Model theory, VC classes, and Henselian rings

Will Johnson

Fudan University

November 18, 2024

Section 1

NIP

A Venn diagram with four sets

What's wrong with this picture?

A Venn diagram with four sets

A Venn diagram with seven sets

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings

Slogan

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

- What is a "Venn diagram"?
- How is "complexity" measured?

Independent sets

Fix a set U.

Definition

Sets $X_1, \ldots, X_n \subseteq U$ are *independent* if they partition U into 2^n subsets. More precisely, for every $S \subseteq \{1, \ldots, n\}$,

Three independent sets.

5 4 3 2

Three non-independent sets.

Slogan

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

Slogan

If $X_1, \ldots, X_n \subseteq \mathbb{R}^2$ are independent sets, then the complexity of the sets X_1, \ldots, X_n increases with n.

• How is "complexity" measured?

Definable sets

For the structure $(\mathbb{R}, +, \cdot, \leq)$...

Definition

 $D \subseteq \mathbb{R}^n$ is a *definable set* if

$$D = \{\vec{x} \in \mathbb{R}^n : \varphi(\vec{x})\}$$

for some first-order formula $\varphi(\vec{x})$.

"First-order":

- +, \cdot , \leq , =.
- \wedge (and), \vee (or), \neg (not)
- $\forall x \in \mathbb{R}, \ \exists x \in \mathbb{R}$
- $\forall S \subseteq \mathbb{R}, \exists S \subseteq \mathbb{R}$

Definable sets

The unit disk is definable in $(\mathbb{R}, +, \cdot, \leq)$:

$$egin{aligned} &\{(x,y)\in\mathbb{R}^2\mid \exists z:x\cdot x+y\cdot y+z\cdot z=1\}\ &=\{(x,y)\in\mathbb{R}^2\mid x\cdot x+y\cdot y\leq 1\}. \end{aligned}$$

Definable families

Definition

 $\mathcal{F} \subseteq \mathsf{Pow}(\mathbb{R}^n)$ is a *definable family* if

$$\mathcal{F} = \{\{\vec{x} \in \mathbb{R}^n : \varphi(\vec{x}, \vec{a})\} : \vec{a} \in \mathbb{R}^n, \ \psi(\vec{a})\}$$

for some first-order formulas φ, ψ .

Example

The family of open disks in \mathbb{R}^2 is a definable family:

$$ig\{ \{(x,y) \in \mathbb{R}^2 : (x-a)^2 + (y-b)^2 < r^2 \} : (a,b,r) \in \mathbb{R}^3, \ r > 0 ig\}$$

Idea

In a definable family, the sets have bounded complexity.

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings Nove

A precise statement

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

Theorem

If $\mathcal F$ is a definable family in the structure $(\mathbb R,+,\cdot)$, then

 $\sup\{n : there are independent X_1, \ldots, X_n \in \mathcal{F}\} < \infty.$

Example

If X_1, \ldots, X_n are independent disks, then $n \leq 3$.

IP and NIP

Let M be a structure.

Definition

 ${\it M}$ has the independence property (IP) if there is a definable family ${\cal F}$ such that

 $\sup\{n : \text{there are independent } X_1, \ldots, X_n \in \mathcal{F}\} = \infty.$

Definition

M is NIP if for every definable family \mathcal{F} ,

 $\sup\{n : \text{there are independent } X_1, \ldots, X_n \in \mathcal{F}\} < \infty.$

IP and NIP

Example

- $(\mathbb{Z},+,\cdot)$ has the IP:
 - 2Z, 3Z, 5Z, 7Z, ... are independent.
 - {nZ : n ∈ Z} is a definable family.

Theorem (Wilkie)

The real exponential field $(\mathbb{R}, +, \cdot, \leq, exp)$ is NIP.

Motivating questions

Question

Which fields are NIP?

Question

Which rings are NIP?

From now on, "ring" means "commutative unital ring".

Section 2

A detour to statistics

VC classes

Definition

A family of sets \mathcal{F} is a *VC class* if

 $\sup\{n : \text{there exist independent } X_1, \ldots, X_n \in \mathcal{F}\} < \infty.$

A structure is NIP iff every definable family is a VC class.

VC classes

What does "VC" stand for?

Vapnik

Chervonenkis

These are statisticians, not logicians!

The law of large numbers

The law of large numbers

Let (Ω, μ) be a probability space. Fix $\epsilon > 0$.

Theorem

If X_1, \ldots, X_n are independently distributed according to μ , and $E \subseteq \Omega$, then

$$\lim_{n \to \infty} \operatorname{Prob}\left(\left| \mu(E) - \frac{\#\{i : X_i \in E\}}{n} \right| < \epsilon \right) = 1$$

Idea

If X_1, \ldots, X_n are random samples from (Ω, μ) , and $n \gg 0$, then with high probability,

$$\mu(E)\approx\frac{\#\{i:X_i\in E\}}{n}$$

Uniform law of large numbers

Let (Ω, μ) be a probability space and \mathcal{F} be a VC class on Ω . Fix $\epsilon > 0$.

Theorem (Vapnik-Chervonenkis)

If X_1, \ldots, X_n are independently distributed according to μ , then

$$\lim_{n\to\infty} \operatorname{Prob}\left(\sup_{E\in\mathcal{F}}\left|\mu(E)-\frac{\#\{i:X_i\in E\}}{n}\right|<\epsilon\right)=1.$$

Idea

If X_1, \ldots, X_n are random samples from (Ω, μ) , and $n \gg 0$, then

$$\mu(E) \approx \frac{\#\{i: X_i \in E\}}{n}$$

for every $E \in \mathcal{F}$, with high probability.

Uniform law of large numbers

Idea

If X_1,\ldots,X_n are random samples from (Ω,μ) , and $n\gg 0$, then

$$u(E)\approx\frac{\#\{i:X_i\in E\}}{n}$$

for every $E \in \mathcal{F}$, with high probability.

Why is this non-trivial?

• A random set of numbers between 0 and 99:

82, 26, 83, 31, 9, 29, 89, 5, 8, 91

• If $E = \{82, 26, 83, \dots, 91\}$, then $\mu(E) = 0.1$, but the sample suggests $\mu(E) \approx 1$

Overfitting

Overfitting and VC classes

- Suppose we are training a classifier $f: \Omega \to \{0, 1\}.$
- Let \mathcal{F} be the set of possibilities for f.
- If \mathcal{F} is a VC class, then

sample accuracy(f) \approx population accuracy(f)

for all $f \in \mathcal{F}$

- ... so maximizing sample accuracy nearly maximizes population accuracy.
 - No overfitting!

Overfitting and NIP

Theorem (Wilkie)

The real exponential field $(\mathbb{R}, +, \cdot, \exp)$ is NIP.

Corollary

In a sigmoidal neural network, the set of possible classifiers $\mathbb{R}^n \to \{0,1\}$ is a VC class.

Karpinski and Macintyre calculate more precise bounds for the VC theorem, in this case.

Section 3

Model theory

Motivating questions

Question

Which fields are NIP?

Question

Which rings are NIP?

These questions belong to model theory.

Model theory

Model theory is the study of *algebraic structures*...

- groups, rings, fields,...
- ... using tools from mathematical logic:
 - definable sets, elementary equivalence,...

Structures

Definition

A structure is a set with some functions and relations.

Examples:

- ($\mathbb{C}, +, \cdot$)
- ($\mathbb{Z}, +, \leq$)
- ($\mathbb{R}, +, \cdot, \exp$)

Elementary equivalence

Definition

Two structures *M* and *N* are *elementarily equivalent* $(M \equiv N)$ if *M* and *N* satisfy the same first-order sentences.

$$\mathbb{R} \text{ satisfies } \forall x \ \exists y : y \cdot y \cdot y = x$$
$$\mathbb{Q} \text{ doesn't satisfy } \forall x \ \exists y : y \cdot y \cdot y = x$$

So $\mathbb{R} \not\equiv \mathbb{Q}$.

Elementary equivalence

Any structure M has an elementary equivalence class

 $\{N:N\equiv M\}.$

Theorem

 $(K, +, \cdot) \equiv (\mathbb{C}, +, \cdot)$ if and only if char(K) = 0 and $K = K^{alg}$.

A form of the Lefschetz principle in algebraic geometry(?)

$\label{eq:alg_alg} \begin{array}{l} \mathsf{Example} \\ \mathbb{Q}^{\mathrm{alg}} \equiv \mathbb{C}. \end{array}$

Definable sets and functions

Fix a structure M.

Definition

 $D \subseteq M^n$ is definable if

$$D = \{\vec{x} : \varphi(\vec{x})\}$$

for some first-order formula φ .

Definition

If X, Y are definable, then $f : X \to Y$ is a *definable function* if the graph $\Gamma(f)$ is definable:

$$\Gamma(f) = \{(x, y) \in X \times Y : y = f(x)\}.$$

Definable sets and functions form a category.

Definable sets in
$$(\mathbb{C},+,\cdot)$$

Theorem

 $D \subseteq \mathbb{C}^n$ is definable if and only if D is constructible in the sense of algebraic geometry:

$$D = \bigcup_{i=1}^m C_i \setminus C'_i$$

for Zariski closed sets C_i, C'_i .

A form of Chevalley's theorem in algebraic geometry(?)

Theorem

In \mathbb{C} , a function $f : X \to Y$ is definable iff f is piecewise rational.

What can model theory do?

Categoricity

Let M be an infinite structure and κ be an infinite cardinal.

Theorem (Löwenheim-Skolem)

M is elementarily equivalent to a structure of size κ .

Definition

M is κ -categorical if there's a unique $N \equiv M$ of size κ , up to isomorphism.

Example

 \mathbb{C} is κ -categorical for any $\kappa > \aleph_1$.

(There's only one K with $K = K^{\text{alg}}$, char(K) = 0, and $\text{tr.} \text{deg}(K/\mathbb{Q}) = \kappa$.)

Uncountable categoricity

Suppose *M* is κ -categorical for some $\kappa > \aleph_0$.

- Every definable set $D \subseteq M^n$ has a "dimension" dim $(D) \in \mathbb{N}$, satisfying things like dim $(X \times Y) = \dim(X) + \dim(Y)$.
- If K is a definable field, then K is finite or $K = K^{alg}$.
- If G is a definable group...
 - G has a "connected component" G^0 .
 - There is a subnormal series of definable subgroups

$$1 = H_0 \lhd H_1 \lhd H_2 \lhd \cdots \lhd H_n = G$$

such that the quotients H_{i+1}/H_i are simple or abelian.

► CONJECTURALLY, the simple H_{i+1}/H_i are algebraic groups over algebraically closed fields (Cherlin-Zilber).

Section 4

Stability theory and Neostability theory

NIP and NSOP

Let M be a structure.

Definition

M has the *IP* (*independence property*) if there's a definable family \mathcal{F} such that for every $n < \infty$, there are independent $X_1, \ldots, X_n \in \mathcal{F}$. Otherwise, *M* is *NIP*.

Definition

M has the *SOP* (*strict order property*) if there's a definable family \mathcal{F} such that for every $n < \infty$, there are $X_1, \ldots, X_n \in \mathcal{F}$ with

$$X_1 \subsetneq X_2 \subsetneq X_3 \subsetneq \cdots$$

Otherwise, M is NSOP.

NIP and NSOP

Theorem

 $(\mathbb{R},+,\cdot,\leq)$ is NIP.

On the other hand,

Remark

 $(\mathbb{R}, +, \cdot, \leq)$ has the SOP:

$$(-\infty,1) \subsetneq (-\infty,2) \subsetneq (-\infty,3) \subsetneq \cdots$$

Stability

Definition

A structure M is *stable* if M is NIP and NSOP.

Stability: what good is it?

These structures are stable:

- Algebraically closed fields.
- Free groups (Sela).
- Abelian groups, modules.
- Differentially closed fields $(K, +, \cdot, \partial)$.
- Uncountably categorical structures.

In fact,

Theorem (Shelah)

Unless M is stable, for every $\kappa > \aleph_0$,

$$\#\{N:N\equiv M,\ \#N=\kappa\}/\cong$$
 is 2^{κ} .

Stability: what good is it?

In a stable structure, we can define...

- The "dimension" dim(D) of a definable set.*
- "Independence" of elements $a_1, a_2, a_3, \ldots \in M$.
- The "connected component" G^0 of a definable group.
- "Prime models"

Applications of stability theory:

- Classification theory (Shelah)
- Differential algebra (Poizat, many others)
- Function-field Mordell-Lang (Hrushovski)
- Approximate subgroups (also Hrushovski)

The neostability universe

The neostability universe (simplified)

Neostability theory: generalizing stability theory to bigger classes, like NIP.

Why NIP?

These things are NIP but not stable:

- The fields \mathbb{R}, \mathbb{Q}_p .
- Ordered abelian groups like $(\mathbb{Z}, +, \leq)$.
- Algebraic groups like SU(n), SO(n).
- O-minimal structures like $(\mathbb{R}, +, \cdot, exp)$.

NSOP is too restrictive.

Section 5

NIP rings

Reminder

"Ring" means "commutative unital ring".

Typical examples

These fields and rings are NIP:

- \bullet The real numbers $\mathbb R.$
- The *p*-adic integers

$$\mathbb{Z}_p = \varprojlim_{n \to \infty} \mathbb{Z}/p^n.$$

- The *p*-adic numbers $\mathbb{Q}_p = \operatorname{Frac}(\mathbb{Z}_p)$.
- The formal power series ring

$$k[[X]] = \{a_0 + a_1X + a_2X^2 + \cdots : a_0, a_1, a_2, \ldots \in k\},\$$

for $k = \mathbb{C}, \mathbb{Q}_p, \mathbb{R}$.

The formal Laurent series field k((X)) = Frac k[[X]] for k = C, Q_p, ℝ.

Warning

 $\mathbb{F}_p[[X]]$ and $\mathbb{F}_p((X))$ are <u>not</u> NIP.

Local rings and henselianity Let R be a ring.

Definition

• R is a *local ring* if there is a unique maximal ideal \mathfrak{m} .

Suppose R is local.

- The *residue field* is the quotient $k = R/\mathfrak{m}$.
- *R* is *Henselian* if: For any monic polynomial $P(X) \in K[x]$, if $\overline{P}(X) \in k[X]$ is the reduction mod \mathfrak{m} , and $\alpha \in k$ is a simple root of $\overline{P}(X)$, then α lifts to a root of P(X).

Fact

 \mathbb{Z}_p is a henselian local ring with residue field $\mathbb{F}_p = \mathbb{Z}/p$. k[[X]] is a henselian local ring with residue field k. The localization $\mathbb{Z}_{(2)} = \{a/(2b+1) : a, b \in \mathbb{Z}\}$ is a non-henselian local ring.

Prime ideals in an NIP ring

Let R be an NIP ring.

```
Theorem (Simon)
```

There is some n such that if $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ are pairwise incomparable prime ideals, then $k \leq n$.

Proof idea: $\mathfrak{p}_1, \ldots, \mathfrak{p}_k$ are independent sets.

Corollary

- R is semilocal: only finitely many maximal ideals.
- If R is Noetherian, then $\dim(R) \leq 1$.

49 / 62

Generalized henselianity conjecture

Conjecture (Generalized henselianity conjecture)

If R is an NIP ring, then $R = A_1 \times A_2 \times \cdots \times A_n$ for some henselian local rings A_1, \ldots, A_n .

Equivalent conjectures:

- NIP integral domains are local.
- 2 NIP local rings are Henselian.
- If (K, +, ·, ...) is an NIP field with a definable field topology, then the inverse/implicit function theorem holds for polynomials.

Theorem (J)

The generalized henselianity conjecture holds when char(R) > 0 or when R is "finite-dimensional."

Dimension in NIP structures

- In NIP structures, any definable set D has a "dimension" dim(D) called its "dependence rank".
- dim(*D*) is a cardinal number, possibly infinite.
- $\dim(X \times Y) = \dim(X) + \dim(Y)$.
- Many NIP structures M satisfy dim(M) ≤ 1.

 $\dim(D) \ge 2$ iff D contains a pattern of definable sets like this, ROUGHLY.

Positive characteristic: ideas in the proof

Let K be an infinite NIP field of characteristic p > 0.

Theorem (Kaplan-Scanlon-Wagner)

The Artin-Schreier map $\alpha(x) = x^p - x$ is onto.

Proof idea: the family of subgroups $\{b \cdot \alpha(K) : b \in K^{\times}\}$ isn't a VC class otherwise.

Corollary

If L/K is a finite separable extension, [L : K] is prime to p.

Positive characteristic: ideas in the proof

Setting:

- R an NIP integral domain
- char(R) = p > 0.
- R has finitely many maximal ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$, and n > 1.

•
$$J = \bigcap_i \mathfrak{m}_i$$
.

Strategy:

- Show that Artin-Schreier image $\alpha(J)$ has index $p^{n-1} > 1$ in J.
- Show that $\{b \cdot \alpha(J) : b \in K^{\times}\}$ isn't a VC class.

Section 6

NIP fields

Overview

For NIP fields...

- We have a conjectural classification.
- The classification is known in the finite-dimensional case.

Valued fields

Definition

A valued field is a pair (K, R) where K is a field and R is a subring such that for every $x \in K$, at least one of x or x^{-1} is in R.

R is called the *valuation ring*; it is always local, and has an associated *residue field* R/\mathfrak{m} .

K	R	R/\mathfrak{m}	Henselian?
\mathbb{Q}_{p}	\mathbb{Z}_p	\mathbb{Z}/p	Yes
k((t))	k[[t]]	k	Yes
Q	$\mathbb{Z}_{(p)}$	\mathbb{Z}/p	No

Theorem (Anscombe-Jahnke)

A henselian valued field (K, R) is NIP iff the residue field R/\mathfrak{m} is NIP plus a

bunch of other conditions when $char(R/\mathfrak{m}) > 0$, henceforth abbreviated as "henselian*".

Conjecture (Shelah)

If K is an NIP field, then one of the following holds:

- K is finite.
- K is separably closed.
- K is real closed ($K \equiv \mathbb{R}$).
- K admits a henselian valuation ring $R \subsetneq K$.

Theorem (Anscombe-Jahnke)

Assuming the Shelah conjecture, a field K is NIP iff there is a henselian^{*} valuation ring R on K with R/\mathfrak{m} being finite, real closed, or algebraically closed.

Everything holds in the "finite dimensional" case:

Theorem (J)

If K is a finite-dimensional NIP field, then K is finite, real closed, separably closed, or henselian.

From this, we get a classification of finite-dimensional NIP fields.

Theorem (J)

If K is a finite-dimensional NIP field, then K is finite, real closed, separably closed, or henselian.

Proof strategy:

Theorem

If K is a finite-dimensional NIP field, then there is usually a unique definable field topology on K of "valuation type".

ROUGHLY,

- Uniqueness implies "any definable valuation ring is henselian."
- Existence implies "some definable valuation ring exists".

Theorem

If K is a finite-dimensional NIP field, then there is usually a unique definable field topology on K of "valuation type".

Proof strategy: show that

 $\{D - D : D \subseteq K \text{ is definable and } \dim(D) = \dim(K)\}$

is a neighborhood basis of 0 for a suitable field topology on K, where $D - D = \{x - y : x, y \in D\}.$

Idea

We expect $\dim(D) = \dim(K)$ to imply "D has non-empty interior". This forces the topology to be as above.

Prospects for classifying NIP rings

Theorem (d'Elbée, Halevi, Johnson)

 If R is a 1-dimensional NIP valuation ring, and I is an ideal, and A is a finite subring of R/I, then the pullback R×_{R/I} A is a 1-dimensional NIP integral domain.

• All 1-dimensional NIP integral domains arise this way.

Summary:

- 1-dimensional NIP integral domains are close to valuation rings.
- This fails for 2-dimensional NIP integral domains, strange new behavior occurs...

To be continued...

... hopefully.

Questions?