
Applications of Arithmetic Complexity and
Priority Arguments in Algorithmic

Learning Theory

By

Achilles Athanasios Beros

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Mathematics)

at the

UNIVERSITY OF WISCONSIN – MADISON

2013

Date of final oral examination: May 13, 2013

The dissertation is approved by the following members of the Final Oral Committee:

Professor S. Lempp, Professor, Mathematics

Professor M. Cai, Van Vleck Assistant Professor, Mathematics

Professor J. Y. Cai, Professor, Computer Science

Professor T. Millar, Professor, Mathematics

Professor J. Miller, Associate Professor, Mathematics

i

Abstract

We consider the arithmetic complexity of index sets of uniformly computably enumerable

families learnable under different learning criteria. We determine the exact complexity

of these sets for the standard notions of finite learning, learning in the limit, behaviorally

correct learning and anomalous learning in the limit. In proving the Σ0
5-completeness

result for behaviorally correct learning we prove a result of independent interest; if

a uniformly computably enumerable family is not learnable, then for any computable

learner there is a ∆0
2 enumeration witnessing failure.

Using related techniques, we show that TxtFex∗∗ 6= TxtFext∗∗, thereby answering a

question posed by Osherson, Stob and Weinstein in 1986. We prove this in a strong way

by exhibiting a family in TxtFex∗2 \ TxtFext∗∗.

ii

Acknowledgements

It would be remiss of me not to acknowledge those who have helped reach this landmark

in my professional life. First of all, I would like to thank my advisor, Steffen Lempp, for

guiding me through the process, helping me find research problems and teaching me so

much of what I know about computability theory. In addition, I would like to thank Leo

Harrington with who met with me several times during the Summer and Fall of 2011

and who mentored and advised me during the Spring and Summer of 2012 while I was

in Berkeley. I learned the beautiful technique of infinite injury priority arguments from

Professor Harrington and developed a great deal as a mathematician during my time

working with him.

Through correspondence, I benefited greatly from Frank Stephan’s encyclopedic

knowledge of algorithmic learning theory. It is from him that I learned of the open

question I answer in the final chapter of this thesis. Finally, I would like to thank

Arnold Miller for numerous seminar classes in various subjects and for advising me for

a period of time.

I would also thank my brother, mother and father. They have been integral to

the process. My parents have provided me with advice and support, especially during

the more difficult moments of graduate school. While both acquiring our degrees, my

brother Kostas, has been my truest comrade.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Introduction . 1

1.2 Preliminaries . 4

1.2.1 Notation . 4

1.2.2 Definitions and Basic Results . 5

1.2.3 Enumerations . 16

1.2.4 Index Sets . 20

2 Completeness Results 22

2.1 TxtFin-Learning . 22

2.2 TxtEx-Learning . 27

2.3 TxtBC-Learning . 31

2.4 TxtEx∗-learning . 45

2.5 Additional Results . 51

2.5.1 TxtFex-Learning . 51

2.5.2 TxtExn-learning . 55

2.6 Conclusion . 57

iv

3 Anomalous Vacillatory Learning 59

3.1 TxtFex∗2 6= TxtFext∗∗ . 59

3.2 Conclusion . 66

Bibliography 67

1

Chapter 1

Introduction

1.1 Introduction

Algorithmic learning theory examines the process by which members of a class are

identified from a finite amount of information. The classes to be learned are either

classes of functions or classes of computably enumerable (c.e.) sets. Intuitively, a c.e.

represents an infinite object that cannot be completely understood in a finite amount of

time.

Since learning is not a mathematical concept, it is not endowed with an unambiguous

definition. Like the concept of computability, learning has an intuitive meaning, but

lends itself to a number of different formalizations. Whereas computability theory has

produced one model, to which all accepted models are equivalent, learning theory has

produced a plethora of non-equivalent models. In learning theory, we consider effective

formalizations and call them models of learning. A model is principally defined by two

factors: the type of information and the criterion for success. The information is read by

a learning machine from an enumeration of the set to be learned. As the machine must

be computable, it cannot consider the entirety of an enumeration and will only take a

finite initial segment as input. On such an input, the learning machine outputs a natural

number, interpreted as a Σ0
1-code describing the content of the set being enumerated.

2

We call such outputs hypotheses. As the machine reads longer initial segments of the

enumeration, it outputs a sequence of hypotheses that we call the hypothesis stream.

Depending on the model of learning, the criterion for success is defined by the accuracy,

consistency and frequency of correct information in the hypothesis stream. Additional

limitations, such as bounds on the computational resources of the learning machine, are

often considered.

The first model of learning is due to Gold [7]. According to his model, now com-

monly referred to as TxtEx-learning, a machine is deemed to have successfully identified

an enumeration if, on cofinitely many initial segments, the machine outputs the same

hypothesis and it is correct. A machine is said to have learned a set if it identifies

every enumeration of the set, and has learned a family if it learns every member of

the family. In this thesis, we take up several additional models of learning. Two of

these, TxtExn- and TxtEx∗-learning, are the anomalous variants of TxtEx-learning.

The other models we examine are the standard notions of TxtFin-learning, TxtBC-

learning, TxtFex-learning, TxtFexij-learning and TxtFextij-learning. All of these models

differ from TxtEx-learning in what constitutes successful identification of an enumer-

ation. TxtExn- and TxtEx∗-learning differ from TxtEx-learning in that the unique

hypothesis appearing infinitely many times in the hypothesis stream need not code a

set that is entirely correct. For TxtEx∗-learning, the hypothesis must code a set having

finite symmetric difference with the content of the given enumeration and for TxtExn-

learning, the cardinality of the symmetric difference must be bounded by n. In the case

of TxtFin-learning, while a machine is permitted to abstain from making a hypothesis

for a finite amount of time, it must eventually output a hypothesis and the first such

hypothesis must be correct. A machine is said to have TxtBC-identified an enumeration

3

if all but finitely many of the hypotheses in the hypothesis stream are correct; in contrast

to TxtEx-learning, the hypotheses need not be the same. TxtFex-learning requires that

the number of unique hypotheses in the hypothesis stream is finite and that those output

infinitely many times must be correct. TxtFexij-learning differs from TxtFex-learning in

that there can be at most j hypotheses output infinitely many times and each of those

hypotheses can have a symmetric difference with the enumerated set of cardinality at

most i. Finally, TxtFextij-learning is nearly identical to TxtFexij-learning except that all

hypotheses output infinitely often must code the same set.

In Chapter 2, we introduce a new line of inquiry to the field of learning theory. We

examine the complexity of determining whether a family is learnable, given a code for

an effective presentation of the family, thereby establishing a measure of the complexity

of the learning process.

We prove that decision problems for learning under the standard notions of TxtFin-

learning and TxtEx-learning are Σ0
3-complete and Σ0

4-complete, respectively, and that

those for TxtBC-learning and TxtEx∗-learning are both Σ0
5-complete, when certain nat-

ural limitations are placed on the complexity of the families considered. In proving the

Σ0
5-completeness of TxtBC-learning, we obtain a TxtBC-learning analog of a theorem of

Blum and Blum [4]. Blum and Blum’s work demonstrated that a set is TxtEx-learnable if

it is TxtEx-learnable from computable enumerations. We show that, provided the family

under consideration is uniformly computably enumerable (u.c.e.), one need only consider

∆0
2 enumerations to decide if a family is TxtBC-learnable. Further, we prove that the

decision problems for both TxtFex-learning and TxtExn-learning are Σ0
4-complete.

In Chapter 3, we answer a question posed in 1986 about the relative strength of

two learning criteria, TxtFex∗∗ and TxtFext∗∗. In order to prove TxtFex∗∗ 6= TxtFext∗∗,

4

we explicitly construct a family that is TxtFex∗2-learnable, but not TxtFext∗∗-learnable.

Because the family is TxtFex∗2-learnable, the result is the strongest possible result. To

obtain the result, we diagonalize against every attempt to TxtFext∗∗-learn the family by

including, for each machine, a subfamily that witnesses the machine’s failure to TxtFext∗∗-

learn the family. Each subfamily is produced by means of an effective construction and

the entire family is u.c.e.

We preface the results with a brief introduction to some of the concepts and notation

of learning theory and computability theory. For a more in depth treatment, we refer

the reader to Osherson et al. [8] and Soare [10].

1.2 Preliminaries

1.2.1 Notation

In this section, we give a brief overview of the computability theory and learning theory

notation that will be used throughout.

We fix standard numberings of the c.e. sets and of the partial computable functions,

W0,W1, . . . and ψ0, ψ1, . . ., respectively. For the c.e. sets, we denote by We,s the result

of computing the set coded by e up to s stages and write E for the set of all c.e.

sets. We write ψe,s(x) ↓ if the function coded by e has converged on input x, after

s computation stages. Otherwise, we write ψe,s(x) ↑. We regard a set, A, as coding

a family where the ith-member of the family is {x : 〈i, x〉 ∈ A} and 〈x, y〉 is a fixed

computable pairing function. Lower case Greek letters will typically refer to finite strings

of natural numbers. Enumerations will be treated either as infinite strings, called texts in

5

learning theory, or as functions on the natural numbers. Initial segments of enumerations

will feature throughout this paper and will either be denoted by lowercase Greek letters,

as mentioned above, or by initial segments of functions, e.g. f� n. Elements of an

enumeration will be typically denoted by f(n). To switch from ordered lists to unordered

sets, we say that content(σ) = {x ∈ N : (∃n)(x = σ(n))}. For infinite enumerations, we

extend the content notation to denote the set that is enumerated. If A and B are sets of

natural numbers and their symmetric difference, A4B, is finite, then we write A =∗ B.

From learning theory, we adopt the term “learning machine” to describe a machine

that takes a finite string as input and outputs a natural number. We also follow the

convention of denoting such machines by either M or N , with subscripts and superscripts

as needed to indicate parameters. When an enumeration of all learning machines is

required, we denote the nth such partial computable machine by Mn. As with the

enumeration of the c.e. sets, the enumeration is effective and fixed.

1.2.2 Definitions and Basic Results

In this section we give formal definitions of all learning models considered here and

provide key examples distinguishing the models that will feature in the hardness argu-

ments in Chapter 2. These examples also serve to provide additional intuition about the

differences between the learning models.

The simplest definition of learning is finite-learning, or TxtFin-learning.

Definition 1.2.1 (Bārzdiņš and Freivalds [3]). Fix a symbol, ‘?’, as a placeholder to

indicate that a hypothesis has not yet been made. The definition of TxtFin-learning by

a learner, M , is in four parts:

6

1. M TxtFin-identifies an enumeration f if and only if (∃n)(∀n′ < n)
(
M(f�n′) =

? ∧M(f�n) 6= ? ∧WM(f�n) = content(f)
)

.

2. M TxtFin-learns a c.e. set A if and only if M TxtFin-identifies every enumeration

for A.

3. M TxtFin-learns a family of c.e. sets if and only if M TxtFin-identifies every

member of the family.

4. A family, F , is TxtFin-learnable (denoted F ∈ TxtFin) if and only if there is a

machine, M , that TxtFin-learns F .

Definition 1.2.1 allows us to consider finite learning either of a single set or of a family

of sets. Observe, however, that learning is trivial when learning a single set. For any

c.e. set, We, the learning machine

N(σ) = e

TxtFin-learns We. This is true for all models of learning and for this reason we do not

consider the learning problem associated with a single set.

Consider two examples, one of a TxtFin-learnable family, the other of a family that

is not TxtFin-learnable.

Example 1.2.1. Let F = {F0, F1, . . .} be a u.c.e. family with the property that there is

a computable function, g, such that g(n) ∈ Fn, but g(n) 6∈ ∪i 6=nFi. Since F is u.c.e., an

application of the s-n-m Theorem (see Soare [10]) yields a computable function f such

that Wf(n) = Fn. The family is TxtFin-learned by a machine, M , defined as follows:

7

M(σ) =


f(n) (∃n)(g(n) ∈ content(σ)),

? otherwise.

Example 1.2.2. Fix c.e. sets, Wa and Wb, such that Wa (Wb. The family F =

{Wa,Wb} is not TxtFin-learnable by any machine.

Fix a learning machine M . We will demonstrate that M cannot TxtFin-learn F

by building an enumeration of either Wa or Wb. As long as the machine makes no

hypothesis, we enumerate Wa. As soon as M makes a hypothesis other than ?, we

enumerate the other set in F . Fix enumerations {an}n∈N of Wa and {bn}n∈N of Wb. We

will inductively define an enumeration, {cn}n∈N, for either Wa or Wb that M cannot

learn. During this construction we must maintain a pair of variables, x0 and x1.

Stage 0: We set c0 = a0 and x0 = x1 = ?.

Stage s+1: First, suppose that x0 = x1 = ?. Let h = M(c0c1 . . . cs). If h = ? then

we set cs+1 = as+1 and proceed to stage s + 2. If Wh = Wa then set cs+1 = x, x0 = a

and x1 = s+ 1. If Wh = Wb then set cs+1 = as+1, x0 = b and x1 = s+ 1.

If x0 = a and x1 = n then set cs+1 = bs+1−n. Finally, if x0 = b and x1 = n then set

cs+1 = as+1−n. Observe that each of these conditions, once true, are true cofinitely.

If h = ? at every stage of the construction, then {cn}n∈N enumerates Wa. Since M

hypothesizes ? on every initial segment of {cn}n∈N, M has failed to TxtFin-identify the

enumeration. Suppose h is the least hypothesis M outputs on {cn}n∈N. If Wh = Wa,

then {cn}n∈N enumerates Wb and M has failed. Finally, if Wh = Wb at some stage,

{cn}n∈N enumerates Wa and again M has failed. Thus, the construction produces an

enumeration that M cannot TxtFin-identify. Since M is arbitrary, we conclude that F

8

is not TxtFin-learnable.

The family G = {N \ {x} : x ∈ N} provides a very different example of a family

no machine can TxtFin-learn. Unlike the family in Example 1.2.2, G is infinite and

every finite subset of G is TxtFin-learnable. The proof, however, that the family is

not TxtFin-learnable is nearly the same. A family similar to G is used in the proof of

Theorem 2.1.2.

Next, we define TxtEx-learning. Like Definition 1.2.1, the definition of TxtEx-

learning describes identification of enumerations, learning of sets and learning of families.

Definition 1.2.2 (Gold [7]). The definition of TxtEx-learning is in four parts:

1. M TxtEx-identifies an enumeration f if and only if (∃n)
(

limi→∞M(f�i) = n ∧

Wn = content(f)
)

.

2. M TxtEx-learns a c.e. set A if and only if M TxtEx-identifies every enumeration

for A.

3. M TxtEx-learns a family of c.e. sets if and only if M TxtEx-identifies every mem-

ber of the family.

4. A family, F , is TxtEx-learnable (denoted F ∈ TxtEx) if and only if there is a

machine, M , that TxtEx-learns F .

From the definition it is clear that every TxtFin-learnable family is also TxtEx-

learnable. Observe that the family described in Example 1.2.2 is TxtEx-learnable,

therefore TxtEx) TxtFin.

9

Example 1.2.3. The family F = {A : A is finite} ∪ {N} is not TxtEx-learnable by any

machine.

Fix M , a learning machine. We construct an enumeration, f , for a set in F that M

fails to TxtEx-identify. The construction proceeds in stages.

Stage 0: Set f(0) = 0 and k = 0.

Stage s+1: Let M(f�s+ 1) = h. If Wh = content(f�s+ 1), then set f(s+ 1) = k + 1

and increment k. If Wh 6= content(f�s+ 1), then set f(s+ 1) = k.

Either f is an enumeration of N or of a finite set. In the former case, there must

be an infinite sequence, {n(i)}i∈N, such that WM(f�n(i)) is finite. If f enumerates a finite

set, then there is an n such that, for all m ≥ n, WM(f�m) 6= content(f). In both cases

M has failed to TxtEx-learn F .

The model of learning we consider next is that of TxtBC-learning.

Definition 1.2.3 (Bārzdiņš [2]). The definition of TxtBC-learning is in four parts:

1. M TxtBC-identifies an enumeration f if and only if (∃n)(∀i > n)
(
WM(f�i) =

content(f)
)

.

2. M TxtBC-learns a c.e. set A if and only if M TxtBC-identifies every enumeration

for A.

3. M TxtBC-learns a family of c.e. sets if and only if M TxtBC-identifies every

member of the family.

4. A family, F , is TxtBC-learnable (denoted F ∈ TxtBC) if and only if there is a

machine, M , that TxtBC-learns F .

10

To show that Definition 1.2.3 is not a trivial extension of Definition 1.2.2 we demon-

strate the existence of a family that is not TxtBC-learnable as well as a family that is

TxtBC-learnable, but not TxtEx-learnable. Example 1.2.3 already provides us with the

first family. Constructing the second family requires a little more work. We begin with

a theorem.

Theorem 1.2.4 (Blum and Blum [4]). Suppose A is a c.e. set and M is a computable

learner that TxtEx-learns A. There exists a string σ such that:

• content(σ)⊆ A

• WM(σ) = A

• if content(τ)⊆ A, then M(στ) = M(σ)

Proof. Suppose M TxtEx-learns A, but no such σ exists. Either there is an enumeration

of A on which the learner converges to an incorrect hypothesis or, for any string σ of

elements of A, there is an extension τ of elements of A such that M(σ) 6= M(τ). The

former contradicts the assumption that M TxtEx-learns A thus, we need only consider

the latter. Let a0, a1, . . . be a fixed computable enumeration of A. We now construct a

new enumeration in stages.

Stage 0: Set f(0) = a0.

Stage s+1: Suppose f�n has been defined so far. Search for the least string, τ ,

with content(τ) ⊆ A such that M(f�n τ̂) 6= M(f�n). By assumption, such a τ exists

thus, the search must terminate. Define f(n+ i) = τ(i) for 0 ≤ i < |τ |.

The learner changes hypothesis infinitely many times on f , which is a contradiction

since M TxtEx-learns A. Hence, the desired string, σ, must exist.

11

A string satisfying the conditions above is called a locking sequence. With this in

hand, we can now construct the desired family.

Example 1.2.4. Fix a non-computable c.e. set, A, and a0, a1, . . . a computable enumer-

ation of A. Let F = {A ∪ {n} : n ∈ N}. We will prove that F is TxtBC-learnable, but

not TxtEx-learnable.

Suppose M TxtEx-learns F . By Theorem 1.2.4, M has a locking sequence for each

set in F . In particular, let σ be a locking sequence for A. Define

S = {x : ∃n(M(σˆxˆa0ˆa1ˆ . . .ˆan) 6= M(σ))}.

By the definition of a locking sequence, A ∩ S = ∅. The set, S, has a Σ0
1 description

and hence is c.e. Since A is not computable and A ∩ S = ∅, the complement of A ∪ S

must be nonempty. Fix x0 ∈ N \ (A ∪ S). As x0 6∈ S, M(σˆx0ˆa0ˆa1ˆ . . .ˆan) = M(σˆx0)

for all n ∈ N. Furthermore, WM(σ) = A and A ∪ {x0} 6= A. By extending σˆx0 we can

produce an enumeration on which M fails to TxtEx-identify a set in F .

To see that F is TxtBC-learnable, fix a code e such that We = A and let M be a

computable function which, on input σ, outputs a code for We ∪ content(σ). Note that

M is computable by the s-n-m Theorem. Even though the learner may never output the

same hypothesis twice, the hypothesis stream is cofinitely often correct.

Taking Example 1.2.4 together with the definitions, it is clear that TxtEx (TxtBC.

We now define the remaining models of learning. First, we consider vacillatory

learning, which permits a machine to vacillate between a finite number of hypotheses

infinitely. We give a more general definition, that of anomalous vacillatory learning, of

12

which vacillatory learning is a special case. There are two forms of anomalous vacillatory

learning, TxtFexij and TxtFextij.

Definition 1.2.5 (Case [5]). Let i, j ∈ N ∪ {∗}. The definition of TxtFexij-learning is

in four parts.

1. M TxtFexij-identifies an enumeration f if and only if there is a set S with |S| ≤ j

(or merely finite S if j = ∗) such that (∀∞n)(∀a ∈ S)
(
M(f�n) ∈ S ∧ Wa =i

content(f)
)

.

2. M TxtFexij-identifies a c.e. set A if and only if M TxtFexij-identifies every enu-

meration for A.

3. M TxtFexij-learns a family of c.e. sets if and only if it TxtFexij-identifies every

member of the family.

4. F is TxtFexij-learnable (denoted F ∈ TxtFexij) if and only if there is a machine M

that TxtFexij-learns F .

For simplicity, we write TxtFex to denote TxtFex0
∗ and TxtFexj to denote TxtFex0

j

when j ∈ N.

Definition 1.2.6 (Osherson, Stob and Weinstein [8]). Let i, j ∈ N∪{∗}. The definition

of TxtFextij-learning is in four parts.

1. M TxtFextij-identifies an enumeration f if and only if there is a set S with |S| ≤ j

(or merely finite S if j = ∗) such that (∀∞n)(∀a, b ∈ S)(M(f�n) ∈ S ∧ Wa =

Wb =i content(f)).

13

2. M TxtFextij-identifies a c.e. set A if and only if M TxtFextij-identifies every enu-

meration for A.

3. M TxtFextij-learns a family of c.e. sets if and only if it TxtFextij-identifies every

member of the family.

4. F is TxtFextij-learnable (denoted F ∈ TxtFextij) if and only if there is a machine

M that TxtFextij-learns F .

Observe that TxtFex0
j = TxtFext0j for all j ∈ N ∪ {∗}. The differences between the

two variants of anomalous learning are explored by Case [5], by Osherson, Stob and

Weinstein [8] and in Chapter 3.

Finally, we define the anomalous variant of TxtEx-learning.

Definition 1.2.7 (Osherson and Weinstein [9]). Let i ∈ N ∪ {∗}. The definition of

TxtExi-learning is in four parts:

1. M TxtExi-identifies an enumeration f if and only if (∃n)
(

limj→∞M(f� j) =

n ∧Wn =i content(f)
)

.

2. M TxtExi-identifies a c.e. set A if and only if M TxtExi-identifies every text for

A.

3. M TxtExi-learns a family of c.e. sets if and only if it TxtExi-identifies every mem-

ber of the family.

4. F is TxtExi-learnable (denoted F ∈ TxtExi) if and only if there is a machine M

that TxtExi-learns F .

14

We now give a final example, one that distinguishes TxtEx-learning and TxtFex-

learning. A theorem, due to Angluin, is required.

Theorem 1.2.8 (Angluin’s Theorem [1]). Let L = {L0, L1, . . .} be a uniformly com-

putable family. L is TxtEx-learnable if and only if there is a u.c.e. family of finite sets,

F = {F0, F1, . . .}, such that

1. Fi ⊆ Li for all i ∈ N

2. If Fi ⊆ Lj ⊆ Li, then Li = Lj

Proof. To prove necessity, suppose M TxtEx-learns L and fix {σni }i∈N, a recursive enu-

meration of all strings of elements of Ln. Define

Fn = {x : (∃i)(∀j ≤ i)(∃k)
(

(x ∈ content(σni)) ∧ (M(σnj σ
n
k) 6= M(σnj))

)
}

Note that Fn is finite because for each Ln there is a locking sequence, σnk , of least index.

Each x ∈ Fn must appear in a string with index less that k. Fix i, j ∈ N and suppose

Fi ⊆ Lj ⊆ Li. The content of the locking sequence for Li is contained in Lj and

extending to an enumeration of Lj is an extension by elements of Li and hence would

not change the learners hypothesis. Thus, we have an enumeration of Lj on which M

converges to an index for Li. Since M learns the family, Li = Lj. If L is u.c.e., then

{F0, F1, . . .} is also u.c.e. hence, this direction of the equivalence holds even if L is merely

u.c.e.

Now suppose we are given a u.c.e. sequence of finite sets as above. We will define

a learner, M , that TxtEx-learns the family. On input σ, M outputs the least i ≤ |σ|

such that i = |σ| or Fi,n ⊆ content(σ) ⊆ Li. Observe that the statement “content(σ) ⊆

Li” is decidable because L is uniformly computable. Fix Li and assume that, for all

15

j ≤ i, Lj 6= Li. Suppose {aj}j∈N is an enumeration of Li. Fix k large enough that

{a0, a1, . . . ak} * Ln for n ≤ i with Li * Ln and Fn,k = Fn for all n ≤ i. On any initial

segment of {aj}j∈N longer than k the learner will output i, which is a correct hypothesis.

As noted in the proof, the existence of F does not require L to be uniformly com-

putable, merely u.c.e. The following example uses this observation to show that TxtFex-

learning and TxtEx-learning are different.

Example 1.2.5. Let Hx = {x + n : n ≤ |Wx|}, and Lx = {x + n : n ∈ N}. Define

F = {H0, L0, H1, L1, . . .}. We claim that F is TxtFex-learnable, but not TxtEx-learnable.

F is clearly u.c.e. and can be enumerated so that He is the (2e)th column and Le is

the (2e + 1)st column. We must verify that F is TxtFex-learnable, but that no machine

can TxtEx-learn F . Consider a machine that, on input σ, sets x0 and x1 to be the least

element and greatest element, respectively, of content(σ) and sets y1 equal to |Wx0,|σ||.

If y1 > x1 − x0, the machine outputs 2x0; if x1 − x0 ≥ y1, it outputs 2x0 + 1. Thus,

for enumerations of infinite intervals, the machine may vacillate between two different

correct codes. For finite intervals, eventually only one correct code will be output. We

conclude that F is TxtFex-learnable.

Now, we wish to show that F is not TxtEx-learnable. To obtain a contradiction,

assume that we have a machine, M , that TxtEx-learns F . As we observed at the outset,

this means there is a u.c.e. family {G0, G1, . . .} such that each Gi is finite, G2i ⊆ Hi,

G2i+1 ⊆ Li and, if Gi ⊆ A ⊆ B where B is the ith set in F and A ∈ F , then A = B.

Specifically, G2i+1 ⊆ Li and G2i+1 ⊆ Hi if, and only if, Hi = Li – exactly when Wi

is an infinite set. Let m be the maximum number in G2i+1. If card(Wi) ≥ m, then

16

H2e+1 = L2e+1. In other words, we can decide in the limit whether or not Wi is infinite.

Since we cannot actually decide in the limit whether or not a number codes an infinite

set, we have obtained the desired contradiction.

1.2.3 Enumerations

All the learning criteria described in Section 1.2.2 use enumerations as the source of

information. Other sources of information are possible, e.g. informant and oracle, but

we do not examine them here. We present a few basic results that will be used to place

complexity bounds on the learning criteria.

While the definitions of each of the learning criteria are stated in terms of arbitrary

enumerations, it can be shown that, in certain cases, learnability may be determined by

examining a restricted class of enumerations. We present three theorems in this section,

the first of which is due to Blum and Blum [4] and serves as a model for the other two.

Theorem 2.3.1 continues in this vein, but the techniques are very different.

Theorem 1.2.9 (Blum and Blum [4]). If F is TxtEx-learned from computable enumer-

ations by a computable machine M , then it is TxtEx-learnable from arbitrary enumera-

tions by a computable machine M̂ .

Proof. We fix a family, F , and a machine, M , that TxtEx-learns F from computable

enumerations. We will define a new machine, effectively produced from M , that searches

the least string within computational bounds that appears to be a locking sequence of

the set for which it is receiving an enumeration. The new machine then outputs the

hypothesis that M outputs on the string that currently appears to be a locking sequence.

If at some stage the string is shown not to be a locking sequence, then the learner will

17

update its hypothesis.

Given M , we will define M̂ on an input of σ of length n. Let An(σ) = {τ :

content(τ) ⊆ content(σ) ∧ |τ | ≤ n}. Define M̂(σ) = M(α) where α is the string

of least length in An(σ) that is lexicographically least such that for any β ∈ An(σ),

M(αβ) = M(α).

For the sake of a contradiction, suppose M̂ fails to TxtEx-learn F . Let g be an

enumeration for a set, F with computable enumeration f , in F on which M̂ fails to

identify F . We consider two cases.

Case 1: Suppose that the choice of α changes infinitely many times on initial seg-

ments of g. In this case, we can contruct in stages a computable enumeration for F

on which M fails to TxtEx-learn. At each stage, search for an extension of what has

been defined on which M changes its hypothesis. By assumption, for every n and every

σ with content(σ) contained in F, there is an extension on which the learner changes

hypothesis, thus the given search will always terminate and the resulting enumeration

is computable.

Case 2: Suppose the choice of α stabilizes. Let α be the final state, suppose M(α) =

h and Wh 6= F . Once again, our goal is to create a computable enumeration on which

M must exhibit the same behaviour. Define a computable enumeration, g′, for F :

g′(i) = α(i) if i < |α| and g′(i) = f(i − |α|) if i ≥ |α|. On g′ M must converge to h,

which is an incorrect hypothesis.

We follow with analogous results and proofs for TxtFin-learning and TxtExj-learning.

18

Theorem 1.2.10. If F is TxtExj-learned from computable enumerations by a com-

putable machine M , then it is TxtExj-learnable from arbitrary enumerations by a com-

putable machine M̂ .

Proof. The proof is identical to the proof of Theorem 1.2.9 with TxtEx everywhere

changed to TxtExj. We omit the details of the proof.

Theorem 1.2.11. If F is TxtFin-learned from computable enumerations by a com-

putable machine M , then it is TxtFin-learnable from arbitrary enumerations by some

computable machine M̂ .

Proof. First note that if there is an enumeration for a set, F ∈ F , on which the first

hypothesis output by M is incorrect, then there is a computable computable enumeration

of F with the same property. To see this, consider the finite string on which M has

output its first hypothesis. Extend it by a computable enumeration of F . The result is

computable and M converges, in the sense of finite learning, to an incorrect code. Since

this is a contradiction, we may assume that M does not converge to incorrect codes on

any enumeration in addition to identifying computable enumerations for sets in F . We

must still prove that there are no enumerations on which the learner fails to output a

hypothesis.

For a string σ, define Aσ = {τ : content(τ) ⊆ content(σ) ∧ |τ | ≤ |σ|}. Order Aσ by

σ < τ if either |σ| < |τ | or |σ| = |τ | and σ is below τ in the lexicographical order on

ω|σ|. Define M̂(σ) to be M(τ) where τ is the least element of Aσ on which M outputs

a hypothesis other than ?. If no such τ exists M̂(σ) =?. On no enumeration will the

least hypothesis of M̂ be incorrect since that would imply the existence of such an

19

enumeration for M . Fix an arbitrary enumeration, f , and a computable enumeration,

f ′, for F ∈ F . Let σ be an initial segment of f ′ on which M outputs a least (and

hence correct) hypothesis. Every element of content(σ) appears in f eventually, thus

there is an n such that σ ∈ Af�n. For some m ≤ n, M̂(f�m) will be a least and correct

hypothesis.

The existence of a computable enumeration on which a machine fails to learn a set

does not mean that such an enumeration can be found via an effective procedure based

on a code for the machine. Consider Example 1.2.3. Clearly the process described in the

example is not computable. To find a computable enumeration witnessing that failure

of a machine M , we must follow a different strategy. Instead we construct a collection

of enumerations on at least one of which M must fail to successfully TxtEx-learn.

Given learner M , suppose that T [n] has already been defined. We divide what follows

into two cases.

If every string, σ, is extended by a string, τ , such that M(σ) 6= M(τ), then an induc-

tive procedure based on a search that is guaranteed to terminate produces a computable

enumeration on which M fails. If, on the other hand, there is a string, σ, on every

extension of which M hypothesizes M(σ), then M fails to learn either

σ(0) σ(1) . . . σ(|σ| − 1) σ(0) σ(0) . . .

or

σ(0) σ(1) . . . σ(|σ| − 1) 0 1 2 . . .

All the given texts are computable, but deciding which M fails to TxtEx-identify is

not decidable.

20

1.2.4 Index Sets

We will make use of several standard index sets in the results that follow, as well as

proving results about a collection of novel index sets defined in terms of learning models.

We provide definitions of the standard index sets for reference.

Definition 1.2.12. 1. Define FIN = {x : We is finite}.

2. Define INF = {x : We is infinite}.

3. Define COF = {x : We is cofinite}.

4. Define COINF = {x : We is coinfinite}.

In the following theorem, we summarize the well known complexities of the predicates

in Definition 1.2.12.

Theorem 1.2.13. 1. FIN is Σ0
2-complete.

2. INF is Π0
2-complete.

3. COF is Σ0
3-complete.

4. COINF is Π0
3-complete.

Based on the learning models defined in Section 1.2.2, we define the following index

sets of codes for families.

Definition 1.2.14. Define the following four index sets of Σ0
1 codes for u.c.e. families

learnable according to each given criterion.

1. Define FINL to be the index set for TxtFin-learning.

21

2. Define EXL to be the index set for TxtEx-learning.

3. Define BCL to be the index set for TxtBC-learning.

4. Define EXL∗ to be the index set for TxtEx∗-learning.

22

Chapter 2

Completeness Results

2.1 TxtFin-Learning

We begin by demonstrating that TxtFin-learning is Σ0
3-complete. This is accomplished

in two steps. With Theorem 2.1.1 we place a Σ0
3 upper bound on the complexity of

FINL. Next, Theorem 2.1.2 reduces an arbitrary Σ0
3 predicate to FINL.

Theorem 2.1.1. FINL has a Σ0
3 description.

Proof. Suppose e codes a u.c.e. family L = {L0, L1, . . .}. We will show that e ∈ FINL if

and only if

(∃k)(∀i)
(

(∃σ)
(

(content(σ) ⊆ Li) ∧ (Mk(σ) 6=?)
)
∧ ψ(k)

)
where ψ(k) denotes

(∀α, j)(∃τ ≺ α)
(

(Mk(τ) 6=?) ∨ (content(α) 6⊆ Lj) ∨ (Mk(α) =?) ∨ (WMk(α) = Lj)
)
.

Observe that the formula mandates the existence of a learning machine, Mk, such

that for every set in the family there is a string of elements from that set on which

the learner outputs a hypothesis. Furthermore, if it outputs a least hypothesis, in the

sense that the only hypothesis it makes on proper initial segments of the given data is ?,

then that hypothesis is correct. We now build a new machine, M̂ , based on Mk, which

TxtFin-learns the family L.

23

For a string σ, define Aσ = {τ : content(τ) ⊆ content(σ) ∧ |τ | ≤ |σ|}. Order Aσ

by σ < τ if either |σ| < |τ | or else |σ| = |τ | and σ is below τ in the lexicographical

order on N|σ|. Define M̂(σ) to be Mk(τ) where τ is the least element of Aσ on which Mk

outputs a hypothesis other than ?. If no such τ exists, M̂(σ) =?. On no enumeration

will the least hypothesis of M̂ be incorrect since that would imply the existence of such

an enumeration for Mk. Fix an arbitrary enumeration, f , for Li ∈ L. Let σ be a string,

with content(σ) ⊆ Li, on which Mk outputs a least (and hence correct) hypothesis.

Every element of content(σ) appears in f , thus there is an n such that σ ∈ Af�n. For

some m ≤ n, M̂(f�m) will be a least and correct hypothesis.

Since the given formula is Σ0
3, we have produced a predicate with the desired prop-

erties.

Theorem 2.1.2. FINL is Σ0
3-hard.

Proof. First, we provide an informal description of the proof. The construction consists

of two conflicting processes. One is an attempt to place a unique marker in every set

hence, permitting easy identification. The other is an attempt to create, for each marker,

an infinite number of sets that contain the marker each of which lacks one element all

the other sets have. During the construction, the interplay between the two processes is

controlled by a finite amount of information about the outcome of a Σ0
3 predicate. If the

predicate is true, then there is a computable collection of markers with a unique marker

in each set. Agreement between sets with the same marker is enforced. If the predicate

is false, then for every marker there is a subfamily which is not TxtFin-learnable and

every member of which contains the marker.

24

Consider a Σ0
3 predicate P (e)↔ (∃x)(∀y)(∃z)(R(e, x, y, z)), where R is a computable

predicate. We will reduce P to FINL by means of a computable function such that the

image of e is a code for a u.c.e. family that is TxtFin-learnable if P (e) and not TxtFin-

learnable if ¬P (e). We now fix e and proceed with the construction of a family based on

that particular e. The family under construction is denoted G = {G0, G1, . . .}. While G

depends on e, we omit the parameter for the sake of simplicity as we are only concerned

with the fixed value of e during the construction below.

Each G ∈ G will consist of ordered pairs and can thus be partitioned into columns

C(G, i) = {x : 〈i, x〉 ∈ G}. For convenience, we will index the columns starting with

−1. Let C(i) = {〈i, x〉 : x ∈ N}. For the remainder of the construction we will adhere

to the notation defined in the following list.

• Let 〈xs, ys, zs〉 be a computable enumeration of all triples of natural numbers.

• For x ≥ 1, let hsx be the number of stages, up to s, at which the largest j, such

that (∀y ≤ j)(∃i ≤ s)(xi = x ∧ yi = y ∧R(e, x− 1, y, zi)), has increased.

• If it exists, let hx = lims→∞ h
s
x.

• For x ∈ N, an x-label is a number in the xth-column, C(x), used to distinguish

sets in G. Labels may be enumerated into any column of any G ∈ G except

C(G,−1) during the construction. We say G has an x-label k when k ∈ C(G, x).

Equivalently, when 〈x, k〉 ∈ G.

• Define Skx = {G ∈ G : G has an x-label k}. The family depends on the stage,

but we do not include any notation to indicate the stage as it will be clear from

context. When we wish to reference the ith-member of Skx , we will write Skx(i).

25

• Let nkx = card(Skx).

• Define a function, pkx, used to record numbers associated with each member of Skx .

In particular, pkx(i) will be a number withheld from Skx(i). Denote by P k
x the set

{pkx(0), . . . , pkx(n
k
x)}. At each stage, we will ensure that P k

x \{pkx(i)} ⊆ C(Skx(i),−1)

and pkx(i) 6∈ C(Skx(i),−1). At certain stages, the values of the pkx will change.

Next, we describe the actions taken at a given stage of the construction. The con-

struction consists of using the predicate, P , to resolve two opposing forces. One is the

attempt to label all sets in a unique way, and the other is to create an infinite family

that mirrors the structure of {N \ {x} : x ∈ N} every set of which has the same label.

Stage s: The triple under consideration is 〈xs, ys, zs〉. Let t be the most recent

previous stage at which xt = xs. We examine two cases: hsxs > htxs and hsxs = htxs .

First, suppose that hsxs > htxs . We interpret this increase as progress toward verifying

P (e). We enumerate elements as needed to ensure that, for each xs-label, k, and i ≤

〈xs, k〉+hsxs , if G,G′ ∈ Skxs , then C(G, i)∩ [0, 〈xs, k〉+hsxs] = C(G′, i)∩ [0, 〈xs, k〉+hsxs].

If pkxs(i) ≤ 〈xs, k〉+hsxs , we pick a member of C(−1) greater than 〈xs, k〉+hsxs and every

number used in the construction so far, and set pkxs(i) equal to the chosen number. We

enumerate pkxs(i) into every member of Skxs \ {S
k
xs(i)}. Thus, for each set with xs-label

k, there is a particular natural number the set does not contain, but which is contained

in all other sets with xs-label k.

Finally, we pick the set of least index in G that has not yet been assigned an xs-label

and assign it a unique, and previously unused, xs-label.

In the second case, suppose that hsxs = htxs . This stability suggests that the outcome

26

will be ¬P (e). For each k currently in use as an xs-label, we create a new set, Skxs(n
k
xs +

1) ∈ Skxs , such that C(Skxs(n
k
xs +1), j)∩[0, 〈xs, k〉+hsxs] = C(Skxs(n

k
xs), j)∩[0, 〈xs, k〉+hsxs],

for j ≤ k+hsxs . We enumerate P k
xs into Skxs(n

k
xs +1) and set pkxs(n

k
xs +1) equal to the least

member of C(−1) not used during the construction so far and greater than 〈xs, k〉+hsxs .

Finally, we enumerate pkxs(n
k
xs + 1) into every member of Skxs \ {S

k
xs(n

k
xs + 1)}.

Verification: If P (e), then (∃x)(∀y)(∃z)(R(e, x, y, z)). Hence, for some x, hsx →∞.

For infinitely many s, xs = x, thus every set in G will eventually receive an x-label. At

such stages, agreement between sets with the same label is also increased. Consequently,

any two sets in G with the same x-label are equal. The family is learned by a machine

that searches for the least x-label and outputs a code for the first set in G that receives

the same x-label.

If ¬P (e), then (∀x)(∃y)(∀z)(¬R(e, x, y, z)). Fix any machine, M . If M(σ) = ? for

every string σ with content contained in a member of G, M has failed to learn G and we

are done. Otherwise, we may pick a string, σ, such that

• M(σ) 6= ?;

• for all τ ≺ σ, M(τ) = ?;

• for some G ∈ G, content(σ) ⊆ G.

Let k be an x-label with which G is marked such that max(content(σ)) < 〈xs, k〉+hsxs .

Pick a stage, s, at which hsy = hy for all y such that G contains a y-label less than or

equal to 〈x, k〉 + hx. At a subsequent stage, t, xt = x and a new set, G′, is created

containing content(σ). Labels contained in G′ are either y-labels, k, such that hsy will

27

never increase or labels enumerated into G′ after stage t. The latter are only shared

with sets created at subsequent stages. As a consequence, there is a member of P k
x never

enumerated into G′, but contained in G. We conclude that M , an arbitrarily chosen

learning machine, has failed to TxtFin-learn G.

The computable function that maps e to a code for the u.c.e. family G constructed

above is a reduction of P to FINL.

2.2 TxtEx-Learning

We now proceed to describe the arithmetic complexity of TxtEx-learning. The first

Σ0
4 description of EXL of which we are aware is due to Sanjay Jain. Here we present a

different formula, but one which explicitly illustrates the underlying structure and serves

as a model for the Σ0
5 description of BCL given in Section 2.3.

Theorem 2.2.1. EXL has a Σ0
4 description.

Proof. By Theorem 1.2.9 we need only consider computable enumerations when ana-

lyzing the complexity of EXL. Further, observe that if there is a machine, M , that

TxtEx-learns a family, there is a total machine, M̂ , that TxtEx-learns the same family.

Specifically, define M̂(σ) to be M(σ�n) for the greatest n such that M(σ�n) converges

within |σ| computation stages and define M̂(σ) = 0 if no such initial segment exists.

Suppose e codes a u.c.e. family {L0, L1, . . .}.

We will define a formula which states that there is a learner such that for every

enumeration and every set in the family, if the enumeration is total and enumerates the

28

set, then eventually the hypotheses stabilize and a given hypothesis is either correct or

the hypotheses have not yet stabilized. Syntactically, this can be stated as follows:

(∃a)(∀k, i)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li)→ ψ(k, a, i)
)

(2.1)

where we define ψ(k, a, i) to be

(∃s)(∀t > s)
(
Ma(φk�t) = Ma(φk�s)

)
∧ (∀n)

(
WMa(φk�n) = Li

∨ (∃m > n)
(
Ma(φk�m) 6= Ma(φk�n)

))
.

The last formula is ∆0
3. Thus, (2.1) is Σ0

4 and characterizes TxtEx-learning because, for

any family coded by a number e which satisfies formula (2.1), there is a learner whose

hypotheses converge to correct hypotheses on every computable enumeration and if e

fails to satisfy formula (2.1), every learner must fail on some hypothesis for some set in

the family.

We have, therefore, exhibited a Σ0
4 description of EXL.

To achieve the desired completeness result, we now prove that an arbitrary Σ0
4 pred-

icate can be reduced to EXL. The proof utilizes the family described in Example 1.2.5.

While not TxtEx-learnable, the family is learnable under more liberal descriptions of

learning. It is, in a sense, just barely not TxtEx-learnable.

Theorem 2.2.2. EXL is Σ0
4-hard.

Proof. Let COINF be the index set of all codes for c.e. sets which are coinfinite. Since

COINF is Π0
3-complete, it suffices to prove that any predicate of the form (∃x)(f(e, x) ∈

COINF) for a computable function f can be reduced to EXL. As in Example 1.2.5 from

29

the preliminary section, let He = {e + x : x ≤ |We|}, Le = {e + x : x ∈ ω}, and

F = {H0, L0, H1, L1, . . .}. Fix a uniformly computable enumeration of F where He is

the 2e + 1st column of F and Le is the 2eth column. For notational convenience, we

denote the eth column of F by Fe. We will define a sequence of u.c.e. families, Rn,e, and

choose a computable map g so that g(e, x) is a Σ0
1 code for the u.c.e. family Ge,x where,

for x ≤ e

Ge,x =
⋃

n∈[x,e]

Rn,e.

We construct the u.c.e. families Rn,e simultaneously for x ≤ n ≤ e. The family,

Rn,e, will consist of an infinite number of partial enumerations of Fn. How complete the

enumerations are will depend on whether e ∈ COF or e ∈ COINF.

Stage 0: Let Rn,e be the empty set.

Stage s: Suppose that [i, i+ j] ⊆ We,s. In this case, enumerate Fn,j, a finite partial

enumeration of Fn, and the least natural number greater than or equal to n/2 into the

ith column of Rn,e. Denote this last number by n0. We include n0 in order to guarantee

that the set is nonempty and, if it is a partial enumeration of Ha or La, it will contain

a. Also, for all k ∈ [i, i + j], enumerate all the elements in the kth column into the

ith column and vice versa so that all the columns with indices between i and i + j are

identical.

There are two cases. First, suppose e ∈ COF, then there are only finitely many

distinct sets in Rn,e; cofinitely many columns of Rn,e will be identical to Fn and the rest

will be finite subsets of Fn. Thus Ge,x will consist of Fn for x ≤ n ≤ e together with

some finite subsets of these sets. When e ∈ COINF, Rn,e will contain only finite subsets

of Fn and so Ge,x will consist of a collection of finite sets, possibly infinitely many.

30

Based on g(e, x) and given an arbitrary Σ0
4 unary predicate P , we define a new map, h,

which witnesses the reduction of P to EXL. Since P is Σ0
4, it is of the form (∃y)(Q(x, y))

where Q is a Π0
3 predicate. Let r be a one-to-one and computable map witnessing the

reduction of Q to COINF. In other words, P (x)↔ (∃y)(r(x, y) ∈ COINF). Furthermore,

we may assume that

P (e)→ (∀∞y)(r(e, y) ∈ COINF)

and

¬P (e)→ (∀y)(r(e, y) ∈ COF)

Let s be such that for fixed e, {s(e, y)}y∈N is a computable, strictly increasing,

subsequence of {r(e, y)}y∈N. The existence of such a subsequence is guaranteed by

the fact that r is one-to-one, implying that {r(e, y)}y∈N is an unbounded sequence. For

convenience, suppose that s(e,−1) = 0 for all e ∈ N. Let h be a computable function

such that, for e ∈ N, h(e) is a code for the u.c.e. family

He =
⋃
y∈ω

Gs(e,y),s(e,y−1).

If ¬P (e), then (∀y)(r(x, y) ∈ COF). For each n ∈ ω there is a y such that s(e, y−1) ≤

n ≤ s(e, y). Fn ∈ Gs(e,y+1),s(e,y), hence F ⊆ He. Recalling that F is not TxtEx-learnable,

we conclude that He is not TxtEx-learnable.

If P (e), then (∀∞y)(r(e, y) ∈ COINF) and hence (∀∞y)(s(e, y) ∈ COINF). Pick

an n0 such that (∀n ≥ n0)(s(e, n) ∈ COINF). For all n ≥ n0 Gs(e,n+1),s(e,n) will consist

entirely of finite sets. Furthermore, these sets will, by definition, contain no numbers less

than n0. On the other hand, every set in Gs(e,y+1),s(e,y) for y ≤ n0 will contain a number

less than or equal to n0 or be finite. Therefore the whole family is learnable as follows.

Let M0 be a computable function which learns the finite family
⋃
y<n0+1 Gs(e,y),s(e,y−1)

31

and let M1 be a computable function which learns the collection of all finite sets – in

other words, a function which interprets the input it receives as a string and outputs a

code for the content of that string. Define

M(σ) =


M0(σ) n0 ∈ content(σ),

M1(σ) n0 /∈ content(σ).

If M is fed an enumeration for a set in the family, then either n0 will eventually

appear in the enumeration or it will not. In either case, the learner will eventually settle

on a correct code for the set.

We have shown how to reduce an arbitrary Σ0
4 predicate to EXL and we may conclude

that EXL is Σ0
4-hard.

2.3 TxtBC-Learning

To prove the upper bound for BCL, we require a result of interest in its own right –

independent of the arithmetic complexity of BCL.

Theorem 2.3.1. Suppose that G is a u.c.e. family. Either G is TxtBC-learnable or, for

each computable learner M , there is a ∆0
2 enumeration of a set in G that M fails to

TxtBC-identify.

Proof. Fix a u.c.e. family G = {G0, G1, . . . }. We must prove the following disjunction.

Either:

1. there is a computable machine which TxtBC-learns G or

32

2. for any computable machine, M , either

(a) there is a ∆0
2 enumeration for a set G ∈ G on which M stabilizes to an

incorrect answer or

(b) there is a ∆0
2 enumeration for a set G ∈ G on which M never stabilizes to

codes for a single set.

Assume that statement (2) is false. We may then fix a learner, M , that fails to

satisfy statements (2)(a) and (2)(b). We shall demonstrate that, under this assumption,

G is TxtBC-learnable by some machine, i.e. statement (1) is true. To accomplish this,

we perform a construction starting from a computable enumeration, g(0), g(1), . . ., of

G ∈ G uniformly obtained from an enumeration of the family. The construction will

follow a strategy designed to produce a ∆0
2 enumeration witnessing statement (2)(b).

Our assumption that these constructions fail will ultimately yield a method we shall use

to build a learner for the family.

We construct a ∆0
2 enumeration, f , in stages. After stage s has completed, the

state of the enumeration is a finite partial function, fs. Let ks(0), . . . , ks(s) denote an

increasing reordering of g(0), . . . , g(s). In addition, we define a restraint function, rs(i),

and a counter, is, which monitor the length of the enumeration and the initial segments

of fs on which M exhibits key behavior. Specifically, is counts the number of times M

appears to have output hypotheses coding distinct sets on fs, rs(is) is the length of fs

and rs(j) for 1 < j < is is the length of the initial segment of fs on which M outputs

the jth hypothesis believed to code a different set. For 1 ≤ j < is, define the hypothesis

hsj = M(fs�rs(j)) and pick a least witness xsj ∈ Whsj ,s
4Whsj−1,s

. We will call hsj and xsj

the jth hypothesis and witness chosen at stage s, respectively.

33

Stage s+1: Let fs, rs, is, ks, x
s
0, . . . , x

s
is and hs0, . . . , h

s
is be as obtained from stage

s. We shall refer to the preceding collectively as the variables. Let the finite sequence

ks+1(0), . . . , ks+1(s+ 1) be an increasing reordering of g(0), . . . , g(s+ 1). Define a set of

strings

S(s+ 1) = {α : (|α|, y < s) ∧ (content(α) ⊆ {ks+1(0), . . . , ks+1(s+ 1)})}.

We must consider two possible types of injury at the beginning of the stage.

First, suppose that ks+1�(s + 1) 6= ks�(s + 1). Let j ≤ s be the least number such

that ks+1(j) 6= ks(j). Reset the variables to their states at the beginning of stage j (for

example, define fs+1 to be fj).

The second type of injury occurs when a witness is found either to be “wrong” or

“not least”. We call a witness, xsj , “wrong” if xsj 6∈ Whsj ,s+14Whsj−1,s+1 and “not least” if

the tuple 〈xsj , fs�rs(j)〉 is not the least member of the set

{〈y, α〉 : (fs�rs(j − 1) ≺ α) ∧ (y ∈ Whsj ,s+14WM(α),s+1) ∧ (α ∈ S(s+ 1))},

where the set is ordered lexicographically and α <llex β if |α| < |β| or |α| = |β| and α is

lexicographically less than β. Let j ∈ N be least such that xsj is either “wrong” or “not

least” and make the following changes to the variables.

1. is+1 = j.

2. rs+1(m) = rs(m) for m < j and undefined for m ≥ j.

3. fs+1�rs(j − 1) = fs�rs(j − 1), and fs+1(x) is undefined for x ≥ rs(j − 1).

4. Discard xsj , . . . , x
s
is and hsj , . . . , h

s
is .

34

Having dealt with all required injury, we proceed to the actions of the stage. In

particular, we search for the <llex-least pair in the set

{〈y, α〉 : (fs+1 ≺ α) ∧ (y ∈ Whsis ,s+14WM(α),s+1) ∧ (α ∈ S(s+ 1))}.

If a least such pair, 〈y, α〉, is found, update the variables to reflect the successful

search for an extension:

1. Increment is+1.

2. Extend fs+1 to α.

3. Define rs+1(is+1) to equal the length of fs+1.

4. Update xs+1
j = xsj and hs+1

j = hsj for j < is+1.

5. Define xs+1
is+1

= y and his+1 = M(α).

On the other hand, if no such pair can be found, end the stage with no further

changes.

Now suppose that lims→∞ is = ∞. Then, for any n, the nth hypothesis and witness

will be changed at most finitely many times. Therefore, lims→∞ x
s
n and lims→∞ fs� n exist

for every n, in which case our construction has produced an enumeration of G which is

∆0
2 and on which the hypothesis stream generated by M includes hypotheses that code

different sets infinitely often. This is, of course, impossible since, by assumption, M

TxtBC-learns G from ∆0
2-enumerations. Therefore, lims→∞ is 6=∞.

The construction was performed using a computable and uniformly obtained enu-

meration g(0), g(1), . . . of G. The purpose of using a computable enumeration was to

35

ensure that lims→∞ fs was ∆0
2. Because each pair of extension and witness are chosen

in a canonical manner that is independent of the enumeration, any two instances of the

construction will eventually select the same pair despite using different enumerations of

G. This can be proved inductively. Suppose two different enumerations have produced

two finite partial functions that agree on an initial, possibly empty, segment. Take

the first point of disagreement. The choices of extension made at the point when the

functions disagree cannot both be <llex-least, therefore one will change at a subsequent

stage.

Define a computable function ψ such that ψ(σ, s) = τ , where τ is the partial function

that results from performing the construction on an initial segment, σ, of an enumeration

after s stages of computation. Let M̂(σ) = M(ψ(σ, |σ|)). Fix an arbitrary enumeration

q(0), q(1), . . . of G. Since M TxtBC-learns G from ∆0
2-enumerations, there must be a

longest partial function, α, that is cofinitely often extended by ψ(q� s, s). For any β

such that content(β) ⊆ G, we have WM̂(α) = WM̂(αˆβ) = G. Because G is an arbitrary

member of G, M̂ succeeds in TxtBC-learning G.

Since we have proved that G is TxtBC-learnable assuming only that G is TxtBC-

learnable from ∆0
2-enumerations, we have proved the desired claim.

The above result allows us to place a bound on the complexity of the enumerations

that must be considered when searching for an enumeration that witnesses a failure of

TxtBC-learning. The next result applies Theorem 2.3.1 to obtain an upper bound on

the complexity of BCL – the first half of the completeness result for BCL.

Theorem 2.3.2. BCL has a Σ0
5 description.

36

Proof. Let M be an arbitrary learner and i an index for a set in the family F =

{F0, F1, . . .}. From a computable function, f , define a sequence of functions, {fs}s∈N,

by fs(x) = f(s, x). Let φ(M, f, i) be the formula

(∀n, s)(WM(fs�n) = Fi ∨ (∃n′ > n)(∃s′ > s)(WM(fs′�n
′) 6= WM(fs�n)

∧ (∀s′′ > s′)(fs′′�n
′ = fs′�n

′))).

In words, φ(M, f, i) asserts that for any stage, s, and initial segment, fs�n, either

the hypothesis M(fs�n) is correct or there is a later stage and longer initial segment on

which the ∆0
2-enumeration has stabilized and on which M outputs a code for a different

set.

Define ψ(M, f) to be the formula

(∃n)(∀n′ > n)(∀s)(WM(fs�n) = WM(fs�n′) ∨ (∃s′ > s)(fs′�n
′ 6= fs�n

′))

and ξ(f, i) to be

(∀n)(∃s)(∀t > s)(fs(n) = ft(n))

∧(∀n, s)(∃u, t > s)((fs(n) ∈ Fi,u) ∨ (fs(n) 6= ft(n)))

∧(∀x, u)(∃n, s)(∀t > s)(x ∈ Fi,u → fs(n) = ft(n) ∧ fs(n) = x).

If ψ(M, f), then there is an initial segment of length n such that for any stage, s, and

greater length, n′, there are two possibilities. One, the hypotheses M outputs on fs�n

and fs�n′ code the same set. Two, there is a subsequent stage, s′, at which the n′ length

initial segment changes: fs′�n′ 6= fs�n′. The formula ξ(f, i) asserts that fs converges to

an enumeration of Fi as s goes to infinity. In particular, lims→∞ fs(n) exists for all n

and lims→∞ fs(n) = x if and only if x ∈ Fi.

37

We must prove that the following is Σ0
5 and equivalent to e ∈ BCL, where e codes a

u.c.e. family {F0, F1, . . .}.

(∃M)(∀f, i)(ξ(f, i)→ ψ(M, f) ∧ φ(M, f, i)). (2.2)

Observe that ψ(M, f) is Σ0
3. The formula φ(M, f, i) universally quantifies over the

disjunction of a Π0
2 formula and a Σ0

2 formula. Thus, φ(M, f, i) is Π0
3. Since ξ(f, i) is the

conjunction of three Π0
3 formulas, ξ(f, i) is Π0

3. From this, we conclude that

ξ(f, i)→ ψ(M, f) ∧ φ(M, f, i)

is ∆0
4. Consequently, (2.2) is Σ0

5.

To complete the proof, we must verify that any family that satisfies (2.2) is TxtBC-

learnable. If ξ(f, i), then f converges to a ∆0
2 enumeration of Fi. From ψ(M, f), we have

that there is an initial segment of the enumeration given by f such that, on longer initial

segments of f , either the output hypotheses code the same set, or the ∆0
2 enumeration

has not yet stabilized. Finally, φ(M, f, i) states that for any initial segment either the

hypothesis output by the learner is correct or the learner will output a later hypothesis

that is different on an initial segment of f that has stabilized.

Thus, if (2.2) is true, there is a computable learning machine M such that for any ∆0
2

enumeration f , M converges to consistent hypotheses on f and, if it has not yet output

a correct hypothesis, it will change the content of its hypothesis at a later stage. This

is clearly equivalent to TxtBC-learning F from ∆0
2-enumerations. By Theorem 2.3.1,

TxtBC-learning from ∆0
2-enumerations is equivalent to TxtBC-learning from arbitrary

enumerations for u.c.e. families.

38

We present the lower bound in a modular fashion. The construction describes an

attempt to diagonalize against every possible learner, which succeeds only if a given Σ0
5

predicate is false. A single step of the diagonalization is proved as a lemma.

Lemma 2.3.3. Let M = Mm be a computable learning machine and We a c.e. set. There

is a family Fm,e, uniformly computable in m and e, such that:

1. If We is coinfinite, then Fm,e is not TxtBC-learnable by M , but the family is

TxtBC-learnable.

2. If We is cofinite, then Fm,e is uniformly TxtBC-learnable in both m and e. Further,⋃
e∈COF,m∈NFm,e is TxtBC-learnable.

Proof. The construction will be performed in stages. During the stages, steps of a

diagonalization process will be attempted, although these steps may not be completed.

The diagonalization is against the learner M and a step of the diagonalization will be

complete when a string is found on which the learner outputs, as a hypothesis, a code

for a set that includes an element not in the content of the enumeration it has been

fed. Such an element will be called a speculation. To be explicit, we define a natural

number, x, to be a speculation of M on input σ if for some s ∈ N, x ∈ WM(σ),s and

x /∈ content(σ).

We will build a family Fm,e = {A,B0, B1, B2, . . .}. At each step i, the set Bi is

initialized with the contents of the set A. A set, C, of speculations will be maintained.

We reserve the 0th and 1st columns of each set for markers. If 〈0, j〉 ∈ Bi, then Bi is

said to have been tagged with j. Every set in the construction will contain 〈1, 〈0,m〉〉

and 〈1, 〈1, e〉〉 where m is a code for M . The rest of the construction occurs off the

39

0th and 1st-columns and the 0th-column of A is left empty. We now proceed with the

construction of Fm,e.

Fix M and We.

Stage 0: C,A,B0, B1, . . . are all empty. Enumerate 0 into A. Set σ0 = 0.

Stage s: Suppose the first i steps have been completed. By C,A,B0, . . . , Bi+1 we

mean those sets in their current state. We are thus in the midst of step (i + 1). Let

w0, w1, . . . , wi enumerate the current members of C, where the index reflects the order

in which they were chosen. Enumerate into each of the sets A,B0, . . . , Bi+1 those wj

having j ∈ We,s.

Next, we search for the least speculation, x ≤ s, of M on input σsˆα, for some α with

|α| ≤ s, max(content(α)) ≤ s, and content(α)∩ (C \A) = ∅. If no speculation is found,

pick the least number neither in C\A nor the marker columns and enumerate this number

into Bi+1, after which we end the current stage of the construction. If a speculation, x

witnessed by a string α, is found, enumerate x into C and enumerate the members of

{y : y /∈ (C\A)∧y ≤ max(content(α))} into A. Enumerate 〈0, i+1〉 into Bi+1. From this

point on, only We is allowed to enumerate anything further into Bi+1. Step i+ 2 is now

initiated by enumerating every element of A into Bi+2. Finally, we set σs+1 = σsˆαˆβ,

where β is an increasing enumeration of {y : y /∈ (C \A) ∧ y ≤ max(content(α))}. This

ends the current stage of the construction.

Observe that C \ A are the speculations that, at the current stage, have not been

enumerated into A.

For coinfinite We there are two possibilities. If infinitely many steps complete, there

is a subsequence {τs}n∈N of {σs}n∈N such that WM(τs) 6= A, for each s ∈ N. Since σs and

40

σt are compatible for all s, t ∈ N, the computable function f(n) = σn(n) enumerates

A. Thus, we have an enumeration for a set in the family on which M fails to converge

to the correct set. If only finitely many steps complete, then there is a string σ, equal

to σs for some s ∈ N, that has no extension witnessing speculation by M . The content

of σ is contained in the last nonempty Bi, and Bi will become a cofinite set. Since M

engages in no speculation beyond σ, M must only output codes for finite sets, thus on

any enumeration of Bi that begins with the string σ, M fails to TxtBC-learn Bi.

Depending on the outcome of the construction, but independent of We, we can define

a learning machine N0 that succeeds in TxtBC-learning Fm,e.

Case 1: Suppose infinitely many steps of the construction complete. Define N0 to be

a learner that outputs a code for A on any input string unless the string contains 〈0, i〉

for some i, in which case it outputs a code for Bi. N0 succeeds in TxtBC-learning Fm,e.

Case 2: If the jth-step is the last step initiated, define N0 to be a learner that, on

input σ, simulates the construction for A and outputs a code for one of A, B0, B1, . . . , Bj.

If content(σ) ⊆ A and 〈0, i〉 /∈ content(σ) for any i < j, N0(σ) codes A. If 〈0, i〉 ∈

content(σ), N0(σ) is a code for Bi. Otherwise, N0(σ) is a code for Bj and N0 has

TxtBC-learned Fm,e.

Next, we define a machine that can learn
⋃
e∈COF,m∈NFm,e. Fix e ∈ COF. To

distinguish it from the completed set, let As denote a simulation of the construction of

A at stage s.

N(σ) =


0 if card(({1} ⊕ N) ∩ content(σ)) ≤ 1,

Nm,e(σ) if 〈1, 〈0,m〉〉, 〈1, 〈1, e〉〉 ∈ content(σ).

41

The Nm,e will be defined below. Each Nm,e need only TxtBC-learn the family

resulting from the construction based on Mm and We. For i ∈ N, let A∗, B∗i and

(A ∪ Bi \ ({0} ⊕ N))∗ denote Σ0
1-codes for A,Bi and A ∪ Bi \ ({0} ⊕ N), respectively.

These codes can be computably derived from m and e. We define Nm,e as follows:

Nm,e(σ) =



B∗i if 〈0, i〉 ∈ content(σ),

A∗ if 〈0, i〉 /∈ content(σ) ∧ content(σ) ⊆ A|σ|,

(A ∪Bk \ ({0} ⊕ N))∗ otherwise,

where k denotes the greatest index of a set that has been used in the simulated con-

struction up to stage |σ|.

To determine ifNm,e TxtBC-learns the family, we must consider four cases, depending

on the outcome of the construction and which set, D ∈ Fm,e, is enumerated to Nm,e.

Case 1: Suppose D has a tag on the 0th-column; in other words, there exists i ∈ N

such that D = Bi. If the construction completes l < ∞ steps, then i < l. Otherwise,

D may be any of the Bi. Once 〈0, i〉 has appeared in the enumeration, the learner will

hypothesize B∗i and never change hypothesis.

Case 2: Suppose D = Bj where j is the index of the final, but incomplete, step of the

construction. Since no 〈0, i〉 will ever be enumerated into Bj, the first case of Nm,e will

never be satisfied. Cofinitely, since A is a finite set and Bj is not, the second case will

not be satisfied either. (A is finite because only finitely many steps of the construction

complete.) Thus, cofinitely, the learner will output (A∪Bk\(0⊕N))∗, where k is updated

at each stage to reflect the most recent addition to the family during the construction.

Eventually k will stabilize to j, after which time the learner’s hypotheses will always be

correct.

42

Case 3: Suppose D = A, where only finitely many steps complete. Since A is finite,

for all but finitely many s, As = A and we may replace A|σ| with A in the second case

of the definition of Nm,e. Since no tag will ever be enumerated into the 0th-column of

A, the first case will never be satisfied and eventually the second case will always be

satisfied and Nm,e outputs A∗ cofinitely.

Case 4: Finally, suppose D = A, where infinitely many steps complete. Note that

because the learner is receiving an arbitrary enumeration, there need not be any correla-

tion between the enumeration given to the learner and the enumeration of the simulation

As. It is quite possible that the second case will be true only infinitely often. The first

case, however, is never satisfied. All that remains is to prove that eventually the third

case only produces correct hypotheses. Since e ∈ COF, we may choose s such that

[s,∞) ⊆ We. The set C \ A is finite and (C \ A) ∩ Bi = ∅. Thus, A ∪ Bi \ (0⊕ N) = A

for i ≥ s.

Thus N succeeds in TxtBC-learning the following, possibly non-u.c.e., family

⋃
e∈COF,m∈N

Fm,e.

and thus can TxtBC-learn any subfamily.

Theorem 2.3.4. BCL is Σ0
5-hard

Proof. We wish to reduce an arbitrary Σ0
5 predicate P (e) to BCL. For an arbitrary Σ0

4

predicate Q(e), there is a Σ0
2 predicate, R(e, x, y), such that the following representation

43

can be made:

Q(e)↔ (∃a)(∀b)(R(e, a, b))

↔ (∃〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))

∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))]

↔ (∃!〈a, s〉)[((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′)))

∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))].

Since the predicate

((∀b)(R(e, a, b))) ∧ ((∀a′ < a)(∃s′ ≤ s)(¬R(e, a′, s′))) ∧ ((∃a′ < a)(∀s′ < s)(R(e, a′, s′)))

is Π0
3, for a suitable computable function g,

Q(e)→ (∃!x)(g(e, x) ∈ COINF)

and

¬Q(e)→ (∀x)(g(e, x) ∈ COF).

Applying the above to P (e), the arbitrary Σ0
5 predicate under consideration, we may

define a computable function f such that

P (e)→ (∃x)[(∀x′ > x)(∀y)(f(e, x′, y) ∈ COF)

∧ (∀x′ ≤ x)(∃≤1y)(f(e, x′, y) ∈ COINF)]

and

¬P (e)→ (∀x)[(∃!y)(f(e, x, y) ∈ COINF)].

44

We will now define a family Ge from e such that Ge will be learnable if and only if

P (e). Define

Ge =
⋃
x,y∈N

Fx,f(e,x,y).

Case 1: Suppose ¬P (e). Then for every x, there is a y for which f(e, x, y) ∈ COINF.

From this we conclude that for each computable learner, M coded by m, there is a y

such that f(e,m, y) ∈ COINF. Ge contains a subfamily, Fm,f(e,m,y), that M cannot

TxtBC-learn. Thus, Ge is not TxtBC-learnable.

Case 2: Suppose P (e) and let x0 be such that (∀x ≥ x0)(∀y)(f(e, x, y) ∈ COF). Let

a0, a1, . . . , ak enumerate the numbers less than x0 such that, for unique corresponding

b0, b1, . . . , bk, we have f(e, ai, bi) ∈ COINF and let Ki be a computable machine that

learns Fai,f(e,a,bi). The existence of such a machine is guaranteed by Lemma 2.3.3. Using

the machine N from the proof of Lemma 2.3.3, define a computable machine M on input

string σ by

M(σ) =


Ki(σ) if 〈1, 〈0, ai〉〉, 〈1, 〈1, bi〉〉 ∈ content(σ) for i ≤ k,

N(σ) otherwise.

If an enumeration of a set in the subfamily Fai,f(e,ai,bi) is fed to M , then eventually a

tag in the 1st-column will appear identifying it as such. Cofinitely often, the appropriate

Ki will be used to learn the enumeration. If the enumeration is for a set from Fx,f(e,x,y)

with either x 6= ai or y 6= bi for any i ≤ k, then N will be used. From Lemma 2.3.3, it is

known that N is capable of TxtBC-learning Fx,f(x,y) for any x provided that y ∈ COF.

We conclude that BCL is Σ0
5-hard.

45

2.4 TxtEx∗-learning

Our final collection of results borrows from the BCL lower bound arguments as well as

the EXL description, given in Section 2.3 and Section 2.2, respectively. We begin with

a Σ0
5 description of EXL∗.

Theorem 2.4.1. EXL∗ has a Σ0
5 description.

Proof. Suppose e is a code for a u.c.e. family {L0, L1, . . .}. By Corollary ??, a family that

is TxtEx∗-learnable from computable enumerations is TxtEx∗-learnable from arbitrary

enumerations. Further, observe that if there is a machine, M , that TxtEx∗-learns a

family, there is a total machine, M̂ , that TxtEx∗-learns the same family. Specifically,

define M̂(σ) to be M(σ�n) for the greatest n such that M(σ�n) converges within |σ|

computation stages and define M̂(σ) = 0 if no such initial segment exists. We proceeed

with a formula nearly identical to the description of TxtEx-learning. Let D0, D1, . . . be

a canonical, computable enumeration of the finite sets. Consider the formula

(∃a)(∀k, i)(∃`)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li)→ ψ(k, a, i, `)
)
(2.3)

where we define ψ(k, a, i, `) to be

(∃s)(∀t > s)
(
Ma(φk�t) = Ma(φk�s)

)
∧ (∀n)

(
WMa(φk�n)4Li = D`

∨ (∃m > n)
(
Ma(φk�m) 6= Ma(φk�n)

))
.

The only difference between the above formula and that of Theorem 2.2.1 is an ad-

ditional existential quantifier over finite sets. Just as before, if a family satisfies formula

(2.3) then there is a computable machine that identifies every computable enumeration

for a set in the family.

46

Lemma 2.4.2. Let M = Mm be a computable learning machine and We a c.e. set. There

is a family Fm,e, uniformly computable in m and e, such that:

1. If We is coinfinite, then Fm,e is not TxtEx∗-learnable by M , but the family is

TxtEx∗-learnable.

2. If We is cofinite, then Fm,e is uniformly TxtEx∗-learnable in both M and e. Further,⋃
e∈COF,m∈NFm,e is TxtBC-learnable.

Proof. Fix a machine M = Mm and a c.e. set We. We will construct a family, Fm,e =

{A,L1, R1, L2, R2, . . .} in stages. Each set in Fm,e will have two columns ({〈0, x〉 : x ∈ N}

and {〈1, x〉 : x ∈ N}) reserved for markers. Every set in Fm,e contains 〈0, 〈m, 0〉〉 and

〈0, 〈e, 1〉〉 and A contains the marker 〈0, 〈0, 3〉〉 as well. Unless otherwise indicated, any

action during the construction is performed on the complement of the reserved columns.

We identify this complement with N as it is a computable copy. At any stage of the

construction, at most one pair of sets, Ln and Rn, will be actively involved in the

construction. When there is such a pair, we call it the active pair and maintain an

associated function, rn, which stores information about that pair.

Stage 0: Search for the least string, σ, on which M outputs a hypothesis. Set σ0 equal

to σ and enumerate content(σ0) into A.

Stage s+1: Let σ0 � . . . � σs be the sequence of strings passed to the current stage from

stage s. If there is a currently active pair, Ln and Rn, then for j ∈ We,s+1, we enumerate

rn(j) and rn(j) + 1 into both Ln and Rn. We then consider four cases depending on

the status of two parameters. First, the existence of an active pair of sets. Second, the

47

availability, within computational bounds, of an extension, α, of σs on which M outputs

a hypothesis different from its most recent hypothesis. We only consider the finite set

of strings S = {σs τ̂ : (|τ | < s+ 1) ∧ (content(τ) ⊂ s+ 1)} in our search for α.

Case 1: Suppose there is no active pair, but there is an extension, α ∈ S, of σs such

that M(α) 6= M(σs). We pick the least such α. Set σs+1 = αˆβ, where β is an increasing

enumeration of {x : x ≤ max(content(α))}, and enumerate content(σs+1) into A.

Case 2: Next, consider the case where there is neither an active pair nor an α ∈ S

such that M(α) 6= M(σs). Let n ∈ N be least such that Ln and Rn have not yet been

used in the construction and set Ln and Rn to be the active pair. Set σs+1 = σs and

enumerate content(σs+1) into both Ln and Rn. Pick the least even number, k, such that

k and k + 1 have not appeared in the construction so far. Enumerate k into Ln, k + 1

into Rn and set rn(0) = k.

Case 3: Let Ln and Rn be the active pair of sets, and suppose α ∈ S is least

such that M(α) 6= M(σs). Set σs+1 = αˆβ, where β is an increasing enumeration of

{x : x ≤ max(content(α))}, and enumerate content(σs+1) into A. Next, we “cancel”

the active pair. Specifically, we enumerate the marker elements 〈1, 〈n, 0〉〉 and 〈1, 〈n, 1〉〉

into Ln and Rn, respectively, and mark the pair as inactive.

Case 4: Finally, assume there is a currently active pair, Ln and Rn, but no α ∈ S

such that M(α) 6= M(σs). Pick the least even number k larger than any number used in

the construction so far, enumerate k into Ln, k+ 1 into Rn and set rn(i+ 1) = k, where

i is the greatest value for which rn(i) is defined.

To verify that the above construction produces a family with the desired properties,

we must verify three statements:

48

1. Fm,e is TxtEx∗-learnable for all M and e.

2. If We is coinfinite, then M does not TxtEx∗-learn Fm,e.

3. If We is cofinite, then there is a machine, computable from m and e, that TxtEx∗-

learns Fm,e.

If there is a pair of sets that remains active cofinitely, then Fm,e is a finite family.

If no such pair exists, then every finite set has a unique marker by which it can be

identified and the only infinite set is A. In either case, the family is learnable and we

conclude that the first statement is true.

To prove the second statement, we must again consider two cases. Suppose We is

coinfinite. If a pair of sets remains active cofinitely, then M outputs the same hypothesis

on all extensions of a finite partial enumeration whose content is contained in both

members of the pair. Thus, there are two enumerations, one for each of Ln and Rn, on

which M converges to the same hypothesis. The symmetric difference or Ln and Rn,

however, is infinite as one is co-odd and the other co-even. If no pair remains active

infinitely, then there must be an infinite number of stages during the construction at

which σ0 ≺ σ1 ≺ . . . are found such that M(σs) 6= M(σs+1) and A is enumerated by

f(n) = σn(n). In either case, M fails to TxtEx∗-learn Fm,e.

Finally, we must exhibit a machine that can TxtEx∗-learn all possible families Fm,e

where e ∈ COF. In particular, a machine that can TxtEx∗-learn the following possibly

non-u.c.e. family as well as every subfamily:

G =
⋃

e∈COF,m∈N

Fm,e .

49

Since We is cofinite for all the families under consideration, observe that Fm,e consists

of a (possibly infinite) number of finite sets and either one or two sets (A or a pair Ln

and Rn) that are cofinite in the complement of the marker columns. Fix codes a0, a1

and am,e such that Wa0 = ∅, Wa1 = N \ {〈x, y〉 : (x = 0 ∨ x = 1) ∧ y ∈ N} and Wam,e is

the set A ∈ Fm,e. For notational ease, let C(k) = {〈k, x〉 : x ∈ N}. Define Nm,e by

Nm,e(σ) =



a0 if content(σ) ∩ C(1) 6= ∅,

am,e if 〈0, 〈0, 3〉〉 ∈ content(σ),

a1 otherwise.

Further, define a machine N by

N(σ) =


Nm,e(σ) if 〈0, 〈m, 0〉〉, 〈0, 〈e, 1〉〉 ∈ content(σ),

0 otherwise.

To prove that N learns G, select an arbitrary D ∈ G. Let e and m be the codes such

that D ∈ Fm,e for cofinite We.

Case 1: Suppose that, during the construction of Fm,e, no pair of sets remains active

infinitely. In this case, every member of Fm,e is marked, either with a marker in C(1) or

with 〈0, 〈0, 3〉〉. Thus, N succeeds in TxtEx∗-learning Fm,e.

Case 2: Suppose, on the other hand, a pair of sets remains active cofinitely during the

construction. Let Ln and Rn be that unique pair of sets. If D = A, then 〈0, 〈0, 3〉〉 ∈ D

and cofinitely often Nm,e hypothesizes am,e. Every other finite set contains a unique

marker and is hence TxtEx∗-learnable by Nm,e. Finally, if D = Ln or Rn then D =∗

N \ (C(0)∪C(1)). No initial segment of any enumeration of D contains either a marker

in C(1) or the marker 〈0, 〈0, 3〉〉. Thus, Nm,e again succeeds in TxtEx∗-learning the set.

50

Theorem 2.4.3. EXL∗ is Σ0
5-hard

Proof. We wish to reduce an arbitrary Σ0
5 predicate P (e) to EXL∗. Applying the tech-

nique from the proof of Theorem 2.3.4 to P (e), the arbitrary Σ0
5 predicate under con-

sideration, we may define a computable function f such that

P (e)→ ∃x[∀x′ > x∀y(f(e, x′, y) ∈ COF)

∧ ∀x′ ≤ x∃≤1y(f(e, x′, y) ∈ COINF)]

¬P (e)→ ∀x[∃!y(f(e, x, y) ∈ COINF)]

We will now define a family Ge from e using a computable function f such that Ge

will be learnable if and only if P (e).

Ge =
⋃
x,y∈N

Fx,f(e,x,y)

Case 1: Suppose ¬P (e). For every x, there is a y for which f(e, x, y) ∈ COINF.

We conclude that for each computable learner, M coded by m, there is a y such that

f(e,m, y) ∈ COINF. Thus G contains a subfamily, Fm,f(e,m,y), that M cannot learn and

Ge is not TxtEx∗-learnable in this case.

Case 2: Suppose P (e). Let x0 be such that (∀x ≥ x0)(∀y)(f(e, x, y) ∈ COF).

Denote by a0, a1, . . . , ak the numbers less than x0 such that, for unique correspond-

ing b0, b1, . . . , bk, f(e, ai, bi) ∈ COINF. Let Ki be a computable machine that learns

Fai,f(e,a,bi). On input string σ, define a computable machine M by

51

M(σ) =


Ki(σ) if 〈t1, 〈0, ai〉〉, 〈t1, 〈1, bi〉〉 ∈ content(σ) for i ≤ k

N(σ) otherwise

.

If an enumeration for a set in the subfamily Fai,f(e,ai,bi) is being fed to the learner, then

eventually a tag in the tst1 -column will appear identifying it as such. Cofinitely often,

the appropriate machine will be used to learn such an enumeration. If the enumeration

is for a set from Fx,f(e,x,y) with either x 6= ai or y 6= bi for any i ≤ k, then N will be

used to attempt learning. By Lemma 2.4.2, N succeeds in TxtEx∗-learning Fx,f(x,y) for

any x provided that y ∈ COF.

2.5 Additional Results

In the following two subsections, we prove that FEXL and EXLn, for n ∈ N, are Σ0
4-

complete.

2.5.1 TxtFex-Learning

Theorem 2.5.1. FEXL has a Σ0
4 description.

Proof. By a result due to Case [5] we need only consider computable enumerations when

analyzing the complexity of FEXL. Further, observe that if there is a machine, M , that

TxtFex-learns a family, there is a total machine, M̂ , that TxtFex-learns the same family.

Specifically, define M̂(σ) to be M(σ�n) for the greatest n such that M(σ�n) converges

within |σ| computation stages and define M̂(σ) = 0 if no such initial segment exists.

Suppose e codes a u.c.e. family {L0, L1, . . .}.

52

We will define a formula which states that there is a learner such that for every

enumeration and every set in the family, if the enumeration is total and enumerates the

set, then eventually the learner stabilizes to a finite collection of hypotheses and a given

hypothesis is either correct or is not a member of the finite collection. Syntactically, this

can be stated as follows:

(∃a)(∀k, i)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li)→ ψ(k, a, i)
)

(2.4)

where we define ψ(k, a, i) to be

(∃s, c)(∀t ≥ s)
(
Ma(φk�t) ∈ Dc

)
∧ (∀n)

(
WMa(φk�n) = Li

∨(∃m)(∀u ≥ m)
(
Ma(φk�m) 6= Ma(φk�n)

))
.

The last formula is Π0
3. Thus, (2.4) is Σ0

4 and characterizes TxtFex-learning because, for

any family coded by a number e which satisfies formula (2.4), there is a learner whose

hypotheses converge to correct hypotheses on every computable enumeration and if e

fails to satisfy formula (2.4), every learner must fail on some hypothesis for some set in

the family.

We have, therefore, exhibited a Σ0
4 description of FEXL.

Next, we prove a Σ0
4 lower bound on the complexity of FEXL, thereby establishing

Σ0
4-completeness. Before exhibiting a reduction, we present an example that serves as

the basis for the construction. Using a construction similar to the proof of Theorem

2.2.2, we will use this example to reduce an arbitrary Σ0
4 predicate to FEXL.

Example 2.5.1. We build a family, Le = {L0, L1, . . .}, in stages as follows.

53

Stage 0: We begin the construction with all sets in Le empty. We set L0 = {e}.

Stage s+1: We set Ls+1 = [e, e + s + 1 + card(We,s)]. If We,s+1 \We,s 6= ∅, then

enumerate into Li the least number greater than e not already in Li for each i ≤ s + 1.

Thus, Li = [e, e+ i+ card(We,s+1)].

If We is finite, then Le consists of all intervals of the form [e, e+ s+ card(We)] with

s ∈ N. If We is infinite, then Le contains only one set, namely [e,∞). We have exhibited

an effective construction for Le = {[e, e+ s+ 1 + card(We)] : s ∈ N} thereby illustrating

that Le is u.c.e.

Next, we define F =
⋃
e∈N Le. We will demonstrate, using a complexity calculation,

that F is not TxtFex-learnable. Suppose M TxtFex-learns F . Without loss of generality,

we may assume M is defined on all initial segments of enumerations of sets in F . If

e ∈ INF, then

(∃k)(∀n)
(
M
(
e . . . (e+ k + n)

)
∈
{
M
(
e
)
, . . . ,M

(
e . . . (e+ k)

)})
,

and if e ∈ FIN, then

(∀k)(∃n)
(
M
(
e . . . (e+ k + n)

)
6∈
{
M
(
e
)
, . . . ,M

(
e . . . (e+ k)

)})
.

We have, therefore, produced a Σ0
2 description of INF. As no such description exists,

no machine, M , that TxtFex-learns F exists.

In the proof that follows, Lx and F will be defined as in Example 2.5.1. The proof

is based on ideas that arose during correspondence with Frank Stephan.

Theorem 2.5.2 (Beros and Stephan). FEXL is Σ0
4-hard.

54

Proof. We fix an arbitrary Σ0
4 predicate, P . We choose f , a computable, one-to-one

function of two variables such that {f(a, n)}n∈N is an increasing sequence for all a ∈ N,

P (e)→ (∀∞x)[f(e, x) ∈ COINF] and ¬P (e)→ (∀x)[f(e, x) ∈ COF].

Fix x, y, z ∈ N. We construct a family Rz
x,y = {R0, R1, . . .} in stages.

Stage s+1: For each i ≤ s+ 1, let ki be the length of the longest interval contained

in Wz,s that contains i. We denote by `i the greatest element of the yth member of Lx

computed to ki stages. If `i ≥ ki, enumerate the contents of the interval [x, x+ ki] into

Ri. If `i < ki, enumerate the contents of the interval [x, x+ `i] into Ri.

Based upon Rz
x,y, we define the following families.

Ge,n =
⋃
{Rf(e,n)

i,y : y ∈ N ∧ f(e, n) ≤ i < f(e, n+ 1)},

and

He =
⋃
n∈N

Ge,n.

If ¬P (e), then F ⊂ Ge. Since F is not TxtFex-learnable, He is not TxtFex-learnable in

this case. Now suppose that P (e). Under this assumption, there is a finite list, x0, . . . , xt,

such that Lxi ⊂ He and xi ∈ INF. We define a subfamily, L′x, of He by

L′x = {H ∈ He : min(H) = x}

For i ∈ [0, t], the family L′xi is finite and there is a machine, Ni, that TxtFex-learns

L′xi . Fix a machine, N , that TxtFex-learns the collection of all finite sets and define a

machine, M , as follows.

M(σ) =


Ni(σ) xi = min(content(σ)),

N(σ) otherwise.

55

If an enumeration for a set in Lxi is given to M in stages, then cofinitely often

min(content(σ)) = xi. Thus, M succeeds in TxtFex-learning
⋃

0≤i≤t L′xi . Every other

set in He is finite. For enumerations of every such set, min(content(σ)) 6= xi cofinitely

often for all i ≤ t. We conclude that M TxtFex-learns He.

The computable map that takes e to a code for He reduces P to FEXL. Since P was

an arbitrary Σ0
4 predicate, we have shown that FEXL is Σ0

4-hard.

Together, Theorems 2.5.1 and 2.5.2 prove that FEXL is Σ0
4-complete.

2.5.2 TxtExn-learning

Theorem 2.5.3. EXLn has a Σ0
4 description.

Proof. By Theorem 1.2.9 we need only consider computable enumerations when ana-

lyzing the complexity of EXLn. Further, observe that if there is a machine, M , that

TxtEx-learns a family, there is a total machine, M̂ , that TxtExn-learns the same family.

Specifically, define M̂(σ) to be M(σ�n) for the greatest n such that M(σ�n) converges

within |σ| computation stages and define M̂(σ) = 0 if no such initial segment exists.

Suppose e codes a u.c.e. family {L0, L1, . . .}.

We will define a formula which states that there is a learner such that for every

enumeration and every set in the family, if the enumeration is total and enumerates

the set, then eventually the hypotheses stabilize and a given hypothesis is either nearly

correct or the hypotheses have not yet stabilized. Syntactically, this can be stated as

follows:

(∃a)(∀k, i)
(

(Ma is total) ∧ (φk is total) ∧ (φk enumerates Li)→ ψ(k, a, i)
)

(2.5)

56

where we define ψ(k, a, i) to be

(∃s)(∀t > s)
(
Ma(φk�t) = Ma(φk�s) ∧ card({MA(φk�q) : q ≤ s}) ≤ n

)
∧(∀n)

(
WMa(φk�n) = Li ∨ (∃m > n)

(
Ma(φk�m) 6= Ma(φk�n)

))
.

The last formula is ∆0
3. Thus, (2.5) is Σ0

4 and characterizes TxtEx-learning because, for

any family coded by a number e which satisfies formula (2.5), there is a learner whose

hypotheses converge to correct hypotheses on every computable enumeration and if e

fails to satisfy formula (2.5), every learner must fail on some hypothesis for some set in

the family.

We have, therefore, exhibited a Σ0
4 description of EXLn.

The next theorem is due to Frank Stephan. The proof reduces the decision problem

EXL to EXLn. EXL was proved to be Σ4-complete in Theorem 2.2.2.

Theorem 2.5.4 (Stephan). EXLn is Σ0
4-hard.

Proof. Fix an effective eumeration, G0,G1, . . ., of all u.c.e. families. We can define com-

putable function, f and g, such that given e coding a u.c.e. family,

Wf(e) = {{〈x, y〉 : x ∈ L ∧ y ∈ N} : L ∈ Ge}

and

Wg(e) = {〈x, y〉 : (∃n+1z)(〈x, z〉 ∈ We)}

A computable machine, M , TxtExn-learns Gf(e) if and only if g ◦M TxtEx-learns

Gf(e). Note that one direction of this equivalence is obvious. For the other, observe that

if card(Wa4L) ≤ n and (∃n+1z)(〈x, z〉 ∈ Wa), then x ∈ L.

57

Next, we prove that Gf(e) is TxtEx-learnable if and only if Ge is TxtEx-learnable. If

M TxtEx-learns Gf(e), then define h0 to be a computable function such that

Wh0(e) = {x : (∃y)(〈x, y〉 ∈ We)}.

The machine h0 ◦M TxtEx-learns Ge. If M TxtEx-learns Ge, then define a computable

function, h1, such that

Wh1(e) = {〈x, y〉 : y ∈ N ∧ x ∈ We}.

Since h1 ◦M TxtEx-learns Gf(e), we have proved the equivalence.

Thus, Ge is TxtEx-learnable if and only if Gf(e) is TxtExn-learnable. Fix an arbitrary

Σ0
4 predicate, P , and let g be a computable function reducing P to EXL. The existence

of such a g is proved by Theorem 2.2.2. The function f ◦ g witnesses the reduction of P

to EXLn.

2.6 Conclusion

In summary, we have proved Σ0
3-completeness for FINL, Σ0

4-completeness for EXL and

Σ0
5-completeness for both BCL and EXL∗. Together with Frank Stephan, we have ob-

tained Σ0
4-completeness results for EXLn and FEXL. Numerous other learning criteria

are known, but their arithmetic complexities remain to be determined, including the

complexity for the function learning criteria corresponding to the language learning cri-

teria already considered.

One question stemming from the above work is to ask if there are natural classes

other than u.c.e. families for which these complexity questions can be answered. Any

58

candidate would have to provide a framework within which an upper bound could be

placed on complexity. If more general classes are considered, observe that complexity

can only increase, whereas for more restrictive classes complexity can only decrease.

59

Chapter 3

Anomalous Vacillatory Learning

Inspection of the definitions reveals that TxtFextij is a weaker learning criterion than

TxtFexij in the sense that every TxtFextij-learnable family is also TxtFexij-learnable, i.e.

TxtFextij ⊆ TxtFexij.

The following two theorems tantalizingly hinted that TxtFext∗∗ might be equivalent

to TxtFex∗∗. As we shall see, this is not the case.

Theorem 3.0.1 (Fulk, Jain, Osherson). (∀i, j ∈ N)(TxtFexij ⊆ TxtFextcij), where c

depends only on j.

Theorem 3.0.2 (Fulk, Jain, Osherson). (∀i ∈ N)(TxtFexi∗ ⊆ TxtFext∗∗).

For proofs of these theorems, see Fulk, Jain, and Osherson [6].

In our concluding remarks, we shall make use of Theorem 3.0.2 together with our

own Theorem 3.1.1 to describe an interesting relationship between the two notions of

anomalous vacillatory learning.

3.1 TxtFex∗2 6= TxtFext∗∗

We begin with a heuristic overview of the diagonalization process. Intuitively, we are

searching for a string, σ, on which the learner commits to hypothesizing a finite num-

ber of different codes for the same set on all extensions of σ. Such a string may not

60

exist, but the construction will be such that if no string can be found, then the family

under construction will include a set, on some enumeration of which, the machine never

commits to output only hypotheses that code a single set. On the other hand, if σ does

exist, the construction will produce two sets in the family that contain content(σ) and

have infinite symmetric difference.

We treat each step of the diagonalization as indexed by e and consider the learner,

Me. That step of the diagonalization will produce a family, Le, that Me cannot TxtFext∗∗-

learn.

Theorem 3.1.1. There is a u.c.e. family, L, that is TxtFex∗2-learnable, but is not

TxtFext∗∗-learnable.

Proof. Fix a learner, Me. We begin by describing what is needed to prevent Me from

TxtFext∗∗-learning. The result of this step will be a family, Le. Let Le = {e, e + 1, . . .}.

Depending on the course of the construction, Le may or may not be included in Le.

Motivated by our interest in strings on which Me has committed to a finite collection of

hypotheses, we make the following definition.

Definition 3.1.2. A string σ is said to be an (e, k)-stabilizing sequence if and only if the

following conditions are met for all τ � σ such that content(τ) ⊆ Le and for all t ∈ N:

1. {e, e+ 1, . . . , e+ k} ⊆ content(σ)

2. Me(τ) ≤ |σ|

3. WMe(σ),|σ|+t ∩ [0, k) = WMe(τ),|σ|+t ∩ [0, k).

In essence, Definition 3.1.2 describes strings that adhere to a certain form, that

define cones in {τ : content(τ) ⊆ Le} on which Me outputs no new hypotheses, and on

61

extensions of which Me outputs hypotheses for sets that are equal. Since this last claim

cannot be verified in the limit (it is a Π0
2 predicate), the above definition describes a

finite approximation.

The predicate “σ is not an (e, k)-stabilizing sequence” is Σ0
1 as it requires only a

witnessing string and natural number to verify. Thus, we may define a sequence of

strings that converges in the limit to an (e, 0)-stabilizing sequence, σe,0, if such a string

exists. Extending this strategy, we will construct σe,n,s for all n, s ∈ N, such that

• σe,n,s � σe,n+1,s for all n, s ∈ N, if both strings are defined.

• σe,0,0, σe,0,1, . . . converges to an (e, 0)-stabilizing sequence, if one exists.

• If σe,k,0, σe,k,1, . . . converges to a string σe,k for all k < n, then

σe,n,0, σe,n,1, . . . converges to an (e, n)-stabilizing sequence, σe,n, that extends σe,k

for all k < n, if such a σe,n exists.

Before constructing σe,n,s, we introduce some notation. First, define the following

finite set of strings.

A(σ, s) = {τ : (content(τ) ⊆ Le) ∧ (max(content(τ)) ≤ s) ∧ (|τ | ≤ s) ∧ (τ � σ)}

Next, let Q(e, n, σ, s) be the computable predicate “there is no string in A(σ, s) and

natural number less than or equal to s witnessing that σ is not an (e, n)-stabilizing

sequence”. Last, fix a symbol, ?, which will be used to indicate that a string is undefined.

We now give an effective algorithm for computing σe,n,s.

Stage 0: At this stage, no strings have yet been defined. We set σe,0,0 to be the

empty string.

62

Stage s+1: We set σe,s+1,i = ? for i ≤ s. We perform the following actions for each

n, starting with n = 0, up to n = s+ 1.

1. If σe,n,s 6= ?, σe,i,s+1 6= ? for all i < n, and Q(e, n, σe,n,s, s + 1), then we set

σe,n,s+1 = σe,n,s.

2. If σe,i,s+1 6= ? for all i < n, but the above case is not satisfied, then we consider a

string τ ∈ A(σe,n−1,s+1, s+ 1) (where we replace σe,n−1,s+1 with the empty string if

n = 0) which is least such that Q(e, n, τ, s+1). Such a τ is certain to exist as there

are strings in A(σe,n−1,s+1, s + 1) which have no extensions in A(σe,n−1,s+1, s + 1).

Having selected τ , we set σe,n,s+1 = τ and σe,k,s+1 = ? for all n < k ≤ s + 1. We

now terminate the process.

Once the process above terminates, either when Case (2) above occurs or n = s+ 1,

we end the stage of the construction.

Observe that {σe,n,s}s∈N converges if and only if {σe,k,s}s∈N converges for k < n

and there is an (e, n)-stabilizing sequence extending the string to which {σe,n−1,s}s∈N

converges. Furthermore, if {σe,n,s}s∈N converges, it converges to such an (e, n)-stabilizing

sequence.

Define ae,` to be the least even number greater than e + ` + 1 such that σe,h,s =

σe,h,s+1 6= ? for all h ≤ ` and s ≥ ae,`, if it exists. Let be,` = ae,` + 1. These numbers

will allow us to monitor the convergence of the sequences, {σe,`,s}s∈N, and control the

construction as appropriate. If {σe,k,s}s∈N does not converge for some k ∈ N, then ae,`

will be undefined for ` ≥ k.

63

Define two sets

Re = {x ∈ Le : ∀`(x 6= ae,`)}

R̂e = {x ∈ Le : ∀`(x 6= be,`)}.

Observe that Re is c.e. Because ae,0 < ae,1 < . . . and ae,` ≥ `, we see that x ∈ Re if

and only if x 6= ae,` for all ` ≤ x. Although ae,` is not computable, x 6= ae,` is Σ0
1.

x 6= ae,` ↔(x is odd) ∨ (x ≤ e+ `+ 1) ∨ (σe,`,x = ?)

∨ (σe,`,x−1 = σe,`,x) ∨ (∃s ≥ x)(σe,`,s 6= σe,`,x).

Thus, x 6= ae,` is Σ0
1 and x ∈ Re is a finite conjunction of Σ0

1 statements. Similarly,

substituting be,` for ae,`, we see that R̂e is also c.e. We are now in a position to define

Le. Recall that D0, D1, . . . enumerates all finite sets.

Le = {Re ∪ (Dn ∩ [e,∞)) : n ∈ N} ∪ {R̂e ∪ (Dn ∩ [e,∞)) : n ∈ N}

We now return to Me, the learner against which we are currently diagonalizing. We

must prove that Me is incapable of TxtFext∗∗-learning Le.

Case 1: Suppose there is a minimal ` 6= 0 such that σe,` is undefined. By definition,

this implies there is no σ extending σe,`−1 such that e + ` ∈ content(σ) ⊂ Le and

WMe(σ),|σ|+s ∩ [0, `) = WMe(τ),|σ|+s ∩ [0, `), for all τ such that σ ≺ τ with content(τ) ⊂ Le

and for all s ∈ N. Furthermore, since σe,` is undefined, σe,i is undefined for all i ≥ `.

Consequently, ae,i is undefined for all i ≥ ` and both Re and R̂e are cofinite subsets of

Le. For a suitable finite set, Dn, we have Re ∪ Dn = Le, and hence, Le ∈ Le. Since

no σ exists on which the content of the hypothesis stabilizes, we can repeatedly select

extensions on which Me outputs hypotheses coding distinct sets and inductively build

64

an enumeration of Le on which Me infinitely often outputs codes for at least two sets

that are not equal. If ` = 0, there is the additional possibility that Me cannot be made

to select a finite collection of hypotheses and restrict its output to that finite list. The

machine has failed to TxtFext∗∗-learn Le.

Case 2: Suppose that σe,` is defined for all `. Both Re and R̂e are coinfinite sets and

have infinite symmetric difference. By the definition of σe,0, for any τ such that σe,o ≺ τ

and content(τ) ⊂ Le, Me(τ) ≤ |σe,0|. We may therefore define a finite list, h0, h1, . . . , hn,

of all distinct hypotheses that Me outputs on extensions of σe,0. Pick ` sufficiently large

so that, for each i, j ≤ n for which Whi 6= Whj , there is an x ∈ Whi4Whj such that

x < `.

All hypotheses made by Me on extensions of σe,` contained in Le must have the same

intersection with [0, ` − 1] as WMe(σe,`). By the choice of `, all such hypotheses must

code the same set, yet Le contains two sets that extend σe,` and have infinite symmetric

difference: content(σe,`)∪Re and content(σe,`)∪ R̂e. Again, we witness failure by Me to

TxtFext∗∗-learn Le.

For each e ∈ N, we have shown that Le is not TxtFext∗∗-learnable by Me. Conse-

quently, L =
⋃
e∈N Le is not TxtFext∗∗-learnable. We must now verify that L is indeed

TxtFex∗2-learnable.

Every set in L is a finite variant of Re or R̂e for some e ∈ N. Therefore, a learner

need only identify the appropriate e and determine to which of Re and R̂e the input

enumeration is most similar. Since Re is co-even and R̂e is co-odd, they are identifiable

by the numbers not in them. Let xe and x̂e be codes for Re and R̂e, respectively. For

notational ease, let mσ = min(content(σ)) and nσ = min({y > mσ : y /∈ content(σ)}).

65

Given σ, an intial segment of an enumeration for a set in L, mσ is the current guess at

the least member of the set (hence the e for which the set is in Le) and nσ is the current

guess at the least element of Le not in the set. Define a machine M as follows:

M(σ) =



xe if e = mσ ∧ (nσ is even),

x̂e if e = mσ ∧ (nσ is odd),

0 otherwise.

Suppose that M is receiving an enumeration for L ∈ L. Every set in L is either of

the form Re∪Dn or R̂e∪Dn, for some e, n ∈ N. By the symmetric relationship between

Re and R̂e, we may assume that L = Re ∪ Dn for some specific e and n. We must

consider two cases: Re is either cofinite or coinfinite.

If Re is cofinite, R̂e is also cofinite. As a consequence, Re =∗ R̂e. Eventually, the

enumeration will exhibit the least element of the set being enumerated. After that stage,

M will either output xe or x̂e. Given the model of learning, both are correct hypotheses.

If Re is coinfinite, then Le \ Re is an unbounded set of even numbers. The target set

is a finite variant of Re. Hence, the least element not in content(σ) and greater than e

will be even for cofinitely many initial segments of any enumeration. In other words, for

cofinitely many initial segments, σ, of any enumeration of L, nσ is even and M(σ) = xe,

a code for a finite variant of the enumerated set.

We have constructed a family L such that, for each computable machine, L contains

a subfamily that the machine cannot TxtFext∗∗-learn, and we have exhibited a specific

machine that TxtFex∗2-learns the whole family. This completes the proof.

66

3.2 Conclusion

Recall the statement of Theorem 3.0.2 from the introduction:

(∀j)(TxtFexj∗ ⊆ TxtFext∗∗).

Combining this with Theorem 3.1.1, we observe the following intriguing relationship

between the anomalous versions of the two learning criteria

(∀j)(TxtFexj∗ ⊆ TxtFext∗∗ (TxtFex∗∗).

Other results on vacillatory learning can be found in a Case’s paper [5] and in Osh-

erson, Stob and Weinstein’s book [8].

67

Bibliography

[1] Dana Angluin. Inductive inference of formal languages from positive data. Theory

of Algorithm and Programs, 45:117–135, 1980.

[2] Janis Bārzdiņš. Two theorems on the limit synthesis of functions. Theory of Algo-

rithm and Programs, 1:82–88, 1974.

[3] Janis Bārzdiņš and Rūsiņš Freivalds. Prediction of general recursive functions.

Doklady Akademii Nauk SSSR, 206:521–524, 1972.

[4] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive infer-

ence. Information and Control, 28:125–155, 1975.

[5] John Case. The power of vacillation. SIAM Journal of Computation, 49(6):1941–

1969, 1999.

[6] Mark Fulk, Sanjay Jain, and Daniel Osherson. Open problems in ”systems that

learn”. Journal of Computer and System Sciences, 49:589–604, 1994.

[7] Mark Gold. Language identification in the limit. Information and Control, 10:447–

474, 1967.

[8] Daniel Osherson, Michael Stob, and Scott Weinstein. Systems That Learn: An

Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press,

Cambridge, MA, 1986.

68

[9] Daniel Osherson and Scott Weinstein. Criteria of language learning. Information

and Control, 52:123–138, 1982.

[10] Robert I. Soare. Recursively enumerable sets and degrees: a study of computable

functions and computably generated sets. Springer-Verlag, 1987.

