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NIP

Section 1

NIP
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NIP

A Venn diagram with four sets

What’s wrong with this picture?

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings November 18, 2024 3 / 62



NIP

A Venn diagram with four sets
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NIP

A Venn diagram with seven sets

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n
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NIP

Slogan

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

What is a “Venn diagram”?

How is “complexity” measured?
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NIP

Independent sets
Fix a set U.

Definition

Sets X1, . . . ,Xn ⊆ U are independent if they partition U into 2n subsets.
More precisely, for every S ⊆ {1, . . . , n},⋂

1≤i≤n
i∈S

Xi \
⋃

1≤i≤n
i /∈S

Xi ̸= ∅.

Three independent sets.
Three non-independent sets.
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NIP

Slogan

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

Slogan

If X1, . . . ,Xn ⊆ R2 are independent sets, then the complexity of the sets
X1, . . . ,Xn increases with n.

How is “complexity” measured?
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NIP

Definable sets

For the structure (R,+, ·,≤). . .

Definition

D ⊆ Rn is a definable set if

D = {x⃗ ∈ Rn : φ(x⃗)}

for some first-order formula φ(x⃗).

“First-order”:

+, ·, ≤, =.

∧ (and), ∨ (or), ¬ (not)

∀x ∈ R, ∃x ∈ R
∀S ⊆ R, ∃S ⊆ R
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NIP

Definable sets

The unit disk is definable in (R,+, ·,≤):

x2+y2 1

1

1

{(x , y) ∈ R2 | ∃z : x · x + y · y + z · z = 1}
= {(x , y) ∈ R2 | x · x + y · y ≤ 1}.
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NIP

Definable families

Definition

F ⊆ Pow(Rn) is a definable family if

F = {{x⃗ ∈ Rn : φ(x⃗ , a⃗)} : a⃗ ∈ Rn, ψ(a⃗)}

for some first-order formulas φ,ψ.

Example

The family of open disks in R2 is a definable family:{
{(x , y) ∈ R2 : (x − a)2 + (y − b)2 < r2} : (a, b, r) ∈ R3, r > 0

}
Idea

In a definable family, the sets have bounded complexity.
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NIP

A precise statement

Slogan

In a Venn diagram of n sets, the complexity of the sets increases with n

Theorem

If F is a definable family in the structure (R,+, ·), then

sup{n : there are independent X1, . . . ,Xn ∈ F} <∞.

Example

If X1, . . . ,Xn are independent disks, then n ≤ 3.
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NIP

IP and NIP

Let M be a structure.

Definition

M has the independence property (IP) if there is a definable family F such
that

sup{n : there are independent X1, . . . ,Xn ∈ F} =∞.

Definition

M is NIP if for every definable family F ,

sup{n : there are independent X1, . . . ,Xn ∈ F} <∞.
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NIP

IP and NIP

Example

(Z,+, ·) has the IP:

2Z, 3Z, 5Z, 7Z, . . . are
independent.

{nZ : n ∈ Z} is a definable
family.

Theorem (Wilkie)

The real exponential field
(R,+, ·,≤, exp) is NIP.

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings November 18, 2024 14 / 62



NIP

Motivating questions

Question

Which fields are NIP?

Question

Which rings are NIP?

From now on, “ring” means “commutative unital ring”.
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A detour to statistics

Section 2

A detour to statistics
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A detour to statistics

VC classes

Definition

A family of sets F is a VC class if

sup{n : there exist independent X1, . . . ,Xn ∈ F} <∞.

A structure is NIP iff every definable family is a VC class.
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A detour to statistics

VC classes

What does “VC” stand for?

Vapnik Chervonenkis

These are statisticians, not logicians!
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A detour to statistics

The law of large numbers
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A detour to statistics

The law of large numbers

Let (Ω, µ) be a probability space. Fix ϵ > 0.

Theorem

If X1, . . . ,Xn are independently distributed according to µ, and E ⊆ Ω,
then

lim
n→∞

Prob

(∣∣∣∣µ(E )− #{i : Xi ∈ E}
n

∣∣∣∣ < ϵ

)
= 1

Idea

If X1, . . . ,Xn are random samples from (Ω, µ), and n≫ 0, then with high
probability,

µ(E ) ≈ #{i : Xi ∈ E}
n

.
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A detour to statistics

Uniform law of large numbers

Let (Ω, µ) be a probability space and F be a VC class on Ω. Fix ϵ > 0.

Theorem (Vapnik-Chervonenkis)

If X1, . . . ,Xn are independently distributed according to µ, then

lim
n→∞

Prob

(
sup
E∈F

∣∣∣∣µ(E )− #{i : Xi ∈ E}
n

∣∣∣∣ < ϵ

)
= 1.

Idea

If X1, . . . ,Xn are random samples from (Ω, µ), and n≫ 0, then

µ(E ) ≈ #{i : Xi ∈ E}
n

for every E ∈ F , with high probability.

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings November 18, 2024 21 / 62



A detour to statistics

Uniform law of large numbers

Idea

If X1, . . . ,Xn are random samples from (Ω, µ), and n≫ 0, then

µ(E ) ≈ #{i : Xi ∈ E}
n

for every E ∈ F , with high probability.

Why is this non-trivial?

A random set of numbers between 0 and 99:

82, 26, 83, 31, 9, 29, 89, 5, 8, 91

If E = {82, 26, 83, . . . , 91}, then µ(E ) = 0.1, but the sample suggests
µ(E ) ≈ 1
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A detour to statistics

Overfitting
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A detour to statistics

Overfitting and VC classes

Suppose we are training a classifier
f : Ω→ {0, 1}.
Let F be the set of possibilities for f .

If F is a VC class, then

sample accuracy(f ) ≈ population accuracy(f )

for all f ∈ F
. . . so maximizing sample accuracy
nearly maximizes population accuracy.

▶ No overfitting!
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A detour to statistics

Overfitting and NIP

Theorem (Wilkie)

The real exponential field (R,+, ·, exp) is NIP.

Corollary

In a sigmoidal neural network, the set of possible classifiers Rn → {0, 1} is
a VC class.

Karpinski and Macintyre calculate more precise bounds for the VC
theorem, in this case.
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Model theory

Section 3

Model theory
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Model theory

Motivating questions

Question

Which fields are NIP?

Question

Which rings are NIP?

These questions belong to model theory.
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Model theory

Model theory

Model theory is the study of algebraic structures. . .

groups, rings, fields,. . .

. . . using tools from mathematical logic:

definable sets, elementary equivalence,. . .

Algebra
Model

theory
Logic
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Model theory

Structures

Definition

A structure is a set with some functions and relations.

Examples:

(C,+, ·)
(Z,+,≤)
(R,+, ·, exp)
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Model theory

Elementary equivalence

Definition

Two structures M and N are elementarily equivalent (M ≡ N) if M and N
satisfy the same first-order sentences.

R satisfies ∀x ∃y : y · y · y = x

Q doesn’t satisfy ∀x ∃y : y · y · y = x

So R ̸≡ Q.
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Model theory

Elementary equivalence

Any structure M has an elementary equivalence class

{N : N ≡ M}.

Theorem

(K ,+, ·) ≡ (C,+, ·) if and only if char(K ) = 0 and K = K alg.

A form of the Lefschetz principle in algebraic geometry(?)

Example

Qalg ≡ C.
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Model theory

Definable sets and functions

Fix a structure M.

Definition

D ⊆ Mn is definable if
D = {x⃗ : φ(x⃗)}

for some first-order formula φ.

Definition

If X ,Y are definable, then f : X → Y is a definable function if the graph
Γ(f ) is definable:

Γ(f ) = {(x , y) ∈ X × Y : y = f (x)}.

Definable sets and functions form a category.
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Model theory

Definable sets in (C,+, ·)

Theorem

D ⊆ Cn is definable if and only if D is constructible in the sense of
algebraic geometry:

D =
m⋃
i=1

Ci \ C ′
i

for Zariski closed sets Ci ,C
′
i .

A form of Chevalley’s theorem in algebraic geometry(?)

Theorem

In C, a function f : X → Y is definable iff f is piecewise rational.
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Model theory

What can model theory do?
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Model theory

Categoricity

Let M be an infinite structure and κ be an infinite cardinal.

Theorem (Löwenheim-Skolem)

M is elementarily equivalent to a structure of size κ.

Definition

M is κ-categorical if there’s a unique N ≡ M of size κ, up to isomorphism.

Example

C is κ-categorical for any κ > ℵ1.

(There’s only one K with K = K alg, char(K ) = 0, and tr. deg(K/Q) = κ.)
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Model theory

Uncountable categoricity

Suppose M is κ-categorical for some κ > ℵ0.
Every definable set D ⊆ Mn has a “dimension” dim(D) ∈ N,
satisfying things like dim(X × Y ) = dim(X ) + dim(Y ).

If K is a definable field, then K is finite or K = K alg.

If G is a definable group. . .
▶ G has a “connected component” G 0.
▶ There is a subnormal series of definable subgroups

1 = H0 ◁ H1 ◁ H2 ◁ · · ·◁ Hn = G

such that the quotients Hi+1/Hi are simple or abelian.
▶ Conjecturally, the simple Hi+1/Hi are algebraic groups over

algebraically closed fields (Cherlin-Zilber).

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings November 18, 2024 36 / 62



Stability theory and Neostability theory

Section 4

Stability theory and Neostability theory
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Stability theory and Neostability theory

NIP and NSOP

Let M be a structure.

Definition

M has the IP (independence property) if there’s a
definable family F such that for every n <∞, there
are independent X1, . . . ,Xn ∈ F .
Otherwise, M is NIP.

Definition

M has the SOP (strict order property) if there’s a
definable family F such that for every n <∞, there
are X1, . . . ,Xn ∈ F with

X1 ⊊ X2 ⊊ X3 ⊊ · · ·

Otherwise, M is NSOP.
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Stability theory and Neostability theory

NIP and NSOP

Theorem

(R,+, ·,≤) is NIP.

On the other hand,

Remark

(R,+, ·,≤) has the SOP:

(−∞, 1) ⊊ (−∞, 2) ⊊ (−∞, 3) ⊊ · · ·
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Stability theory and Neostability theory

Stability

Definition

A structure M is stable if M is NIP and NSOP.
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Stability theory and Neostability theory

Stability: what good is it?

These structures are stable:

Algebraically closed fields.

Free groups (Sela).

Abelian groups, modules.

Differentially closed fields (K ,+, ·, ∂).
Uncountably categorical structures.

In fact,

Theorem (Shelah)

Unless M is stable, for every κ > ℵ0,

#{N : N ≡ M, #N = κ}/∼= is 2κ.
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Stability theory and Neostability theory

Stability: what good is it?

In a stable structure, we can define. . .

The “dimension” dim(D) of a definable set.∗

“Independence” of elements a1, a2, a3, . . . ∈ M.

The “connected component” G 0 of a definable group.

“Prime models”

Applications of stability theory:

Classification theory (Shelah)

Differential algebra (Poizat, many others)

Function-field Mordell-Lang (Hrushovski)

Approximate subgroups (also Hrushovski)
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Stability theory and Neostability theory

The neostability universe
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Stability theory and Neostability theory

The neostability universe (simplified)

Neostability theory: generalizing stability theory to bigger classes, like
NIP.
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Stability theory and Neostability theory

Why NIP?

These things are NIP but not stable:

The fields R,Qp.

Ordered abelian groups like (Z,+,≤).
Algebraic groups like SU(n), SO(n).

O-minimal structures like (R,+, ·, exp).
NSOP is too restrictive.
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NIP rings

Section 5

NIP rings

Reminder

“Ring” means “commutative unital ring”.
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NIP rings

Typical examples
These fields and rings are NIP:

The real numbers R.
The p-adic integers

Zp = lim←−
n→∞

Z/pn.

The p-adic numbers Qp = Frac(Zp).

The formal power series ring

k[[X ]] = {a0 + a1X + a2X
2 + · · · : a0, a1, a2, . . . ∈ k},

for k = C,Qp,R.
The formal Laurent series field k((X )) = Frac k[[X ]] for k = C,Qp,R.

Warning

Fp[[X ]] and Fp((X )) are not NIP.
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NIP rings

Local rings and henselianity
Let R be a ring.

Definition

R is a local ring if there is a unique maximal ideal m.

Suppose R is local.

The residue field is the quotient k = R/m.

R is Henselian if: For any monic polynomial P(X ) ∈ K [x ], if
P(X ) ∈ k[X ] is the reduction mod m, and α ∈ k is a simple root of
P(X ), then α lifts to a root of P(X ).

Fact

Zp is a henselian local ring with residue field Fp = Z/p.
k[[X ]] is a henselian local ring with residue field k .
The localization Z(2) = {a/(2b + 1) : a, b ∈ Z} is a non-henselian local
ring.
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NIP rings

Prime ideals in an NIP ring

Let R be an NIP ring.

Theorem (Simon)

There is some n such that if p1, . . . , pk are pairwise incomparable prime
ideals, then k ≤ n.

Proof idea: p1, . . . , pk are independent sets.

Corollary

R is semilocal: only finitely many maximal ideals.

If R is Noetherian, then dim(R) ≤ 1.
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NIP rings

Generalized henselianity conjecture

Conjecture (Generalized henselianity conjecture)

If R is an NIP ring, then R = A1 × A2 × · · · × An for some henselian local
rings A1, . . . ,An.

Equivalent conjectures:

1 NIP integral domains are local.

2 NIP local rings are Henselian.

3 If (K ,+, ·, . . .) is an NIP field with a definable field topology, then the
inverse/implicit function theorem holds for polynomials.

Theorem (J)

The generalized henselianity conjecture holds when char(R) > 0 or when
R is “finite-dimensional.”

Will Johnson (Fudan University) Model theory, VC classes, and Henselian rings November 18, 2024 50 / 62



NIP rings

Dimension in NIP structures

In NIP structures, any definable
set D has a “dimension” dim(D)
called its “dependence rank”.

dim(D) is a cardinal number,
possibly infinite.

dim(X×Y ) = dim(X )+dim(Y ).

Many NIP structures M satisfy
dim(M) ≤ 1.

X0 X1 X2

Y0

Y1

Y2

a0,0 a1,0 a2,0

a2,1a1,1a0,1

a0,2 a2,2a1,2

dim(D) ≥ 2 iff D contains a pattern
of definable sets like this, roughly.
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NIP rings

Positive characteristic: ideas in the proof

Let K be an infinite NIP field of characteristic p > 0.

Theorem (Kaplan-Scanlon-Wagner)

The Artin-Schreier map α(x) = xp − x is onto.

Proof idea: the family of subgroups {b · α(K ) : b ∈ K×} isn’t a VC class
otherwise.

Corollary

If L/K is a finite separable extension, [L : K ] is prime to p.
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NIP rings

Positive characteristic: ideas in the proof

Setting:

R an NIP integral domain

char(R) = p > 0.

R has finitely many maximal ideals m1, . . . ,mn, and n > 1.

J =
⋂

i mi .

Strategy:

Show that Artin-Schreier image α(J) has index pn−1 > 1 in J.

Show that {b · α(J) : b ∈ K×} isn’t a VC class.
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NIP fields

Section 6

NIP fields
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NIP fields

Overview

For NIP fields. . .

We have a conjectural classification.

The classification is known in the finite-dimensional case.
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NIP fields

Valued fields

Definition

A valued field is a pair (K ,R) where K is a field and R is a subring such
that for every x ∈ K , at least one of x or x−1 is in R.

R is called the valuation ring; it is always local, and has an associated
residue field R/m.

K R R/m Henselian?

Qp Zp Z/p Yes

k((t)) k[[t]] k Yes

Q Z(p) Z/p No

Theorem (Anscombe-Jahnke)

A henselian valued field (K ,R) is NIP iff the residue field R/m is NIP plus a

bunch of other conditions when char(R/m) > 0, henceforth abbreviated as “henselian∗”.
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NIP fields

The Shelah conjecture

Conjecture (Shelah)

If K is an NIP field, then one of the following holds:

K is finite.

K is separably closed.

K is real closed (K ≡ R).
K admits a henselian valuation ring R ⊊ K .

Theorem (Anscombe-Jahnke)

Assuming the Shelah conjecture, a field K is NIP iff there is a henselian∗

valuation ring R on K with R/m being finite, real closed, or algebraically
closed.
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NIP fields

The Shelah conjecture

Everything holds in the “finite dimensional” case:

Theorem (J)

If K is a finite-dimensional NIP field, then K is finite, real closed,
separably closed, or henselian.

From this, we get a classification of finite-dimensional NIP fields.
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NIP fields

The Shelah conjecture

Theorem (J)

If K is a finite-dimensional NIP field, then K is finite, real closed,
separably closed, or henselian.

Proof strategy:

Theorem

If K is a finite-dimensional NIP field, then there is usually a unique definable
field topology on K of “valuation type”.

Roughly,

Uniqueness implies “any definable valuation ring is henselian.”

Existence implies “some definable valuation ring exists”.
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NIP fields

The Shelah conjecture

Theorem

If K is a finite-dimensional NIP field, then there is usually a unique definable
field topology on K of “valuation type”.

Proof strategy: show that

{D − D : D ⊆ K is definable and dim(D) = dim(K )}

is a neighborhood basis of 0 for a suitable field topology on K , where
D − D = {x − y : x , y ∈ D}.

Idea

We expect dim(D) = dim(K ) to imply “D has non-empty interior”. This
forces the topology to be as above.
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NIP fields

Prospects for classifying NIP rings

Theorem (d’Elbée, Halevi, Johnson)

If R is a 1-dimensional NIP valuation ring, and I is an ideal, and A is
a finite subring of R/I , then the pullback R ×R/I A is a 1-dimensional
NIP integral domain.

All 1-dimensional NIP integral domains arise this way.

Summary:

1-dimensional NIP integral domains are close to valuation rings.

This fails for 2-dimensional NIP integral domains, strange new
behavior occurs. . .

To be continued. . .

. . . hopefully.
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NIP fields

Questions?
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