needed to output α ?

Proposition

 $OG\alpha \varepsilon \mapsto f \leq_W C_{\mathbb{N}^{\mathbb{N}}}$

Idea: build a back-and-forth tree whose paths represent isomorphism between $\mathbb{Z}^{\alpha}\mathbb{Q}^{\varepsilon}$ and the group.

Corollary

 $\overline{\text{OG}} \mapsto \alpha \varepsilon \nless_{\text{W}} \text{C}_{\text{NN}} * \text{WF}$ $OG \mapsto \alpha \nless_{W} G_{\mathbb{N}^{\mathbb{N}}}$

 $2Q$

K ロ > K 個 > K 差 > K 差 > → 差

A slightly bigger part of the zoo

Ang Li [Countable Ordered Groups and Weihrauch Reducibility](#page-0-0) Nov 12, 2024 22 / 24

つへへ

References

- Chris J Ash and Julia Knight, *Computable structures and the hyperarithmetical hierarchy*, Elsevier, 2000.
- Vasco Brattka, Matthew de Brecht, and Arno Pauly, *Closed choice* 靠 *and a uniform low basis theorem*, Ann. Pure Appl. Log. **163** (2010), 986–1008.
- 量 Vasco Brattka, Guido Gherardi, and Alberto Marcone, *The bolzano–weierstrass theorem is the jump of weak k˝onig's lemma*, Annals of Pure and Applied Logic **163** (2012), no. 6, 623–655, Computability in Europe 2010.
- F Vittorio Cipriani, Alberto Marcone, and Manlio Valenti, *The weihrauch lattice at the level of* Π¹ 1 *-*CA0*: the cantor-bendixson theorem*, 2022.
- Damir D Dzhafarov, Reed Solomon, and Keita Yokoyama, *On the* 靠 *first-order parts of problems in the weihrauch degrees*, Computability (2023), no. Preprint, 1–13.
- 畐

Reed Solomon, Π¹ 1 *-*CA⁰ *and order types of countable ordered groups*, The Journal of Symbolic Logic **66** (2001), n[o.](#page-21-0) 1[, 1](#page-23-0)[9](#page-21-0)[2–](#page-22-0)[2](#page-23-0)[0](#page-21-0)[6](#page-22-0)[.](#page-23-0)

Ang Li [Countable Ordered Groups and Weihrauch Reducibility](#page-0-0) Nov 12, 2024 23 / 24

 QQ

Thank You!