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NOTES AND ABBREVIATION 
 

! denotes the set of natural numbers 
A0; A1; A2; : : : denotes subsets of the set of natural numbers 
®; ¯; : : : denotes numberings 
Pn denotes the n‐th program of a Turing machine (TM) 
'n denotes the unary function, computable by a TM with the n‐th program Pn. 
® · ¯  denotes that a numbering ® is reducible to a numbering ¯ 
fAsgs2! denotes an approximating function to a set A 
§0

n denotes finite levels of arithmetical hierarchy for n 2 ! 
c.e. set denotes computably enumerable set 
d-c.e. set denotes difference of two c.e. sets 
§¡1

n  (or n‐c.e.) sets denotes finite levels of the Ershov hierarchy for n 2 ! 
¦¡1

n  denotes the set of the complements of the §¡1
n ‐sets 

¢¡1
n  denotes the intersection of the classes §¡1

n , ¦¡1
n  

fWxgx2! denotes the standard numbering of c.e. sets
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INTRODUCTION 
 
Uniformly computable sequences of sets of natural numbers is a classical object 

of a study of the computability theory. A major part of Hartley Rogers’s famous 
monograph [1], a handbook for computability theory specialists, is devoted to 
investigation of properties of such sequences. 

A nonempty computably enumerable set is precisely a  set whose elements can be 
represented as a sequence of numbers generated by some algorithm. For an arbitrary 
sequence of computably enumerable sets, each set of the sequence has its own 
enumeration algorithm, and all these algorithms can be mutually independent. In the 
case when it is possible to parameterize in some effective way this set of algorithms, 
i.e. to come up with an algorithm that, for each set of the sequence, reproduces an 
algorithm of generation of its elements, we are dealing with a uniformly computably 
enumerable sequence. 

Formally, for a sequence of subsets of the natural numbers A0; A1; A2; : : :A0; A1; A2; : : :, it 
means that the set of pairs of numbers fhx; ni : x 2 Angfhx; ni : x 2 Ang is computably enumerable. A 
family AA of computably enumerable (c.e. for short) sets is called computable if its 
elements can be numbered (not necessarily without repetitions) as a uniformly 
computably enumerable sequence. In other words, there exists a surjective mapping 
® : ! !A® : ! !A of the set of all natural numbers !! onto the family AA such that the sequence 
of sets ®(0); ®(1); ®(2); : : :®(0); ®(1); ®(2); : : : is uniformly computably enumerable, i.e. the set of pairs 

 fhx; ni : x 2 ®(n)g (¤)fhx; ni : x 2 ®(n)g (¤) 
is a c.e. set. The set (¤)(¤) is called the universal set of a numbering ®®. A numbering ®® is 
called computable if its universal set is c.e. A classical example of a computable 
numbering is the standard numbering W0;W1;W2; : : :W0;W1;W2; : : : of the family of all c.e. subsets 
of !!. In this numbering, WnWn denotes the domain of the unary function 'n'n, that is 
computable by a Turing machine with nn‐th program PnPn in the Gödel encoding of all 
Turing machines. 

At the end of the 20th century, S.S. Goncharov and A. Sorbi [2] offered a general 
approach to define notion of a computable numbering of families of sets of a class of 
constructive objects, which admits a Gödel numbering. For example, the class of 
arithmetical sets described by formulas of arithmetic, and the class of sets of the Ershov 
hierarchy is described by Boolean combinations of 99‐formulas of arithmetic. 

The Goncharov‐Sorbi approach allowed to introduce the notion of a computable 
numbering for families of sets of many natural classes of constructive objects and to 
apply to them methods developed in general numberings theory. Dozens of papers on 
computable numberings in arithmetic, hyperarithmetical, and analytical hierarchies 
and the Ershov difference hierarchy were published over the past 15 years. 

Relevance of the research. The thesis is devoted to the investigation of 
computable numberings of families of sets in the Ershov hierarchy. The relevance of 
studying the computable numberings in the Ershov hierarchy is confirmed by many 
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publications in highly rated international journals such as Algebra and Logic, Journal 
of Symbolic Logic, Mathematical Logic Quarterly, Archive for Mathematical Logic as 
well as by plenary and sectional talks at many international conferences (Maltsev 
Readings, Logic Colloquium, Computability in Europe, Asian Logic Conference, 
Theory and Applications of Models of Computations). Related research has been done, 
and is being done, in the world in several important centers in computability theory: 
Novosibirsk State University, Sobolev Institute of Mathematics, Kazan State 
University (Russia), University of Wisconsin (USA), University of Heidelberg 
(Germany), University of Siena (Italy), Singapore National University, University of 
Auckland (New Zealand), Kazakh National University (Kazakhstan), and others. 

Along with the notion of a computable numbering, the notion of reducibility of 
numberings, and the derived notion of a Rogers semilattice are the basic concepts of 
work. 

As is common for numbering theory, an index nn in a numbering ®® is regarded as 
a description (calculation program) of the set ®(n)®(n). Two numberings ®; ¯®; ¯  can be 
compared in terms of their algorithmic complexity. A numbering ®® is called reducible 
to a numbering ¯̄ (in symbols ® · ¯® · ¯), if there exists a translation algorithm for each 
program in ®® to a program of the same object in ¯̄, i.e. ®(n) = ¯ ± f(n)®(n) = ¯ ± f(n) for some 
computable function ff  for all n 2 !n 2 !. The reducibility relation of numberings is a 
preorder. Two numberings ®; ¯®; ¯  are called equivalent if they are reducible to each other. 
A partial order relation is naturally defined on the equivalence classes of computable 
numberings of a family, which is induced by the reducibility relation. The algebraic 
structure thus obtained is an upper semilattice and is called the Rogers semilattice of 
computable numberings of the family. 

The Rogers semilattice, as is noted in the monograph of Ershov [3], represents the 
complexity of all computations of the considered familyas as is a whole, unlike the 
complexity of concrete computations investigated in complexity theory. The purpose 
of the research of Rogers semilattices is to find relationships between structural and 
other characteristics of a given family, on one hand, and algebraic and elementary 
properties of Rogers semilattices, descriptions of invariants required to classify their 
isomorphism types and types of elementary equivalence on the other hand. 

The goal of the research. The thesis is devoted to study problems that concern 
the following two invariants related to the extreme elements of Rogers semilattices: the 
problem of the existence of universal computable numberings and the problem of the 
existence of minimal computable numberings. These issues are developed in [4–23] by 
researchers from Germany, Italy, Kazakhstan, Russia and USA. 

General methodology of the research. The common tools for studying the 
computable numberings in the Ershov hierarchy comes from computability theory and 
the theory of numberings. In the thesis, an important role is played by the fixed point 
theorem and its generalizations such as wnwn‐subobjects of a numbered set. Another 
important tool coming from computability theory is the so‐called “priority method” for 
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the construction of computable numberings. Indeed, the priority method is only a 
common scheme to construct computably enumerable sets and relations, but every 
concrete construction built by the priority method is based on very original, and 
sometimes very sophisticated specific ideas. 

Scientific novelty. Scientific novelty of this research is that it is devoted to the 
solution of well known problems that are formulated, say, in [4]. Investigations in the 
dissertation throw light to some of these questions in the Ershov hierarchy. Interest in 
these problems comes from the facts that some properties of Rogers semilattices for 
families of sets in the Ershov hierarchy are significantly different from the properties 
of Rogers semilattices of families of c.e. sets and families of arithmetic sets (see, for 
example, [9–11]). 

Theoretical and practical significance. The theoretical significance of this 
research is based on a very new and unexpected computational phenomena that we 
encountered during the study of non‐monotonic computations like computations in the 
Ershov hierarchy. Therefore, the problem of studying further specific features of non‐
monotonic computations is very important for non‐classical models of computation. 
Moreover, there are many long‐standing problems of the theory of numberings that 
might be resolved by means of computable numberings in the Ershov hierarchy. 
Among such problems, one can mention the problem of Ershov on the cardinality of 
Rogers semilattices: is it true that Rogers semilattice of a computable family is either 
infinite or one‐element. The practical significance of this research in the frame of the 
thesis is its usefulness for specialists in this field as well as for creation of up‐to‐date 
courses on computable numberings. Besides, non‐monotonic computations seem to be 
a suitable mathematical model for algorithmic processes that occur during 
neurocomputing and for expert systems. 

Publications. The results of the thesis were published in 11 [25–34] works. Two 
papers were published in ranking journals [30–31], 3 articles were published in journals 
recommended by the Committee for Control of Education and Science of RK, 4 
abstracts were published in the proceedings of international conferences. 

The main results of this thesis were presented at the following international 
conferences: 5th Conference on Computability in Europe, CiE‐2009 (2009, 
Heidelberg, Germany); Logic Colloquium 2009, (2009, Sofia, Bulgaria); Association 
for Symbolic Logic 2012 North American Annual Meeting (2012, Madison, WI, USA); 
Mal’tsev Meeting ‐ 2012, (2012, Novosibirsk, Russia). 

Besides, the results were reported on the seminar "Spectral theory of linear 
operators and its applications" at the Department of Fundamental Mathematics 
(Almaty, 2014); and the seminar "Modern scientific problems of mathematics, 
mechanics and information technology" (Almaty, 2014). 

The structure and scope of the thesis. The thesis of 51 pages consists of an 
introduction, three chapters, a conclusion and the list of references. 
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Statements are numbered by pairs of indices. The first index indicates the number 
of the section; the second one shows the number of the statement within the section. 

The main content of the thesis. 
Section 1 contains common concepts of computability theory and numberings 

theory and consists of two subsections. In subsection 1 we define basic notions and 
properties of the Ershov Hierarchy. In subsection 2 we define notions of computable 
numberings in hierarchies and describes properties of extreme elements in the Rogers 
semilattice in various hierarchies. 

In section 2 we investigate properties of universal numberings of finite families 
of d.c.e. sets. We show different cases of finite families of d.c.e. sets for which there is 
a universal numbering and for which there is not. 

The main results of this section are the following theorems. The first theorem is 
an answer for the question: "Do there exist finite families in Ershov’s hierarchy without 
universal numberings?" 

Theorem 2.4 There are nonempty, disjoint, d.c.e. sets A; B such that the finite 
family F = fA; Bg has no universal numbering. 

And the second theorem covers some cases of finite families of d.c.e. sets for 
which there is a universal numbering. The conditions below may appear rather 
complicated but encompass all the obstacles to building a universal numbering of 
which we are aware. 

Theorem 2.3 If there are c.e sets A0; A1; B0; B1 and A = A0 ¡ A1 and 
B = B0 ¡ B1 and A * B and B * A such that 

 

8x (x 2 A0 ) x 62 A1 or x 62 B);

8x (x 2 B0 ) x 62 B1 or x 62 A); 
and partial computable functions Á and Ã such that 

 

8s8x 2 As(x 62 B or (Ás(x; s) #> s&x 2 BÁs(x;s)));

8s8x 2 Bs(x 62 A or (Ãs(x; s) #> s&x 2 AÃs(x;s))); 

then there is a universal numbering ¼ for F = fA; Bg. 
The main result of section 3 is the following theorem on the existence of families 

of sets without minimal computable numberings in each level, whether finite or 
infinite, of the Ershov hierarchy. 

Theorem 3.2 For every nonzero computable ordinal and any ordinal notation a of 
it, there exists a §¡1

a –computable family A of §¡1
a  sets that has no §¡1

a –computable 
minimal numbering. 

The results of sections 2 and 3 were published in journals in the Thomson list with 
non‐zero impact factor. 

The author expresses his deep appreciation to his supervisor, doctor of physical 
and mathematical sciences, Professor Serikzhan Agybaevich Badaev (Al‐Farabi 
Kazakh National University, Almaty, Kazakhstan), as well as to his co‐adviser 
Professor Steffen Lempp (University of Wisconsin, Madison, WI, USA) for posing 
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interesting problems and for useful advice, contribution to their solutions, as well as 
comprehensive support. The author wishes to thank the Kazakh government and Al‐
Farabi Kazakh National University for support. 
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1 BACKGROUND 
 
1.1 Ershov Hierarchy 
The notion of a computable enumerable set, i.e. a set of integers whose members 

can be effectively listed, is a fundamental one. Another way of approaching this 
definition is via an approximating function fAsgs2! to the set A in the following sense: 
we begin by guessing x =2 A at stage 0 (i.e. A0(x) = 0); when later x enters A at stage 
s + 1, we can change our approximation from As(x) = 0 to As+1(x) = 1. Note that 
this approximation (for fixed) x may change at most once as s increases, namely when 
x enters A. An obvious variation of this definition to allow us more than one change: 
a set A is 2‐c.e. (or d‐c.e.) if for each x, As(x) change at most twice as s increases. This 
is equivalent to requiring the set A to be the difference of two c.e. sets A1 ¡ A2. 
Similarly, one can define n‐c.e. sets by allowing n changes for each x. A direct 
generalization of this reasoning leads to sets which are computably approximable in 
the following sense: for a set A there is a set of uniformly computable sequence 
ff (x; 0); f (x; 1); : : : ; f (x; s); : : : jx 2 !g consisting of 0 and 1 such that for any x the 
limit of the sequence f(x; 0); f(x; 1); : : : exists and is equal to the value of the 
characteristic function A(x) of A. The well‐known Shoenfield Lemma states that the 
class of such sets coincides with the class off all ¢0

2‐sets. Thus, for a set A, A ·T ;
0 if 

and only if there is a computable function f (x; s) such that A(x) = lims f(x; s). 
The notion of d‐c.e. and n‐c.e. sets goes back to Putnam [35] and was first 

investigated and generalized by Ershov [36–38]. The arising hierarchy of sets is now 
known as the Ershov difference hierarchy. The position of set A in this hierarchy is 
determined by the number of changes in the approximation of A described above, i.e. 
by the number of different pairs of neighboring elements of the sequence. 

The Ershov hierarchy consists of the finite and infinite levels. The finite levels of 
the hierarchy consists of the n‐c.e. or §¡1

n  sets for n 2 !. Otherwise a set belongs to 
one of the infinite levels of the hierarchy. The infinite levels of the hierarchy are 
defined using infinite constructive ordinals. As it turned out, the resulting hierarchy of 
sets exhaused the whole class of ¢0

2‐sets. Each subsequent level of the hierarchy 
contains all previous ones but does not coincide with any of them. 

Our notation and terminology are standard and generally follows Soare [39]. In 
particular, the standard enumeration of the c.e. sets and partial computable functions 
are denoted by fWxgx2! and f'xgx2!, respectively. As usual, we append [s] to various 
functionals such as 'A

e (x)[s] to indicate the state of affairs at stage s. We mean by this 
notation the result of running the e th Turing machine for s steps on input x. For a set 
A μ !, its complement ! ¡ A is denoted by ¹A. The cardinality of a set A is denoted 
by jAj. 

The pairing function hx; yi is defined as hx; yi =
(x+y)2+3x+y

2
 and bijectively maps 

!2 onto !. We denote by l and r the uniquely defined functions such that for all x; y, 
l(hx; yi) = x, r(hx; yi) = y and hl(x); r(x)i = x; the n‐place function hx1; : : : xni for 
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n > 2 is defined by hx1; : : : ; xni = hh: : : hx1; x2i; x3i; : : : ; xni: In this case the s‐th 
component of hx1; : : : ; xni is denoted as cn;s. Thus, hcn;1(x); : : : ; cn;n(x)i = x and 
cn;s(hx1; : : : ; xni) = xs. If a function f  is defined at x, then we write f (x) #, otherwise 
f (x) ". The characteristic function of a set A is denoted by the same letter: A(x) = 1, 
if x 2 A, and otherwise A(x) = 0. 

The finite levels of the Ershov hierarchy. We begin with following 
characterization of the ¢0

2‐sets (i.e. sets A ·T ;
0). 

Lemma 1.1 (Shoenfield Limit Lemma [40]) A set A is a ¢0
2‐set if and only if 

there is a computable function of two variables f  such that f(x; s) 2 f0; 1g for all s; x;

f (x; 0) = 0 and lims f (x; s) exists for each x (i.e. jfs : f (x; s) 6= f (x; s + 1)gj < 1), 
and lims f(x; s) = A(x). 

It follows easily from the Limit Lemma that 
Theorem 1.1 [37] A set A is Turing reducible (T‐reducible) to ;0 if and only if 

there is a uniformly computably enumerable sequence of c.e. sets fRxgx2! such that 

 R0 ¶ R1 ¶ : : : ;

1\
x=0

Rx = ;; and A =

1[
x=0

(R2x ¡ R2x+1) (1) 

Proof. ()) Let A · ;0. By the Limit Lemma there is a computable numbering f  
such that A = lims f(x; s), and for all x, fs(x; s) = 0. Define c.e. sets Rn, n 2 !, as 
follows: 

R0 = fy : 9(f (y; s) = 1)g, 

R1 = fy : 9s0; s1(s0 < s1; f (y; s0) = 1; f (y; s1) = 0)g, and in general for n > 0, 
Rn = fy : 9s0 < s1 < : : : < sn(f(y; s0) = 1; f(y; s1) = 0; : : : ; 

f(y; sn) = n + 1 mod 2g. 
Obviously, all sets Rn are c.e., the sequence fRxgx2! is uniformly c.e. and 

R0 ¶ R1 ¶ : : :. It is also easy to check that 
T1

x=0 Rx = ; and 

A =
Sx=0
1 (R2x ¡ R2x+1): 

(() For this direction the proof is straightforward. 
Note that if A is an arbitrary §0

2‐set then it is easy to show that 

A =
Sx=0
1 (R2x ¡ R2x+1) such that R0 ¶ R1 ¶ : : :. Therefore, in theorem 1.1 the 

condition 
T1

x=0 Rx = ; is necessary. 

If in (1) starting from some n all elements of the sequence fRxgx2! are empty, 
then we obtain sets from the finite levels of the Ershov Hierarchy. 

Definition 1.1 [36] A set A is §¡1
n  set, if either n = 0 and A = ;, or n > 0 and 

there are c.e. sets R0 ¶ R1 ¶ : : : ¶ Rn¡1 such that 

 A =

[n¡1
2

][
i=0

(R2i ¡R2i+1) (Here if n is odd number then Rn = ;:) 

It follows from this definition that if n > 1 and n is an even number then (n = 2m) 
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 A =

m¡1[
x=0

(R2x ¡R2x+1); 

and if n > 1 and n is an odd number (n = 2m + 1) then 

 A = f

m¡1[
x=0

(R2x ¡R2x+1)g [R2m: 

Therefore, the class of §¡1
1  sets coincide with the class c.e. sets, §¡1

2  sets can be 
written as R1 ¡ R2, where R1 ¶ R2 c.e. sets, therefore they also called d‐
c.e. (difference‐c.e.) sets, §¡1

3  sets can be written as (R1 ¡R2) [ R3 etc. 

The n‐c.e. sets are exactly those sets constitute the level §¡1
n  of the Ershov 

hierarchy. The complement of the §¡1
n ‐sets constitute the level ¦¡1

n  of the hierarchy 
(¦¡1

n ‐sets). The intersection of these two classes is denoted by ¢¡1
n : 

 ¢¡1
n = §¡1

n \ ¦¡1
n  

The proof of the following statement is straightforward. 
Theorem 1.2 A set A is an §¡1

n  set for some n ¸ 0 if and only if there is a 
computable function g of two variables s and x such that A(x) = lims g(x; s) for every 
x, g(x; 0) = 0 and 

  jfs j g(x; s + 1) 6= g(x; s)gj · n: 
Comment. Addison, in [41], considered a general method of constructing 

“difference” hierarchies. In particular, his hierarchy, generated by c.e. sets, defines the 
same classes of n‐ and !‐c.e. sets. The notations ¢¡1

n ;¦¡1
n  and §¡1

n  for the finite levels 
of Ershov hierarchy, as well as analogous notations for further levels (see Theorem 
1.6) were introdused by Ershov [36–37]. 

The class of !‐c.e. sets. The n‐c.e. sets for n < ! does not exhaust the collection 
of ¢0

2‐sets ([37], see Theorem 1.4). Therefore, to obtain in this way a description of all 
¢0

2‐sets we need to consider infinite levels of the hierarchy. 

In the definition of §¡1
n  sets n < ! we have used non‐increasing sequences 

R0 ¶ R1 ¶ : : : ¶ Rn¡1 of c.e. sets. The infinite levels of the Ershov hierarvhy are 
defined using uniformly c.e. sequences of c.e. sets such that the c.e. sets in these 
sequences satisfy the same μ‐relation which are consistent with the order type of the 
original which defines the level of this set in the hierarchy. 

Definition 1.2 Let P (x; y) be a computable binary relation which partially orders 
the set of natural numbers (for convenience instead of P (x; y) we will write x ·P y.) 
By definition, a uniformly c.e sequence fRxg of c.e. sets is a P ‐(or ·P¡) sequence if 
for all pairs x; y,x ·P y implies that Rx μ Ry. 

Note that we can easily redefine the §¡1
n  sets for n < ! according to this definition. 

Indeed, if, for instance, for some c.e. sets A1 ¶ A2 ¶ : : : ¶ An we have 
A = (A1 ¡ A2) [ : : : [ An¡1 ¡ An) (where n is an even number), then let 
R0 = An; R1 = An¡1; : : : ; Rn¡1 = A1. We have thus obtained an n‐sequence 
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(n = f0 < 1 < : : : < n ¡ 1g) R0 μ R1 μ : : : μ Rn¡1 such that 

A =

n¡1
2S

i=0

(R2i+1 ¡ R2i): 

The sets from the first infinite level of the Ershov hierarchy are the !‐c.e. sets. 
They are defined using !‐sequences of c.e. sets, i.e. sequences fRxgx2!, in which the 
relation Rx μ Ry is consistent with the order type of ! = f0 < 1 < : : :g : 
R0 μ R1 μ : : : μ Rn¡1 μ : : : : 

Definition 1.3 A set A μ ! belongs to level §¡1
!  of the Ershov hierarchy (or A is 

a §¡1
! ‐set) if there is an !‐sequence fRxgx2! such that A =

1S
n=0

(R2n+1 ¡R2n). A 

belongs to level ¦¡1
!  of the Ershov hierarchy (or A is a ¦¡1

! ), if ¹A 2 §¡1
! . Finally, A 

belongs to level ¢¡1
!  of the Ershov hierarchy (A is a ¢¡1

! ‐set), if A and ¹A both are §¡1
!

‐sets, i.e. ¢¡1
! = §¡1

! \¦¡1
! . ¢¡1

! ‐sets are also called !‐c.e. sets. 

Theorem 1.3 ([42], or see [43]) A set A μ ! belong to level §¡1
!  of the Ershov 

hierarchy iff there is a partial computable function Ã such that for every x, 
x 2 A implies 9s(Ã(x; s) #) and A(x) = Ã(¹s(Ã(x; s) #); x); 

x =2 A implies 8s(Ã(x; s) "), or 9s(Ã(x; s) #) & A(x) = Ã(¹s(Ã(x; s) #); x): 
In other words, A μ dom(Ã(¹s(Ã(x; s) #); x)), and for every x, 

x 2 dom(Ã(¹s(Ã(x; s) #); x)) implies A(x) = Ã(¹s(Ã(x; s) #); x).  

Definition 1.4 Let f  be a total unary function. A set A is called f ‐computably 
enumerable (an f ‐c.e. set), if there is a computable function g such that for all s and x; 
A(x) = lims g(x; s), and 
  jfs : g(x; s) 6= g(x; s + 1)gj · f(x): 

Theorem 1.4  
a) There is an id‐c.e. set (where id is the identity function) which is not n‐c.e. 

for any n 2 !: 
b) Let f  and g be computable functions such that 91x(f (x) < g(x)): 
c) There is a ¢0

2‐set which is not f ‐c.e. for any computable function f . 
d) Let A be an f ‐c.e. set for some computable function f , A 6= ;, and let g be a 

computable function such that 8y9x(g(x) ¸ y). Then there exists a g‐c.e. set B  such 
that A ´m B. 

Theorem 1.5 Let A μ !. The following are equivalent: 
a) A is !‐c.e. 

b) There is an ! ‐sequence fRxgx2! such that 
S

x2!

; and A =
1S

n=0

(R2n+1 ¡R2n). 

c) A is f ‐c.e. for some computable function f . 
d) There is a partial computable function Ã such that for all x, 
 A(x) = Ã(x; k); where k = ¹t(Ã(x; t) #): 

e) A is tt‐reducible to ;0. 
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The infinite levels of Ershov hierarchy. The !‐c.e. sets are the first examples 
of sets from infinite levels of the Ershov hierarchy. 

Let us recall some necessary notions and notations. For infinite levels of the 
Ershov we use Kleene’s system of ordinal notations (O; <O) (Kleene [44], see also 
Rogers [1] for details). For a 2 O, jajO denotes the ordinal of which a is a notation; 
Kleene’s partial ordering on the set O is denoted by <O. Ordinal notations were used 
by Ershov in his article [37] to represent and study the sets lying in the infinite levels 
of his difference hierarchy. In the notation O a parity function e(x) is defined as 
follows: for any a 2 O, e(a) = 1 if jajO is odd and e(a) = 0, if jajO is even. 

Since jajo has order‐type hfx : x <o ag; <oi, the sentence ”a‐sequence of c.e. sets 
fRxg” for a 2 O has to be understood in the sense of  Definition 1.2. Define for a 2 O 
the operators Sa and Pa, which map a‐sequences fRxgx<oa to subset of ! as follows: 

 Sa(R) = fz j 9x <o a(z 2 Rx&e(x) 6= e(a)&8y <o x(z =2 Ry))g:

Pa(R) = fz j 9x <o a(z 2 Rx&e(x) = e(a)&8y <o x(z =2 Ry))g [ f! ¡
[

x<oa

Rxg: 

It follows from these definition that Pa(R) = Sa(R) for all a 2 O and all a‐
sequences R. 

Definition 1.5 [38] The class §¡1
a (¦¡1

a ) for a 2 O is the class of sets Sa(R)         
(Pa(R); respectively), where R = fRxgx<oa runs thought all a‐sequence of c.e. sets. 
Let ¢¡1

a = §¡1
a \¦¡1

a .  
It is easy to see that for natural numbers n > 0 and for a 2 O such that jajo = ! 

these definition coincide with the previous ones. (The finite levels of the Ershov 
hierarchy are denoted by ordinals, not by their O‐notations.) 

We will use another characterization of the sets in the Ershov hierarchy, as 
described in Ash and Knight’s handbook [45]. 

Definition 1.6 Let a be a notation of a nonzero computable ordinal. We say that 
a set of numbers A belongs to the §¡1

a  class of the Ershov hierarchy if there exist a pair 
of computable functions f (z; s) and h(z; s) such that, for all z; s: 

1. A(z) = lims f(z; s) and f (z; 0) = 0 (here and hereinafter, we denote the value 
of the characteristic function of a set X  on z by X(z)); 

2. (a) h(z; 0) = a & h(z; s + 1) ·O h(z; s);  
(b) f(z; s + 1) 6= f(z; s) ) h(z; s + 1) 6= h(z; s). 

The function h is called a change function for A with respect to f . A pair of 
functions hf; hi is called a §¡1

a –approximation of the §¡1
a  set A. 

There are different versions of this definition (for example [46] or [47] ), however, 
the next one appears in the paper of R.L. Epstein, R.L. Haas and R.L. Kramer [42] and 
V.L. Selivanov [48-49]. 
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Definition 1.7 For any a 2 O, a set A is a §¡1
a ‐set, if there are a computable 

function f (x; s) and a partially computable function g(x; s) such that for all x 2 ! the 
following conditions are performed: 

1. A(x) = lims f(x; s) and f(x; 0) = 0: 
2. g(x; s) #! g(x; s + 1) #·O g(x; s) <O a: 
3. f(x; s) 6= f (x; s + 1) ! g(x; s + 1) #6= g(x; s) 

A pair of functions hf; hi is called a §¡1
a –approximation of the §¡1

a  set A. 
Theorem 1.6 (Hierarchy Theorem [37]) Let a; b 2 O and a <o b. Then 

§¡1
a [ ¦¡1

a ( §¡1
b \ ¦¡1

b : 

Corollary 1.6.1 For every a 2 O, §¡1
a ( §0

2 \¦0
2: 

Theorem 1.7 Let jajo be a limit ordinal. The set A belongs to the class ¢¡1
a  if and 

only if there is an a‐sequence R such that A = Sa(R) and [b<oaRb = !. 

Theorem 1.8 ¢0
2 =

S
a2O

§¡1
a . 

Generalizing Definition 1.3 of !‐c.e. sets to infinite ordinals we introduce the 
following definition: 

Definition 1.8 Let jajo be a limit ordinal. If A 2 ¢¡1
a , then the set A is called an 

jajo‐c.e. set (or an ®‐c.e. set, if jajo = ®). 

It is clear that if A 2 §¡1
a  for some a 2 O, and B ·m A, then B 2 §¡1

a , and if A 
is jajo‐c.e. for some limit ordinal jajo, a 2 O, and B ·m A, then B  is also jajo‐c.e. set. 

Obviously, definitions 1.6 and 1.7 are equivalent. The equivalence of definitions 
1.5 and 1.7 was established in the paper [48]. 

The next three theorems show that we really have hierarchy of sets for the class 
¢0

2 of the arithmetical hierarchy. Our research is devoted to the problems of computable 
numbering of sets from both finite and infinite levels of the Ershov hierarchy.  

 
1.2 Computable numberings in hierarchies 
The theory of numberings was developed for investigating the algorithmic 

properties of classes of abstract objects by methods of classical computability theory, 
by coding the information about them and their relations through the properties of their 
numbers (names). For the first time the effectiveness of this approach has been 
demonstrated in the classical work of K. Gödel’s on the incompleteness of arithmetic. 

Later S.K. Kleene [50] constructed a universal partial computable function (in 
other words, a computable enumeration of all partially computable functions). Kleene’s 
result has great importance for computability theory. 

The concept of a numbering as a mathematical object was introduced by A.N. 
Kolmogorov [51] and his student V.A. Uspensky, they studied computable numberings 
of partial computable functions [52-53]. 
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H. Rogers [54-55] investigated the computable numberings of the family of all 
partial computable functions and computably enumerable sets. He introduced the 
concept of Com(A) of all computable numberings of the family A. Rogers considered 
so‐call acceptable numbering, i.e. computable numberings of the family of all unary 
partial computable functions and the family of all c.e. subsets of ! such that every 
computable numbering of the family is reducible to it. Numberings that are minimal 
with respect to reducibility were studied by R.F. Friedberg [56], A.I. Malt’sev [57], 
M.B. Pour‐El [58]. 

The results of the classical theory of computable numberings are used most 
frequently in recursive mathematics [59-60]. Thus, the method of constructing families 
of computably enumerable sets with a finite number of computable Friedberg 
numberings proposed by Goncharov in [14], served as a starting point for the study of 
algorithmic dimensions of recursive models [61-63]. 

The theory of numberings found applications in classical recursive theory. For 
example, using the theorem of Goncharov [14] on the numbers of computable 
Friedberg numberings of families of computably enumerable sets, Kummer [64] found 
a solution to the problem of the known types of recursive isomorphism of partial 
computable functions ( [55], Chapter 4). More precisely, he proved that for any k 2 ! 
there is a computable function with exactly k recursive isomorphism types. 

In [2], S.S. Goncharov and A.Sorbi offered a general approach for studying 
classes of objects which admit a constructive description in a formal language via a 
Gödel numbering for formulas of the language. Within the approach of Goncharov ‐ 
Sorbi, has been possible to approach from unified position the notion of computability 
of families of such constructive objects as computably enumerable sets, constructive 
models, families of computable morphisms, and so on. This approach also allows us to 
introduce the notion of a computable family of sets for the Ershov and Kleene ‐ 
Mostowski (arithmetic) hierarchies, as well as the concept of the Rogers semilattice for 
such families. According to their approach, a numbering is computable if there exists 
a computable function which, for every object and each index of this object in the 
numbering, produces some Gödel index of its constructive description. 

Now, we will give precise definition of the main notions used in the thesis. We 
follow the monograph [3] of Yu.L. Ershov in Russian and the survey papers [4], [65] 
for terminology and notations that are commonly used in the theory of numberings. 
The notion of a computable numbering for a family A of sets in the class §i

n, with 
i 2 f¡1; 0g, may be deduced from the Goncharov–Sorbi approach [2] as follows. 

Definition 1.9 A numbering ® of a family A μ §i
n is §i

n‐computable if 
fhx;mi : x 2 ®(m)g 2 §i

n; i.e. the sequence ®(0); ®(1); : : : of the members of A is 
uniformly §i

n. 
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We will denote the set of all §i
n‐computable numberings of a family A μ §i

n by 
Comi

n(A). For the families of sets from infinite levels of the Ershov hierarchy we use 
following definition: 

Definition 1.10 Let a be a notation of a nonzero computable ordinal. A numbering 
® : ! !A of a family of  §¡1

a  sets is §¡1
a –computable, if 

 fhn; xi : x 2 ®(n)g 2 §¡1
a :  

Hence, ® is a §¡1
a –computable numbering of a family A if there exists a §¡1

a –
approximation of the universal set fhn; xi : x 2 ®(n)g of ®, i.e. there are computable 
functions f (n; x; s) and h(n; x; s) such that ®(n)(x) = lims f (n; x; s), and 
f(n; x; 0) = 0 for all n; x, and h(n; x; s) is a change function of the set 
fhn; xi : x 2 ®(n)g with respect to f . 

The precise meaning of the phase “a uniform §i
n sequence ®(0); ®(1); : : : of the 

members of A” can be explained as follows. Let A(n; x; t) denote a function satisfying 
the following conditions: 

1. ran(A) μ f0; 1g; 
2. A(e; x; 0) = 0, for all e and x. 

We can treat this function as a uniform procedure for computing the sets ®(e). 
Given e and x, A(e; x; 0) = 0 means that initially the number x is not enumerated into 
®(e). The number x stays outside of ®(e) until the function ¸tA(e; x; t) changes its 
value from 0 to 1. When this happens, the number x is enumerated into ®(e). Now, x 
remains in ®(e) until ̧ tA(e; x; t) changes the value from 1 to 0. In this case, the number 
x is taken out of the set ®(e). And again we wait for the value of ¸tA(e; x; t) to change 
from 0 to 1, to put x into ®(e) for the second time, and so on. 

It is easy to check that, for A μ §0
1, a numbering ® is §0

1‐computable if and only 
if there exists a computable function A such that, for all e; x, ̧ tA(e; x; t) is a monotonic 
function, and 

 x 2 ®(e) () lim
t

A(e; x; t) = 1: 

If A μ ¢0
2 then a numbering ® is ¢0

2‐computable if and only if there exists a 
computable function A such that, for all e; x, 

 lim
t

A(e; x; t) exists, and x 2 ®(e) () lim
t

A(e; x; t) = 1: 

If A μ §0
2 then a numbering ® is §0

2‐computable if and only if there exists a 
computable function A such that, for all e; x, 

 x 2 ®(e) () lim
t

A(e; x; t) exists and lim
t

A(e; x; t) = 1: 

If A μ §¡1
n+1 then a numbering ® is §¡1

n+1‐computable if and only if there exists a 
computable function A such that, for all e; x, 

 j ft : A(e; x; t + 1) 6= A(e; x; t)g j· n + 1: 
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For a §i
n‐computable numbering ®, we say that such a computable function A 

represents a §i
n computation of ®(e). 

Finally, for families A μ §0
n+3 we can use criteria of computability similar to the 

ones given above, but with the relevant function A computable relatively to the 
appropriate iteration of the jump of the empty set. 

Note that the computable function A(e; x; t) above is monotonic in t only in the 
classical case of c.e. sets (i.e. A μ §0

1). 

It is very important question on which one of the infinite collection of computable 
numberings of a family is the most natural. The notion of universal numbering seems 
to be the most adequate for this purpose. 

Roughly speaking, a universal numbering for a class of numberings is a 
numbering in the class which can simulate any numbering in the class. For instance, if 
we consider the computable numberings of the unary partial computable functions , i.e. 
the uniformly computable sequences Ã0; Ã1; : : : of the unary partial computable 
functions, then the standard Gödel numbering '0; '1; : : : is a classical example of a 
universal numbering, since for any such sequence, Ãe = 'f(e) for some computable 

function f  and all e 2 !. Analogously, the standard Gödel numbering fWege2! of the 
computably enumerable sets is another example of a universal numbering for the class 
of c.e. sets. Let us give the precise definition, [3] of a family of c.e. sets. 

Definition 1.11 A numbering ® : ! !A is called universal (principal) if 
® 2 Com(A) and ¯ 6 ® for each numbering ¯ 2 Com(A). 

It is easy to see that ® is a computable numbering of a family of c.e. sets if and 
only if ® 6 W , i.e. ®(e) = Wf(e) for some computable function f  and all e 2 !. Thus, 

the numbering W  is a universal numbering of the class §0
1 of all c.e. sets. For arbitrary 

numberings ® and ¯ with ® = ¯ ± f , we can think of ® as being computable relatively 
to ̄  (f  allows to simulate ® from ¯). Therefore, a universal numbering of a computable 
family A of c.e. sets is just one by means of which we can simulate all possible uniform 
computations of the sets from A. We can generalize definition 1.11 in the following 
way. 

Definition 1.12 Let a be a notation of a nonzero computable ordinal. A numbering 
® : ! !A of a family of §¡1

a  sets is called universal if ® 2 Com¡1
a (A) and ¯ 6 ® for 

each numbering ¯ 2 Com¡1
a (A). 

And the notion of reducibility of computable numberings defines preorder on the 
class of all computable numberings. Factorization by the equivalence relation ´, 
defined according to the preorder, allows us to construct partially ordered set 
Ri

a(A) = hComi
a(A)=´;·i, forming an upper semilattice of computable numberings 

of the family A. Partial ordered set Ri
a(A) is upper semilattice [3] and is called the 

Rogers semilattice of family A. 
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There are three main research directions to study Rogers semilattices. The first 
direction is connected with the global characteristics of the Rogers semilattices: the 
cardinality, being a lattice, elementary theory and so on. The second is devoted to the 
characterization type of isomorphism of numberings, generators in the Rogers 
semilattices elements with special study algebraic properties: maximal, minimal, 
irreducible (atomic) elements, and so on. The third is directed at the study of local 
algebraic properties of the Rogers semilattices: structure of segments, ideals, and so 
on. Our research is related to latter two directions. 

Definition 1.13 [3] A numbering ® of a family A is called minimal if ¯ · ® 
implies ® · ¯ for every numbering ¯ . 

Definition 1.14 [3] A numbering ® : ! ! A induces a numbering equivalence ´® 
on !: 
 ´® ® fhx; yi j x; y 2 !; ®(x) = ®(y)g: 

 

Definition 1.15 [3] A numbering ® is called decidable (positive, negative), if ´® 
is a computable (computably enumerable, co‐computably enumerable) set. 

Definition 1.16 [3] A numbering ® is called single‐valued (Friedberg), if ® is one‐
one (´® = fhx; xi) j x 2 !g).  

Note that every Friedberg numbering is decidable, and hence a positive 
numbering, and each positive numbering is minimal numbering, but not vice versa. 

The beginning of the study of minimal numberings was the well‐known theorem 
of Friedberg [56] on the existence of one‐to‐one numbering of family of all computable 
enumerable sets. Pour‐El and Putnam [66] constructed an example of a family of 
computably enumerable sets without computable one‐to‐one (Friedberg) numbering: 

 ff2x; 2x + 1g j x 2 Kg [ ff2xg; f2x + 1g j x =2 Kg; 

where K  is a creative set. 

Khutoretsky proved that the family of all c.e. sets has a computable minimal 
numbering that is not positive [67]. The main objectives of the study of minimal 
numberings can be roughly divided for two problems: 

1. Search for conditions under which a family A 2 §i
n has minimal §i

n‐
computable minimal numberings. 

2. Determine the number of minimal elements of the Rogers semilattice of a given 
family of sets. 

In the classical case, some necessary conditions on the existence of a Friedberg 
numbering of families of computably enumerable sets were found by Lachlan [68]. A 
member of necessary or sufficient conditions for a family of c.e. sets have been 
proposed in the works of Ershov [69], Kummer [70-71], Mal’tcev [57] and others. For 
a family of sets of the arithmetical hierarchy we have the following results give solution 
for both two problems above. 
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Theorem 1.9 (Badaev, Goncharov [13]) The Rogers semilatice R0
n+2(A) of every 

infinite §0
n+2‐computable family A contains infinitely many minimal elements. 

This result is contained in the hyperarithmetical hierarchy (N. Baklanova, 72). 

Theorem 1.10 (Badaev, Goncharov [13]) A family A μ §0
n+2 has a positive §0

n+2

‐computable numbering if and only if there exists a §0
n+2‐computable numbering ® of 

the family A such that fhx; yi j ®(x) = ®(y)g 2 ¢0
2. 

Theorem 1.11 (Goncharov, Sorbi [73]) If the infinite family A μ §0
n+2 has a 

positive §0
n+2‐computable numbering then A has a §0

n+2‐computable Friedberg 
numbering.  

In the Ershov hierarchy, we note the following three results obtained in [15] by 
Goncharov, Lempp, Solomon 

Theorem 1.12 For any n > 0 there exists a §¡1
n+2‐computable Friedberg 

numbering of the family of all §¡1
n+2‐computably enumerable sets.  

Theorem 1.13 There exists an infinite §¡1
n ‐computable family without a §¡1

n ‐
computable Friedberg numbering. 

Theorem 1.14 There exists an infinite family of computably enumerable sets with 
a unique computable numbering regarded as a §¡1

2  ‐computable numbering of §¡1
2 ‐

sets. 

S.S. Ospichev generalized these results above for every finite level in the Ershov 
hierarchy, [18]: 

Theorem 1.15 For any k > 1 there exists a §¡1
2k ‐computable Friedberg numbering 

of the family of all §¡1
k ‐computably enumerable sets and a computable function m‐

reducing the Friedberg numbering of the family of all §¡1
k¡1‐computably enumerable 

sets to the Friedberg numbering of the family of all §¡1
k ‐computably enumerable sets. 

The Friedberg numbering and reducing function are constructed uniformly with respect 
to k. 

Theorem 1.16 There exists a minimal !‐computable numbering of the family of 
all sets in 

S
k2!

§¡1
k .  

Theorem 1.17 For any n there exists an §¡1
n ‐computable Friedberg numberings 

of the family of all §¡1
n ‐computably enumerable sets. 

In [22], Talasbaeva showed that, for any finite level n of the Ershov hierarchy, 
and every infinite computable family containing ; if n is even, or ! for n odd, has 
infinitely many computable positive undecidable numberings pairwise incomparable 
with respect to reducibility of numberings (for n = 1 it was first proved by Badaev 
[12]). Later, this result was generalized by Andrea Sorbi and Manat Mustafa [16] for 
all levels of §¡1

a  of the Ershov hierarchy, where a is a notation for any nonzero 
computable ordinal. All these results in whole implies the the following theorem. 
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Theorem 1.18 Let an infinite family A is a §¡1
a ‐computable family and ; 2 A, if 

e(a) = 0 (! 2 A, if e(a) = 1). Then there are infinitely many positive and undecidable 
§¡1

a ‐computable numberings, pairwise incomparable with respect to reducibility of 
numberings.  

Using this result, Manat and Sorbi showed in [16] that for every a 2 O there is an 
infinite §¡1

a ‐computable family without §¡1
a ‐computable Friedberg numberings, but 

there are infinitely many positive §¡1
a ‐computable numberings of a given family. 

We proceed to study the local algebraic properties of the Rogers semilattices, 
more precisely, the questions on the existence ideals, with and without minimal 
elements. Every ideal of the Rogers semilattice R(A) contains a minimal element if A 
is a family of computable functions or A is a finite family [3]. If C is the family of all 
computably enumerable sets, then R(C) contains an ideal with minimal elements, and 
the ideal without minimal elements [69], [67]. Also, there is a family A of c.e. sets 
such that R(A) does not contain the minimal elements [8]. For arithmetic numberings 
similar research has been initiated in [13]. 

In [13], it was shown that, for n ¸ 2, there exists infinite families, the Rogers 
semilattice of which contain ideals without minimal elements. 

For the Ershov hierarchy Badaev and Talasbaeva in [9] presented some sufficient 
conditions for the Rogers semilattice R¡1

2 (A) contain to a family A μ §¡1
2  the 

principal ideal that is isomorphic to the semilattice of computably enumerable m‐
degrees. In [20], Ospichev showed, that for every infinite §¡1

a ‐computable family A, 
the Rogers semilattice R¡1

c (A) contains infinitely many disjoint principal ideals of the 
Rogers semilattice R¡1

c (A), isomorphic to the upper semilattice L0
m, where c = a +o a; 

if e(a) = 0 and c = 2a+oa, if e(a) = 0. 

For today the question on the cardinality and the type of algebraic structure of the 
Rogers semilattices of families of sets in the Ershov hierarchy attracted the attention of 
researchers. This is due to the fact that the algebraic properties of the Rogers 
semilattices of families of sets in the Ershov hierarchy is very different from the 
corresponding properties of the Rogers semilattices of families of computably 
enumerable sets and families of sets of the arithmetical hierarchy. Consider one of the 
most important results in classical computability theory. 

Theorem 1.19 (A.B. Khutoretskii [74]) Let A be a family of computable 
enumerable sets. 

1. If º Ð ¹ are computable numberings of A then there is a computable 

numbering ¼  of A with ¼ Ð º  and ¹ Ð ¼ © º . 

2. If the Rogers semilattice R0
1(A) of A contains more than one element, then it 

is infinite. 

This theorem is also true in the arithmetical hierarchy. Its statement follows from 
the proof of theorem S.S. Goncharov and A. Sorbi, in [73], that Rogers semilattice any 
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non‐trivial §0
n+2‐computable family of arithmetical sets is infinite and is not a lattice. 

However, in [10] S.A. Badaev and S. Lempp showed: 

Theorem 1.20 There is a family F  of d.c.e. sets, and there are computable 
numberings ¹ and º of the family F  such that ¹ Ð º  and such that for any computable 
numbering ¼  of F , either ¹ · ¼ or ¼ · º. In addition, we can ensure the following: 

– F  is a family of c.e. sets and º is a computable numbering of F  as a family 
of c.e. sets; 

– both ¹ and º can be made Friedberg and thus minimal numberings; and so 
– any computable numbering ¼  of F  satisfies ¼´ º or ¹ · ¼. 

In other words, the first part of Khutoretskii’s Theorem, does not hold for the 
second level of the Ershov hierarchy. It remains an open question whether the second 
part of the Khutoretskii’s theorem holds. 

The following theorem (which follows along the lines of a similar theorem proved 
by Badaev and Talasbaeva in [9] for all finite levels of the Ershov hierarchy) shows 
that there is no problem when we consider families without any structural restrictions: 
it is easy to construct a family consisting of any given number of elements whose 
Rogers semilattice consists of one element. 

Theorem  1.21 (Badaev, Manat, Sorbi [11]) For every nonzero n 2 ! [ f!g, and 
for every ordinal notation a of a nonzero ordinal, there exists a §¡1

a ‐computable family 
A of exactly n sets, such that jR¡1

a (A)j = 1. 

We proceed to the study of universal numberings, that include in the Rogers 
semilattices the greatest element. 

For a given computable family A of c.e. sets, two main ways of constructing 
universal numberings are known. The first way is based on the idea of considering 
uniform computations of all computable numberings, or at least of witnesses from each 
equivalence class of numberings, lying in Com(A). Essentially, this way is epitomized 
in Rice’s description of the classes of c.e. sets whose index sets in W  are c.e. 

The second way originated from the notion of a standard class, introduced by 
A.Lachlan in [75]. Generalizations of the notion of standard class by A.I.Mal’tsev [76] 
and Yu.L. Ershov [3] provided very fruitful tools for constructing universal 
numberings. We will discuss them later. One of the finest results on universal 
numberings for the classical case are the following two theorems of A. Lachlan [75]. 

Theorem 1.22 Every finite family of c.e. sets with a least set under inclusion has 
a universal numbering. 

Theorem 1.23 If a family of c.e. sets has a universal numberings then it is closed 
under union of increasing computable chains of sets. 

Later, Y.L. Ershov extended Theorem 1.22 as follows 

Theorem 1.24 Every finite family of c.e. sets has a principal numbering. 

For the case of the arithmetical hierarchy, we recall the following known result. 
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Theorem 1.25 (Badaev, Goncharov, Sorbi, [6]) Let A be any finite family of 
§0

n+2 sets. Then A has a universal numbering in Com0
n+2(A) if and only if A contains 

the least set under inclusion. 

Note the following results for the cases of the Ershov hierarchy: 

Theorem 1.26 (Abeshev, Badaev, [24]) For every n, the class §¡1
n+2 of the Ershov 

hierarchy has a universal numbering in Com¡1
n+2(§

¡1
n+2). 

The proof is straightforward since it is easy to construct uniformly all §¡1
n+2‐

computable numberings for all §¡1
n+2‐computable families. We will denote this 

universal numbering by W (¡1;n+2). 
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2 UNIVERSAL NUMBERINGS 
 

2.1 Universal numberings for finite families in the Ershov hierarchy 
We try to find universal numberings for finite families in the Ershov hierarchy. 

The next theorem originated as an attempt to adapt the idea of a wn‐subset to the 
class §¡1

n+2 equipped with the numbering W (¡1;n+2). We will use the notion of a wn‐
subset in a form which is slightly different from the original one of Ershov [3]. 

Definition 2.1 A family A μ §¡1
k  is called a wn‐subset of §¡1

k  if there exist a c.e. 

set I  and a sequence fVege2! such that 

1. I  contains the index set of the family A with respect to the numbering W (¡1;k) 
2. V  is a §¡1

k ‐computable numbering; 
3. for every e 2 I, Ve 2 A, and 

4. for every e 2 I, if W (¡1;k)
e 2 A then Ve = W

(¡1;k)
e . 

Lemma 2.1 If a family A μ §¡1
k  is a wn‐subset of §¡1

k  then A has a universal 

numbering in Com¡1
k (A). 

Proof. The proof is a straightforward modification of the original proof of Ershov 
[3]. 

Using Lemma 2.1, Badaev and the author have obtained the following 

Theorem 2.1 (Abeshev, Badaev, [24]) Let k > 1 and m > 0 be any numbers. If 
F0; F1; : : : ; Fm is a sequence of finite sets and B 2 §¡1

k  is a set such that no Fi in the 

sequence intersects B , then the family A = fB [ Fi : i · mg is a wn‐subset of §¡1
k . 

Proof. We build by a construction in stages a computable function V (e; x; s) 
which will represent a numbering V . The set I  will be defined at the end of the 
construction. 

Let B(x; s) be a computable function which represents a §¡1
k  computation of B . 

We can assume that B(x; s) = 0 for all pairs (x; s) with x 2 F0 [ F1 [ ¢ ¢ ¢ [ Fm. We 
let V (e; x; s) = B(x; s) for all triples (e; x; s) with x =2 F0 [ F1 [ ¢ ¢ ¢ [ Fm. So, we can 
fix e and describe, uniformly in e, how to construct the values needed to define 
V (e; x; s) for all pairs (x; s) with x 2 F0 [ F1 [ ¢ ¢ ¢ [ Fm. 

We let P (e; x; s) be a computable function which represents the numbering 
W (¡1;k), and denote F0 [ F1 [ ¢ ¢ ¢ [ Fm by F . 

Construction. 
For s = 0 we let V (e; x; 0) = 0 for all x 2 F . For the definition of V (e; x; s + 1) 

we distinguish the following cases. 

Case 1: There exists i · m such that 
 P (e; x; s) = 1 () x 2 Fi 

for all x 2 F: 
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Then let 

 V (e; x; s + 1) =

½
1; if x 2 Fi;

0; if x 2 F n Fi.
 

Case 2: Otherwise, let V (e; x; s + 1) = V (e; x; s) for all x 2 F . 

Now, we define the set I . If the sequence F0; F1; : : : ; Fm contains the empty set 
then let I = !. Otherwise, let 

 I = fe : 9x9s(x 2 F ^ V (e; x; s) = 1)g: 

It remains only to check that the requirements of definition 2.1 are satisfied by 
this sequence fVege2! and the set I . 

Remark 2.2 Theorem 2.1 can’t be extended to infinite number of the sets Fi even 
for a strong array F0; F1; F2; : : :. 

For instance, if B = ;, and D0;D1;D2; : : : is the canonical numbering of all finite 
sets then the family A = fD0; D1; D2; : : : g has no universal numbering in Com¡1

n+1(A) 
for every n. [18] 

The main question we address here is: "For which finite families of d.c.e. sets is 
there a universal numbering?" Now we can formulate the two main results of this 
section. 

The first theorem covers some cases of finite families of d.c.e. sets for which there 
is a universal numbering for finite family of Ershov’s hierarchy. The conditions below 
may appear rather complicated but encompass all the obstacles to building a universal 
numbering of which we are aware; we do not know if this theorem is sharp. 

Theorem 2.3 If there are c.e sets A0; A1; B0; B1 and A = A0 ¡ A1 and 
B = B0 ¡B1 and A * B and B * A such that 

 

8x (x 2 A0 ) x 62 A1 or x 62 B);

8x (x 2 B0 ) x 62 B1 or x 62 A); 

and partial computable functions Á and Ã such that 

 

8s8x 2 As(x 62 B or (Ás(x; s) #> s & x 2 BÁs(x;s)));

8s8x 2 Bs(x 62 A or (Ãs(x; s) #> s &x 2 AÃs(x;s))); 

then there is a universal numbering ¼  for F = fA; Bg. 

Now we will proof Theorem 2.3 by an infinite‐injury priority argument using a 
tree of strategies ([77]). 

Proof of Theorem 2.3: 
We need to build a universal numbering ¼  of the family F = fA; Bg. We fix a 

number a 2 A ¡ B  and fix another number b 2 B ¡ A. We now need to meet, for all 
computable numberings ® of all families of d.c.e. sets, and for all computable 
functions f , the following 

Requirements: 
 R® : F® = fA; Bg ) 9f 8e (®(e) = ¼ ± f (e)) 
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If all requirements R® hold then ¼  is a universal numbering. 

Background Action: 
1. We set ¼(0) = A; ¼(1) = B and ¼(i) = A for i > 1 at first initially for i · s. 
2. For all e · s if a is first enumerated into ®(e) (or, b into ®(e)) then define f(e) 

large and copy the set A (or B , respectively) into ¼f (e). 

Procedure "Switch": 
For all e · s, if a is removed from ®(e) and b is enumerated into ®(e) for all e · s 

then check all elements x 2 As using the partial computable function Á such that 
8s8x 2 As (x 62 B or (Ás(x; s) # & x 2 BÁ(x;s))). If for some x 2 As, Ás(x; s) " then 

this x 62 B. If for some x 2 As, Ás(x; s) # and x 2 BÁs(x;s) then preserve this x in ¼f (e) 

until step Ás(x; s). For all x 62 As, put x into ¼f (e) if x 2 Bs. Note that x cannot have 
entered and left ¼f (e) before by condition (1). (Proceed symmetrically, if b is removed 
and a is enumerated). 

Strategy for R®: 
For each ® we build the computable function f  as follows: 

1. Wait for a 2 ®(e) (or b 2 ®(e)). 
2. Define f(e) large. 
3. Copy A into ¼f (e) (or B). 
4. Wait for b (or a, respectively) to be enumerated into ®(e) and a (or b, 

respectively) to be extracted from ®(e). 
5. Run procedure "Switch", copy B  (or A) into ¼f (e) and stop. 

Construction: 
Every strategy acts independently. 

We also ensure Ran(f®) \ Ran(f¯) = ; for all ® 6= ¯. 

Verification: 

Suppose F® = fA; Bg, then 8e (a 2 ®(e) , b 62 ¼f (e)): Fix e. 

Case  1.  
If a 2 ®(e) then: 
Case 1a. 
There is 9s 9t > s(b 2 ®s(e)¡ ®t(e)), say, that at stage s, b is first enumerated 

into ®(e) and at stage t > s, b is extracted from ®(e). Then ®(e) = A = ¼f (e), since by 
(4) and there are three possible cases for each x 2 B  at stage t, when we switch from 
copying B  to copying A: 

Case 1a.1. 
At stage t, if (x 2 A , x 2 ¼f (e)) then ®(e)(x) = A(x) = ¼f(e)(x). 
Case 1a.2. 
At stage t, if (x 62 A & x 2 ¼f (e)) then check using the partial computable 

function Ã such that 8t8x 2 Bt(x 62 A or (Ãt(x; t) # & x 2 AÃt(x;t)). If Ãt(x; t) " then 
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this x 62 A. If Ãt(x; t) # and x 2 BÃt(x;t) then we preserved this x in ¼f (e) such that x 

will be enumerated into AÃt(x;t) (and possibly later extracted if x later leaves A). 

Case 1a.3.  
At stage t, if (x 2 A & x 62 ¼f (e)) then there are two possible cases: 

1. In the limit x will be extracted from A then ®(e)(x) = A(x) = ¼f(e)(x).  
2. x 2 A, then x cannot have entered and left ¼f (e) before stage t by condition (2). 

Case 1b. 
a is first enumerated into ®(e) and b 62 ®(e) at stage s. Then ®(e) = A = ¼f (e) 

directly. 
Case 2. 
If b 2 ®(e) then apply a symmetric argument. 

Finally, if i 62 Ran(f®) for any ®, then ¼(i) = A. This proves Theorem  2.3. 

 

2.2 Families without universal numberings 
And the second theorem is the answer for the question: "Do there exist finite 

families in Ershov’s hierarchy without universal numberings?" 

Theorem 2.4 There are nonempty, disjoint, d.c.e. sets A; B such that the finite 
family F = fA; Bg has no universal numbering. 

The rest of this section is devoted to the proof of our Theorem 2.4, which is an 
infinite‐injury priority argument using a tree of strategies (see, [77]). 

Proof of Theorem 2.4: 
We need to build a family F  of d.c.e. sets. For an arbitrary numbering ¼  of a 

family of d.c.e. sets, we denote by F¼ the family of d.c.e. sets enumerated by ¼ . We 
put a number a into A but not into B  and put another number b into B  but not into A. 
We now need to meet, for all partial computable numberings ¼  of a family of 
d.c.e. sets, and for all computable functions f , the following 

Requirements: 

 

R¼ : F¼ = fA;Bg ) 9®¼ (F®¼
= fA; Bg); and

R¼;f : F¼ = fA;Bg ) 9e (®(e) 6= ¼ ± f(e))  

If ¼  is a numbering of F  and requirements R¼ and R¼;f  hold for all total f , then 
there is no universal numbering ¼ . Here the ®¼ computable numberings built by us. 

Background Action: 
1. We set ®¼(0) = A; ®¼(1) = B and ®¼(i) = A for i > 1 at first initially for 

i · s: 
2. Ensure that a is enumerated into ®¼(e) (or, without loss of generality, b into 

®¼(e)) for all e · s. 
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3. If x is enumerated into (or removed from) A then enumerate x into (or remove 
x from) ®¼(e) for all e · s with a 2 ®¼(e), except when removed for the sake of (4) in 
the R¼;f  strategy until itm:stream2 of the R¼ strategy is complete. 

4. If x is enumerated into (or removed from) B  then x is enumerated into (or 
removed from) ®¼(e) for all e · s with b 2 ®¼(e). 

Strategy for R¼: 
1. Wait for 

(a) an R¼;f  strategy below to have enumerated x into A and ®¼(e), 

(b) an R¼;f  strategy below to have extracted x from A, or 

(c) an R¼;f  strategy below to have enumerated x into B . 

2. If (a), wait for x to be enumerated into ¼f (e) (or a to be extracted from ¼f (e)). 
Go to (1). 

3. If (b), wait for x to be extracted from ¼f (e) (or a to be extracted from ¼f (e)). 
Put x into B , extract a from ®¼(e) and enumerate b into ®¼(e). Go to (1). 

4. If (c), wait for a to be extracted from ¼f (e). Stop. 

Outcomes of the R¼ strategy: 
1 (finite) Wait at step (2) or (3) forever or stop at step (4): Then ¼  is not a 

numbering of the family F . 

0 (1) Wait at step (1) forever or go from (3) to (1) infinitely often: Then F®¼
= F ; 

since we ensure ®¼(e) = A or B  for all e. 

An R¼ strategy is a strategy with many R¼;f  substrategies below the (1) 
outcome. On the true path (TP) of the tree T  we need to ensure all R¼;f . 

Strategy for R¼;f: 

1. Pick a fresh number e > s, enumerate a into ®¼(e). 
2. Wait until f (e) # and a is in ¼f (e). 
3. Pick x fresh, enumerate x into A and ®¼(e). End the stage. (Go to (1a) of the 

R¼ strategy.) 
4. Extract x from A. Do not extract x from ®¼(e) for now. (Go to (1b) of the R¼ 

strategy.) End the stage. 
5. Stop. 

Outcomes of the R¼;f  strategy: 

1 (wait) Wait at step (2) forever: Then f(e) is partial or a 2 ®¼(e) but a 62 ¼f(e). 

0 (stop)  Reach (5): If F¼ = F , then ®¼(e) 6= ¼ ± f (e). 

We need to restrict the number of these changes to ensure ®¼(e) to be d.c.e.; 
therefore eventually ®¼(e) will be equal either to A or to B . For requirements R¼;f  we 
will succeed easily if ¼  is a numbering of F  and f  is total. 
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Tree of the strategies: 
Effectively order the requirements (of order type !). Inductively define a tree 

T μ 2<! such that for any path T P 2 [T ] 

 

8¼ 9¾ ½ TP (¾ works for R¼) and

8¼ 9¾ (¾ works for R¼ & ¾bh1i μ TP)

) 8f 9¿ ½ TP (¿ works for R¼;f) 

Construction: 
At stage 0, the sets A and B  are empty, all functions are undefined. 

We will inductively show that the following properties of the construction hold at 
the end of each stage s: 

At stage s > 0, at substages t · s + 1 let some ¾ 2 T  act at substage t = j¾j, 
initialize ¿ > ¾s, the approximation to the true path TP at stages. 

There are two cases for s: 

Case 1. ¾ is an R¼ strategy: 

1. Last time ¾ waited for x to be enumerated into ¼f (e) without success. 
(a) If x 2 ¼f (e) now, then the outcome is (0). End the substage. 
(b) If x 62 ¼f (e) now, then the outcome is (1). End the substage. 

2. Last time ¾ waited for x to be extracted from ¼f (e) without success.  
(a) If x 62 ¼f (e) now, then put x into B , extract a from ®¼(e) and enumerate 

b into ®¼(e). The outcome is (0). End the substage. 
(b) If x 2 ¼f (e) now, then the outcome is (1). End the substage. 

3. Last time ¾ waited for a to be extracted from ¼f (e). 
(a) If a 62 ¼f(e) now, then the outcome is (1). End the stage. 
(b) If a 2 ¼f(e) now, then the outcome is (0). End the substage. 

4. Otherwise: Check if there is a new ¿ ¾ ¾ waiting for x to be enumerated into, 
or removed from, ¼f (e) at a previous stage s0 when ¾ acted. 

(a) Yes: Then proceed as in (1) or  (2) or (3). 
(b) No: Do nothing. The outcome is (1). Then go to the next substage. 

Case 2. ¾ is an R¼;f  strategy: 

1. Check if the strategy has stopped. 
(a) No: Go to (2). 
(b) Yes: The outcome is (0). End the substage. 

2. Check if e; x are defined. 
(a) No: Define two fresh numbers e and x, enumerate a; x into A and ®¼(e). 

End the stage. 
(b) Yes: Go to (3). 

3. Check if f(e) is defined and a; x 2 ¼f (e) and x 2 A. 
(a) No: The outcome is (1). End the substage. 
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(b) Yes: Go to (4). 
4. Extract x from A and end the stage. 
Each stage s > 0 consists of substages t · s (where stage s may end before 

reaching substage s). All parameters will remain defined the same way as at the 
previous stage unless explicitly redefined. At substage t of stage s, a strategy ¾ 2 T  of 
length t (determined at substage t¡ 1 if t > 0) will be eligible to act and proceed as 
described above (unless we end stage s at substage t¡ 1). (If ¾ has already stopped at 
a previous stage and not been initialized since then, then ¾ immediately ends the 
substage, taking outcome finite.) 

Verification: 
We now verify that the above construction satisfies the requirements for our 

Theorem in a sequence of lemmas. We prove some technical lemmas on important 
properties of our construction. 

Lemma 2.2 A; B are d.c.e sets. 
Proof. By the construction, for all ¾ 2 T the set ®¼(e) behaves like A or B , and 

each element can be enumerated into and removed from ®¼ and ¼  only once. So by 
definition they are d.c.e. sets. 

Lemma 2.3 If an R¼ strategy along the true path, then 
1. if the outcome is finite then F¼ 6= F , and 
2. if the outcome is (1) then F®¼

= F : 

Proof. Indeed, if an R¼ strategy works on the true path and 

Case 1. The the outcome is (finite), then it this means that the R¼ strategy waits 
at step (2) or (3) or stops at (4), i.e., ¼  is not a numbering of the family F . So F¼ 6= F: 

Case 2. The outcome is (1), then this means that the R¼ strategy waits at step (1) 
forever or goes from (3) to (1) infinitely often, i.e., ®¼ is a numbering of the family F  
by the R¼ strategy and all the R¼;f  strategies below. So F®¼

= F . 

Lemma 2.4 If the R¼ strategy on the true path has infinite outcome, then every 
R¼;f  strategy on TP works successfully. 

Proof. If ¾ is an R¼ strategy and has infinite outcome this means that R¼ waits at 
step (1) forever or goes from (3) to (1) infinitely often, i.e., if the R¼;f  strategy waits 

at step (3) or (4), this means that the R¼;f  strategy will eventually stop waiting. In other 
words, for every R¼;f  strategy when the outcome is (1), then F¼ 6= F , and when the 

outcome is (0), then 9e ®¼(e) 6= ¼ ± f (e). 

These lemmas establish our Theorem 2.4.
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3 MINIMAL NUMBERINGS 
 

Families without minimal computable numberings:Families without 
minimal computable numberings 

Families without minimal computable numberings can be viewed as analogues, 
in the theory of numberings, of Blum’s speedup theorem. Two examples of these 
families in the class of c.e. sets were constructed by V’yugin [23] and Badaev [8], and 
are based on different ideas. In the Rogers semilattice of the family built by V’yugin, 
every element is the least upper bound of two incomparable elements. The families of 
c.e. sets without minimal computable numberings built by Badaev are based on the 
following criterion of minimality of a numbering (not necessarily a computable one). 

Theorem 3.1 (Badaev [8]) A numbering º : ! ! S is minimal if and only if, for 
every c.e. set W , if º(W ) = S , then there exists a positive equivalence " such that 

 8x8y ((x; y) 2 " ! º(x) = º(y)) & 8x9y (y 2 W & (x; y) 2 "): 

The minimality criterion allows to construct a computable family of c.e. sets 
without computable minimal numberings by using simple diagonal considerations: if a 
computable numbering indexes the family then it is not a minimal numbering of this 
family. 

Theorem 3.2 For every nonzero computable ordinal and any ordinal notation a of 
it, there exists a §¡1

a –computable family A of §¡1
a  sets that has no §¡1

a –computable 
minimal numbering. 

 
If hf; hi is a §¡1

a –approximation of a numbering ® then by ®s we denote the 
numbering whose universal set is 

 fhn; xi : f(n; x; s) = 1g: 

We denote by ¼  a computable numbering of the family of all possible §¡1
a –

computable numberings f¼kgk2!. There is a pair of computable functions 
f¼(k; n; x; s); h¼(k; n; x; s) that uniformly in k gives §¡1

a –approximations of the 
numberings in the sequence f¼kgk2!. 

By p¼(k; n; x; s) we denote a computable function defined as follows. We define 
p¼(k; n; x; s) = a if h¼(k; n; x; s) = a; otherwise, we let p¼(k; n; x; s) = h¼(k; n; x; t); 
where t < s is the greatest number such that h¼(k; n; x; s) <O h¼(k; n; x; t). 

Evidently, h¼(k; n; x; s) <O p¼(k; n; x; s), if h¼(k; n; x; s) 6= a, and, if 
h¼(k; n; x; s) 6= a and h¼(k; n; x; s + 1) 6= h¼(k; n; x; s) then 
p¼(k; n; x; s + 1) <O p¼(k; n; x; s). 

By "0; "1; "2; : : : ; we denote a computable numbering of all c.e. equivalence 
relations on !. f"s

mg stands for a double‐indexed strong array of these equivalences on 
the initial segments of ! such that for all m; s 
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 "s
m μ "s+1

m ; "m =
[
s2!

"s
m: 

Proof of the Theorem 3.2: 
We will build a family A satisfying the statement of Theorem 3.2 by constructing 

a §¡1
a –computable numbering ® of A, in which each set of A will have either one or 

two indices. 

Requirements: 
We build a numbering ® and a sequence of c.e. sets ¦k; k 2 !; that meet the 

following requirements: 

– C: ® is §¡1
a –computable; 

– Pk: if ¼k is a numbering of A then ¼k(¦k) = A; 
– Nk;m: if ¼k is a numbering of A then 
 9x9y((x; y) 2 "m & ¼k(x) 6= ¼k(y)) _ 9x8y 2 ¦k((x; y) =2 "m): 

Let us describe the strategies to meet these requirements. 

Strategy for C: 

We define a §¡1
a –approximation hf; gi to a numbering ® by a stage by stage 

construction. Indeed, we could describe the construction without even mentioning ®, 
since ® is defined uniquely by the pair of functions f; g. But it is more convenient to 
give an informal explanation of the ideas of our construction by means of the 
numbering ®. 

In the numbering ®, each pair of consecutive indices 2x; 2x + 1 is targeted to meet 
exactly one Nk;m requirement. For this reason, we will consider the number x as the 
standard index hk;mi of some pair (k;m). The sets ®(2x) and ®(2x + 1) will have some 
common static part, but each of them will also have its own dynamically changeable 
part. At each stage of the construction below, the dynamic part of a set consists of 
exactly two numbers. At each stage, one element of the dynamic part of both sets ®(2x) 
and ®(2x + 1) can be moved into the common static part of these sets, but no number 
of the static part of a set can be moved into its dynamic part. Besides, two numbers of 
sets ®(2y) and ®(2y + 1) with y 6= x can be enumerated simultaneously into both sets 
®(2x) and ®(2x), and later they can be extracted simultaneously again from both ®(2x) 
and ®(2x + 1). In the limit, the two sets ®(2x) and ®(2x + 1) can coincide or be 
distinct; this depends on whether the process of movement of elements from the 
dynamic parts into the static part is infinite or finite. At all stages since stage 1, for all 
z =2 f2x; 2x + 1g, the static part of the sets ®(2x), ®(2x + 1) is not included into the 
static part of ®(z), and at stage 1 the static parts of ®(2x) and ®(z) are nonempty and 
disjoint. Thus, in the numbering ® each set of A will have either one or two indices: in 
the latter case, these two indices are consecutive natural numbers of the form 
2x; 2x + 1. Let us describe in precise terms the process of increase of both sets ®(2x) 
and ®(2x + 1) due to their dynamic parts. 
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Fix three arbitrary injective computable functions d0 : !2 7! !, d1 : !2 7! !, and 
¾ : !3 7! ! with pairwise disjoint ranges. For every x, the values of the function 
¸e¸s ¾(x; e; s) form the static part of the sets ®(2x) and ®(2x + 1), while some, or all 
the values of the function ¸s dj(x; s) are enumerated stage by stage into the dynamic 
part of ®(2x + j); j · 1. At the beginning of the construction, for each x, we assume 
that 

– ®0(2x) = ®0(2x + 1) = ;, 
– ®1(2x) = f¾(x; e; i) : e; i 2 !; e 6= hxi0g [ fd0(x; 0); d0(x; 1)g; 
– ®1(2x + 1) = f¾(x; e; i) : e; i 2 !; e 6= hxi0g [ fd1(x; 0); d1(x; 1)g 

and we declare the numbers d0(x; 0); d1(x; 0) active, and declare the numbers 
d0(x; 1), d1(x; 1) semi‐active. 

The beginning of the process of changing the dynamic parts of ®(2x) and 
®(2x + 1) (under certain conditions) is carried out as follows. 

– The number d0(x; 0) is enumerated into ®(2x + 1) and thereafter ceases to be 
active, 

– the number d1(x; 0) is enumerated into ®(2x) and thereafter ceases to be active, 
– the semi‐active numbers d0(x; 1); d1(x; 1) are declared to be active, 
– the number d0(x; 2) is enumerated into ®(2x) and is declared to be semi‐active, 
– the number d1(x; 2) is enumerated into ®(2x + 1) and is declared to be semi‐

active. 

Thus, as a result of these actions, the pair of active numbers is moved from the 
dynamic part of the sets ®(2x) and ®(2x + 1) into their static part and ceases to be 
active; the pair of semi‐active numbers is activated; the next two unused numbers are 
declared semi‐active, one of them is enumerated into the dynamic part of ®(2x), and 
the other one is enumerated into the dynamic part of ®(2x). 

The process of changing the dynamic parts of the sets ®(2x) and ®(2x + 1) is 
carried as an iterative process. Let us describe an iteration step in the following 
procedure for a pair of active numbers d0(x; i), d1(x; i). 

Procedure D(x; i): 

– The number d0(x; i) is enumerated into ®(2x + 1) and thereafter ceases to be 
active, 

– the number d1(x; i) is enumerated into ®(2x) and thereafter ceases to be active, 
– the semi‐active numbers d0(x; i + 1); d1(x; i + 1) are declared to be active, 
– the number d0(x; i + 2) is enumerated into ®(2x) and is declared to be semi‐

active, 
– the number d1(x; i + 2) is enumerated into ®(2x + 1) and is declared to be semi‐

active. 
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Without loss of generality, we can assume that ¼s
0(y) = ; for all s; y. According 

to the construction, for every x; i, the number ¾(x; 0; i) is not extracted from 
®(2x); ®(2x + 1) and is never enumerated into ®(2y); ®(2y + 1) for all y 6= x. 
Therefore, 

 f®(2x); ®(2x + 1)g \ f®(2y); ®(2y + 1)g = ; 

for any distinct numbers x; y. 

Strategy for Pk in isolation: 

For every k, we split the set ¦k of ¼k‐indices into three parts: Lk, Rk, Ok. If ¼k is 
a numbering of A then we need 

– for Lk to contain exactly one ¼k‐index for every set ®(2x), with hxi0 = k; 
– for Rk to contain exactly one ¼k‐index for every set ®(2x + 1), with hxi0 = k if 

®(2x) 6= ®(2x + 1); 
– for Ok to consist of all ¼k‐indices of the remaining sets of A, i.e. all the sets 

®(2z), ®(2z + 1), with hzi0 6= k. 

Note that if so then ¦k = Lk [ Rk [ Ok, and ¦k contains exactly one ¼k‐index for 
each set of the subfamily 

 f®(2x); ®(2x + 1) : hxi0 = kg: 

The important point is that the equality ®(2x) = ®(2x + 1) can occur only in the 
limit, and if ®(2x) 6= ®(2x + 1) then this inequality is easily recognized at a finite 
stage. 

It is clear that achievement of the above needs ensures the equality ®(¦k) = A. 
And in order for the set ¦k to be c.e. we have to carry out some effective way to meet 
these needs. The sets Lk, Rk, Ok will consist of some values of the partial computable 
functions l(x), r(x), o(x; e; i), which we define as follows. Let x = hk; mi0. In the 
approximation ¼s

k, choose two distinct ¼k‐indices y0 and y1 such that d0(x; 0) 2 ¼s
k(y0); 

d1(x; 0) 2 ¼s
k(y1) and define l(x) = y0; r(x) = y1. For every pair of numbers (e; i) with 

e 6= k, define o(x; e; i) = i if ¾(x; e; i) 2 ¼e(i). Note that 
 o(x; e; i) #) ¾(x; e; i) 2 ¼e(i) & o(x; e; i) = i: 

We define 

 

Lk = fl(x) : hxi0 = kg;

Rk = fr(x) : hxi0 = k &®(2x) 6= ®(2x + 1)g;

Ok = fo(x; k; i) : (x; k; i) 2 dom(o)& hxi0 6= kg: 

When the values l(x), r(x), o(x; e; i) are defined, we should take care that these 
values be correct. For a numbering ¼k of the family A, we will show below how to 
achieve that ¼k(o(x; k; i)) 2 f®(2x); ®(2x + 1)g, if hxi0 6= k, and the equalities 
®(2x) = ¼k(l(x)) and ®(2x + 1) = ¼k(r(x)), if hxi0 = k. 

Procedure O(x; e; i): 
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It can be performed only after that stage when the value o(x; e; i) had been 
defined, it can start at those stages s only (not all) when the inactive number 
h(2x + 1; y; 1) = 1 is not in the set ¼e(i) and proceeds as follows: 

1. enumerate ¾(x; e; i) into all sets ®(z), z =2 f2x; 2x + 1g; 
2. wait for ¾(x; e; i) to appear in ¼e(i) at some stage s0 > s; 
3. at that stage s0, remove the number ¾(x; e; i) from all the sets ®(z), 

z =2 f2x; 2x + 1g, and thereby complete the procedure. 

If ¼k is a numbering of A and o(x; k; i) is defined then Procedure O(x; k; i) 
guarantees that ¼k(i) is one of the sets ®(2x) or ®(2x + 1). Really, at stage 0 the number 
f (2x + 1; y; 1) = 1; is enumerated into the sets ®(2x) and ®(2x + 1) and never leaves 
them. Until the moment when the value o(x; k; i) is defined, the number ¾(x; k; i) 
cannot enter the sets ®(2z) and ®(2z + 1) for all z 6= x. At that stage s when the value 
o(x; k; i) is defined in the construction, the number ¾(x; k; i) is in the set ¼s

k(i). If 

¾(x; k; i) is not extracted from ¼k(i) at later stages then ¼k(i) 2 f®(2x); ®(2x + 1)g, 
since ¾(x; k; i) is not contained in the sets ®(2z), ®(2z + 1) with z 6= x. On the other 
hand, if the number ¾(x; k; i) leaves ¼k(i) after stage s then later, either it will be 
enumerated in ¼k(i), or Procedure O(x; e; i) will be performed. In the latter case, due 
to item (1) of Procedure O(x; e; i), all the sets of the family A will contain the number 
¾(x; k; i), and, because of ¼k(i) 2 A, in item (2) of the procedure we successfully stop 
waiting, and, hence, the number ¾(x; k; i) will be removed from all sets ®(2z), 
®(2z + 1) for z 6= x by item (3) of Procedure O(x; e; i). 

It is clear that Procedure O(x; e; i) cannot be performed at infinitely many stages. 
This implies that ¼k(i) 2 f®(2x); ®(2x + 1)g. 

Note that, indeed, we have shown that if ¼k is a numbering of A then o(x; k; i) is 
defined and 

 ¾(x; k; i) 2 ¼k(i) () ¼k(i) 2 f®(2x); ®(2x + 1)g: 

Procedure L(x; i): 

This procedure is performed for the active number d0(x; i) and the set ¼k(l(x)) 
with k = hxi0. Recall that at stage s the active number d0(x; i) is contained in ®s(2x) 
and is not contained in ®s(2x + 1). 

So, if the active number d0(x; i) is not in ¼k(l(x)) at stage s then 

1. enumerate d0(x; i) into all sets ®(z), z 6= 2x; 
2. wait until d0(x; i) is enumerated in ¼k(l(x)) at some stage s0 > s; 
3. at stage s0, remove the number d0(x; i) from all sets ®(z), z 6= 2x. 

It is not difficult to show that if the number d0(x; i) is declared to be active at 
some stage, and remains active afterwards, then ®(2x) = ¼k(l(x)). 
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Procedure R(x; i): 

Procedure R(x; i) can be described similar to Procedure L(x; i), but replacing the 
number d0(x; i) and the set ¼k(l(x)) with the number d1(x; i) and the set ¼k(r(x)), 
respectively. 

A priori, it may appear that we may need to carry out simultaneously two or more 
of the above described procedures. To avoid such conflicts, we can easily order, in a 
suitable priority list, the executions of the procedures on the elements of ®(2x) and 
®(2x + 1) so that, at every stage, no more than one procedure can be carried out, and 
item (1) of any procedure begins to start only after item (3) of the previous procedure 
has been completed. Note that, in the case when ¼k is a numbering of A, if a procedure 
starts then it is eventually completed. 

Thus, our strategy to meet Requirement Pk is the following: 

– do not extract inactive numbers from those sets of A in which these numbers 
are enumerated for the first time; 

– for every i · 1, do not extract the active numbers of the sequence 
di(x; j); j 2 !; from the set ®(2x + i); 

– do perform the procedure O(x; e; i), as soon as it needs and does not lead to a 
conflict; 

– do perform the procedure L(x; i) as soon as it needs and does not lead to a 
conflict; 

– do perform the procedure R(x; i) as soon as it needs and does not lead to a 
conflict. 

It remains only to describe a way to recognize the moment in constructing the set 
Rk when we could insure that ®(2x) 6= ®(2x + 1). We are able to do this already now 
if we note that 

 Rk = fr(x) : hxi0 = k & (l(x); r(x)) 2 "hxi1g: 

We provide an explanation of why this equality holds in the description of the 
following strategy. 

Strategy for Nk;m in isolation: 

To meet Requirement Nk;m we use ¼k‐indices l(x) and r(x) of the sets ®(2x) and 
®(2x + 1), where x = hk; mi. Under the assumption that ¼k is a numbering of A, we 
wait for the values l(x) and r(x) to have been defined in the strategy for Pk, after that 
begin to enumerate more and more new numbers into the sets ®(2x) and ®(2x + 1) 
through their dynamic parts, so that they could become equal in the limit (remaining 
distinct at each finite stage) and simultaneously check whether the pair (l(x); r(x)) 
appears in the enumeration of "(m). If and only if the latter occurs, we stop adding 
numbers to the sets ®(2x) and ®(2x + 1) from their dynamic parts. It remains only to 
ensure that 

 ®(2x) = ¼k(l(x)); ®(2x + 1) = ¼k(r(x)): 
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For every x = hk; mi, we execute the following Procedure N (k;m) to meet 
Requirement Nk;m. At each step s, for the active numbers d0(x; i) and d1(x; i), 

– check whether the pair of numbers (l(x); r(x)) belongs to the set "s(m); 
– check whether the following two inclusions are valid: 
 fd0(x; i); d0(x; i + 1)g μ ¼s

hxi0
(l(x)); 

 fd1(x; i); d1(x; i + 1)g μ ¼s
hxi0

(r(x)); 

– execute Procedure D(x; i) if and only if the answer to the first question is 
negative while the answer to the second one is affirmative. 

Conflicts between strategies: 
The strategies of the same type, obviously, cannot conflict with each other, since 

their instructions are executed for distinct pairs of sets. By the same reason, there are 
no conflicts between the strategies Pk 0 and Nk;m if k0 6= k. 

Formally, a conflict between the strategies Pk and Nk;m arises when, for the same 
pair of sets ®(2x); ®(2x + 1) with x = hk; mi, the conditions to start execution of 
Procedure Nk;m on one hand, and the procedures L(x; i) or R(x; i) on the other hand, 
may occur at the same stage. In such a situation, we give the following priority list of 
execution to the procedures, from higher to lower: L(x; i), R(x; i), D(x; i). 

Construction: 
We build by stages computable functions f (x; y; s), h(x; y; s) and partial 

computable functions o(x; e; i), l(x), and r(x). 

Stage s = 0: 
Let f(x; y; 0) = 0, h(x; y; 0) = a for all x; y. The values o(x; e; i), l(x), and r(x) 

are undefined at stage 0 for all x; e; i. 

Later on, we let by default f(x; y; s + 1) = f(x; y; s), h(x; y; s + 1) = h(x; y; s) 
for those x; y such that the values of f(x; y; s + 1), h(x; y; s + 1) are not explicitly 
defined at stage s + 1. 

Stage s = 1: 
For all y 2 f¾(x; e; i) : e; i 2 !g [ fd0(x; 0); d0(x; 1)g and every x, define 

f(2x; y; 1) = 1; h(2x; y; 1) = 1.  

For every x and all y 2 f¾(x; e; i) : e; i 2 !g [ fd1(x; 0); d1(x; 1)g let 
f(2x + 1; y; 1) = 1;h(2x + 1; y; 1) = 1. Declare the numbers d0(x; 0); d1(x; 0) as 
active, and declare the numbers d0(x; 1), d1(x; 1) as semi‐active. 

Stage s + 1; s > 0: 
Let hsi0 = hx; e; ii, x = hk; mi. Follow the instructions of the following 10 steps, 

one by one in the natural order if there is no explicit instruction to change that order or 
go to a different step. If the conditions of a step do not hold then, by default, proceed 
to the next step. 
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1.  If k 6= e, o(x; e; i) is still undefined, and f¼(e; i; ¾(x; e; i); s + 1) = 1, then 
define o(x; e; i) = i. 

2. If k 6= e, o(x; e; i) is defined, f¼(e; i; ¾(x; e; i); s + 1) = 0, and 
f(2x + 2; ¾(x; e; i); s) = 0, then let 

f(z; ¾(x; e; i); s + 1) = 1; h(z; ¾(x; e; i); s + 1) = h¼(e; i; ¾(x; e; i); s + 1) 

for all z =2 f2x; 2x + 1g. 

3. If k 6= e, o(x; e; i) is defined, f¼(e; i; ¾(x; e; i); s + 1) = 1, and 
f(2x + 2; ¾(x; e; i); s) = 1, then let 

f(z; ¾(x; e; i); s + 1) = 0; h(z; ¾(x; e; i); s + 1) = h¼(e; i; ¾(x; e; i); s + 1) 

for all z =2 f2x; 2x + 1g. 

4. If k = e, l(x) and r(x) are undefined, f¼(k; y0; d0(x; 0); s + 1) = 1, and 
f¼(k; y1; d1(x; 0); s + 1) = 1 for some distinct y0; y1, then choose the least such y0; y1, 
and define l(x) = y0; r(x) = y1. 

5. If k = e, l(x) and r(x) are defined, the number d0(x; i) is active or has been 
active, and 

 f¼(k; l(x); d0(x; i); s + 1) = f(2x + 2; d0(x; i); s) = 0; 

then define 
f (z; d0(x; i); s + 1) = 1; h(z; d0(x; i); s + 1) = p¼(k; l(x); d0(x; i); s + 1) 

for all z 6= 2x if d0(x; i) is active, or for all z =2 f2x; 2x + 1g if d0(x; i) is not active. 
Go to step 10. 

6. If k = e, l(x) and r(x) are defined, the number d0(x; i) is active or has been 
active, and 

 f¼(k; l(x); d0(x; i); s + 1) = f(2x + 2; d0(x; i); s) = 1 

then define 
 f(z; d0(x; i); s + 1) = 0; h(z; d0(x; i); s + 1) = p¼(k; l(x); d0(x; i); s + 1) 

for all z 6= 2x if d0(x; i) is active, or for all z =2 f2x; 2x + 1g if d0(x; i) is not active, 
and go to step 7. Otherwise, go to step 10. 

7. If k = e, l(x) and r(x) are defined, the number d1(x; i) is active or has been 
active, and 

 f¼(k; r(x); d1(x; i); s + 1) = f(2x + 2; d1(x; i); s) = 0 

then define 
f(z; d1(x; i); s + 1) = 1; h(z; d1(x; i); s + 1) = p¼(k; r(x); d1(x; i); s + 1) 

for all z 6= 2x + 1 if d1(x; i) is active, or for all z =2 f2x; 2x + 1g if d1(x; i) is not 
active. Go to step 10. 

8. If k = e, l(x) and r(x) are defined, the number d1(x; i) is active or has been 
active, and 

 f¼(k; r(x); d1(x; i); s + 1) = f(2x + 2; d1(x; i); s) = 1 
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then let 
f(z; d1(x; i); s + 1) = 0; h(z; d1(x; i); s + 1) = p¼(k; r(x); d1(x; i); s + 1) 

for all z 6= 2x + 1 if d1(x; i) is active, or for all z =2 f2x; 2x + 1g if d1(x; i) is not 
active, and go to step 9. Otherwise, go to step 10. 

9. If k = e, l(x) and r(x) are defined, (l(x); r(x)) =2 "s+1
m , the numbers 

d0(x; i); d1(x; i) are active, and 
f¼(k; l(x); d0(x; i); s + 1) = f¼(k; l(x); d0(x; i + 1); s + 1) = 1;

f¼(k; r(x); d1(x; i); s + 1) = f¼(k; r(x); d1(x; i + 1); s + 1) = 1;

f(2x; d1(x; i); s) = f(2x + 1; d0(x; i); s) = 0 

then let 

 
f (2x; d1(x; i); s + 1) = 1; f (2x + 1; d0(x; i); s + 1) = 1;

h(2x; d1(x; i); s + 1) = 1; h(2x + 1; d0(x; i); s + 1) = 1;
 

declare the numbers d0(x; i); d1(x; i) to be inactive. Declare the semi‐active numbers 
d0(x; i + 1); d1(x; i + 1) to be active. Define 

 

f(2x; d0(x; i + 2); s + 1) = 1; f (2x + 1; d1(x; i + 2); s + 1) = 1;

h(2x; d0(x; i + 2); s + 1) = 1; h(2x + 1; d1(x; i + 2); s + 1) = 1; 

and declare the numbers d0(x; i + 2); d1(x; i + 2) to be semi‐active. 

10. Go to the next stage. 

The construction is now completely described. It is clear, that steps 2, 3 of the 
construction correspond to Procedure O(x; e; i), steps 5, 6 correspond to Procedure 
L(x; i), steps 7, 8 correspond to Procedure R(x; i), and step 9 aims to meet 
Requirement Nk;m. 

Obviously, the functions f; h are computable, and the functions l; r; o are partial 
computable. Let us define the numbering ® by the equalities ®(n)(y) = lims f(n; y; s) 
for all n; y, and define A as the family of sets f®(n) : n 2 !g. Denote by S(x; e; i) the 
set of all stages s + 1 such that hsi0 = hx; e; ii. 

The theorem follows from the following lemmas. 

Lemma 3.1 The pair of functions hf; hi is a §¡1
a –approximation to ® and, hence, 

the numbering ® is §¡1
a –computable. 

Proof. It is sufficient to verify that the function h is a change function of the 
numbering ®. By the construction, h(n; y; 0) = a for every n; y. We have to verify 
trueness of the following two properties: 

i.  h(n; y; s + 1) ·O h(n; y; s); 
ii. f(n; y; s + 1) 6= f (n; y; s) ) h(n; y; s + 1) 6= h(n; y; s), 

for every n; y; s. 

These properties are evident for every s and all pairs (n; y) of the following forms: 

– n = 2x; y 2 f¾(x; e; i) : e; i 2 !g [ fd0(x; i) : i 2 !g; 
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– n = 2x + 1; y 2 f¾(x; e; i) : e; i 2 !g [ fd1(x; i) : i 2 !g; 
– n 2 !; y =2 range(d0) [ range(d1) [ range(¾). 

Let us verify these properties for the other pairs. 

For every x; y; n, if y 2 f¾(x; e; i) : e; i 2 !g and n =2 f2x; 2x + 1g, then 
changing the values of the function ¸s h(n; y; s) can occur only at stages 
s + 1 2 S(x; e; i) with x = hk; mi and k 6= e, as a result of executing steps 2, 3 of the 
construction. At such stages, h(n; y; s + 1) = h¼(e; i; y; s) and, therefore, properties 
(i),(ii) for the function ¸sh(n; y; s) follow from the appropriate properties of the 
function ¸sh¼(e; i; y; s) because of transitivity of the relation ·O. 

Now let us consider the case when (n; y) is a pair with n 6= 2x, y = d0(x; i) for 
arbitrary x; i. If the number d0(x; i) never becomes active, or x =2 dom(l), then 
f(n; y; s) = 0, h(n; y; s) = a for all s, and, hence, there is nothing to prove. 

Let x = hk; mi for some m and suppose that at stage s0 + 1 2 S(x; k; i) the active 
number d0(x; i) is enumerated for the first time into ®(n) for every n 6= 2x due to step 
5. Then f(n; d0(x; i); so) = 0, h(n; d0(x; i); so) = a, and f(n; d0(x; i); so + 1) = 1, 
h(n; d0(x; i); so + 1) = p¼(k; l(x); d0(x; i); s0 + 1). Let us show that 
h(n; d0(x; i); so + 1) <O h(n; d0(x; i); so). Indeed, at stage s0 + 1 the value l(x) is 
already defined. Let s1 + 1 be the stage at which this value was defined due to the 
construction. Then s1 < s0 and at stage s1 + 1 step 4 holds and 
f¼(k; l(x); d0(x; 0); s1 + 1) = 1. Therefore, until stage s0 + 1 the function 
¸sp¼(k; l(x); d0(x; i); s) has changed its value at least twice. This implies that 

 p¼(k; l(x); d0(x; i); s0 + 1) <O p¼(k; l(x); d0(x; i); s1 + 1) ·O a: 

Hence, h(n; d0(x; i); so + 1) <O h(n; d0(x; i); so). 

Thus, properties (i), (ii) are true for the desired pairs if s · s0. For all pairs 
hn; d0(x; i)i, if n =2 f2x; 2x + 1g, and s · s0, then properties (i), (ii) for the function 
¸sh(n; d0(x; i); s) follows from the approppriate properties of the function 
¸s p¼(k; l(x); d0(x; i); s). 

After stage s0 up to stage s2 + 1, when the number d0(x; i) is enumerated into the 
set ®(2x + 1) by Procedure D(x; i) (if this happens at all), trueness of properties (i),(ii) 
for the function ¸sh(2x + 1; d0(x; i); s) follows from the properties of the function 
¸s p¼(k; l(x); d0(x; i); s). 

Thus, it is necessary to consider properties (i),(ii) for s = s2. According to the 
instructions of step 9, f(2x + 1; d0(x; i); s2) = 0, f(2x + 1; d0(x; i); s2 + 1) = 1, 
h(2x + 1; d0(x; i); s2 + 1) = 1. Besides, 

 p¼(k; l(x); d0(x; 0); s2) ·O h(2x + 1; d0(x; i); s2); 

if d0(x; i) has been enumerated up to stage s2 + 1 at least once into ®(2x + 1) due to 
step 5 of the construction, and h(2x + 1; d0(x; i); s2) = a otherwise. From here, by the 
inequalities 
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 1 ·O h¼(k; l(x); d0(x; 0); s2) <O p¼(k; l(x); d0(x; 0); s2); 

we obtain that h(2x + 1; d0(x; i); s2 + 1) <O h(2x + 1; d0(x; i); s2). Hence, properties 
(i), (ii) are true also for s = s2. Finally, we note that 
f(2x + 1; d0(x; i); s) = h(2x + 1; d0(x; i); s) = 1 for all s ¸ s2 + 1. Thus, properties 
(i), (ii) for the pair h2x + 1; d0(x; i)i are true for every s. 

In the symmetric case, when n 6= 2x + 1, and y = d1(x; i), properties (i), (ii) can 
be proved in a similar way. Lemma 3.1 is proved. 

Lemma 3.2 If ¼k is a numbering of the family A, then, for every x; i with 
hxi0 6= k; the value o(x; k; i) is defined if and only if ¼k(i) = ®(2x) or 
¼k(i) = ®(2x + 1). 

Proof. (Necessity). Let x; i be any pair of numbers such that hxi0 6= k and the 
value o(x; k; i) is defined. Let s0 + 1 2 S(x; k; i) be the stage at which the value 
o(x; k; i) has been defined. It is possible only due to execution of step 1 at this stage. 

Then f¼(k; i; ¾(x; k; i); s0 + 1) = 1, i.e. ¾(x; k; i) 2 ¼s0+1
k (i). By the construction, the 

number ¾(x; k; i) is enumerated due to the instructions of step 1 into the sets ®(2x) and 
®(2x + 1) only, and, later on, it can be enumerated into other sets of A only by step 2. 
If step 2 is not performed at all stages of S(x; k; i) then, obviously, ¼k(i) = ®(2x) or 
¼k(i) = ®(2x + 1). 

Let s1 + 1 2 S(x; k; i) be the least stage at which step 2 holds. Then s1 > s0 and 

 f¼(k; i; ¾(x; k; i); s1 + 1) = 0 and f(z; ¾(x; k; i); s1 + 1) = 1 

for every z. This means that at stage s1 + 1 the number ¾(x; k; i) is contained in all sets 
of the family A except the set ¼k(i). Since ¼k is a numbering of the family A, it follows 
that at some later stage the number ¾(x; k; i) will be again enumerated in ¼k(i). Let 
s2 + 1 2 S(x; k; i) be the least stage such that s2 > s1 and 
f¼(k; i; ¾(x; k; i); s1 + 1) = 1. Then step 3 holds at stage s2 + 1 and, therefore, 
f(z; ¾(x; k; i); s1 + 1) = 0 for all z =2 f2x; 2x + 1g. Beginning from some stage s3, the 
values of the function ¸s f¼(k; i; ¾(x; k; i); s) will stabilize at 1, hence, 
f(z; ¾(x; k; i); s) = 0 for every z =2 f2x; 2x + 1g, and all s ¸ s3. Therefore, 
¼k(i) = ®(2x) or ¼k(i) = ®(2x + 1). 

(Sufficiency). Let hxi0 6= k and ¼k(i) = ®(2x) or ¼k(i) = ®(2x + 1). By the 
construction, the number ¾(x; k; i) is enumerated at some stage by step 1 into the sets 
®(2x) and ®(2x + 1), and is never extracted from them later. Then there is a stage s0 
such that f¼(k; i; ¾(x; k; i); s) = 1 for all s ¸ s0. Let s1 + 1 2 S(x; k; i) be the least 
stage such that s1 ¸ s0. If the value o(x; k; i) has not yet been defined before stage 
s1 + 1 then, at this stage, all the conditions of step 1 hold, and o(x; k; i) will be defined 
equal to i. Lemma 3.2 is proved. 
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Lemma 3.3 For every x; z, if x 6= z then ®(2x) and ®(2x + 1) are distinct from 
all the sets ®(z) with z =2 f2x; 2x + 1g. Besides, ®(2x) = ®(2x + 1) if and only if 
Procedure D(x; i) carried out for all i. 

Proof. Let x = hk; mi. If k 6= 0, then at stage 1 the numbers ¾(x; 0; i); i 2 !; are 
enumerated into both ®(2x) and ®(2x + 1). Since f¼(0; i; ¾(x; 0; i); s) = 0 for all i; s, 
it follows that o(x; 0; i) cannot be defined at any stage of the construction due to step 
1. Therefore, the numbers ¾(x; 0; i) cannot be enumerated due to step 2 into any set 
®(z) for z =2 f2x; 2x + 1g. 

If k = 0 then at stage 1 the number d0(x; 0) is enumerated into ®(2x) while d1(x; 0) 
is enumerated into ®(2x + 1). Since f¼(0; y; d0(x; 0); s) = 0, f¼(0; y; d1(x; 0); s) = 0 
for all y; s, it follows that the values l(x); r(x) cannot be defined at any stage of the 
construction via step 4. Hence, because of steps 5, 7, the numbers d0(x; 0); d1(x; 0) 
cannot be enumerated into any set ®(z) for z =2 f2x; 2x + 1g: 

Thus, each of sets ®(2x) and ®(2x + 1) contains a number that is never 
enumerated into the sets ®(z), for every z =2 f2x; 2x + 1g. 

To prove the second statement of lemma, note that 
f¾(x; e; i) : e; i 2 !g μ ®(2x) \ ®(2x + 1) and that, for every z =2 f2x; 2x + 1g, any 
number of ®(z) is contained in ®(2x) if and only if it is contained in ®(2x + 1). Hence, 
equality or inequality of the sets ®(2x) and ®(2x + 1) is completely determined by the 
total number of stages at which Procedure D(x; i) holds. Lemma 3.3 is proved. 

Lemma 3.4 If ¼k is a numbering of A then ¸m l(hk; mi), ¸mr(hk;mi) are 
computable functions and 

 ®(2hk; mi) = ¼k(l(hk; mi)); ®(2hk; mi + 1) = ¼k(r(hk; mi)): 

Proof. Let ¼k be a numbering of the family A. Firstly, we will show by 
contradiction that the functions ¸m l(hk; mi), ¸mr(hk;mi) are total. Choose an 
arbitrary number m and let x = hk; mi. At stage 1, d0(x; 0) is enumerated into ®(2x) 
while d1(x; 0) is enumerated into ®(2x + 1). Note that these numbers are never 
extracted respectively from ®(2x) and ®(2x + 1). Besides, note that, at each stage of 
the construction the value l(x) is defined if and only if the value r(x) is defined. 

Assume that the values l(x) and r(x) are never defined in the construction. Then 
at each stage s + 1 2 S(x; k; i) steps 1–9 do not hold and, therefore, d0(x; 0) is not 
enumerated into any set ®(z) with z 6= 2x, and d1(x; 0) is not enumerated into any set 
®(z) with z 6= 2x + 1. Let y0 and y1 be any ¼k‐indices of ®(2x) and ®(2x + 1). It is 
obvious that y0 6= y1. Then f¼(k; y0; d0(x; 0); s) = 1, f¼(k; y1; d1(x; 0); s) = 1 for some 
s0 and all s ¸ s0. This implies that the conditions of step 4 hold at infinitely many 
stages of S(x; k; i). A contradiction. Thus, the values l(x) and r(x) will be defined at 
some stage s1 + 1 2 S(x; k; i). 
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Let us fix a number i and show that d0(x; i) =2 ®(z) for all z =2 f2x; 2x + 1g. If 
d0(x; i) is never declared semi‐active then d0(x; i) =2 ®(z) for all z. If d0(x; i) is 
declared semi‐active at some stage and remains semi‐active at all later stages then 
d0(x; i) 2 ®(2x) and d0(x; i) =2 ®(z) for all z 6= 2x. 

Now we consider the case when the number d0(x; i) is declared active at some 
stage s0 and remains active at all stages s ¸ s0. Then f(2x; d0(x; i); s) = 1 for all 
s ¸ s0. If f(2x + 2; d0(x; i); s) = 0 for all s ¸ s0 then, evidently, d0(x; i) =2 ®(z) for 
all z =2 f2x; 2x + 1g. 

Let s1 + 1 be the least stage such that f(2x + 2; d0(x; i); s1 + 1) = 1. Then 
s1 + 1 > s0 and at stage s1 + 1 step 5 holds and, hence, f¼(k; l(x); d0(x; i); s1 + 1) = 0 
and f(z; d0(x; i); s1 + 1) = 1 for all z. If f¼(k; l(x); d0(x; i); s + 1) = 0 for all s > s1, 
then step 6 does not hold at all further stages of S(x; k; i), and f(z; d0(x; i); s + 1) = 1 
for every z and all s > s1. Then the number d0(x; i) is contained in all sets of the family 
A but is not contained in ¼k(l(x)), and, therefore, ¼k is not a numbering of A: 
contradiction. Hence, there is the least stage s2 + 1 > s1 + 1 of S(x; k; i) at which step 
6 holds. Then f(z; d0(x; i); s + 1) = 0 for all z 6= 2x. Thus, at stages s such that 
s1 + 1 · s · s2 + 1, Procedure L(x; i) is performed completely, and the function 
¸s h¼(k; l(x); d0(x; i); s) has changed its value at least once. Therefore, Procedure 
L(x; i) can be carried out only at finitely many stages. Since ¼k is a numbering of A, 
it follows that every execution of this procedure will ended by carrying out step 6. 

If the number d0(x; i) remains active until the end of the construction then step 9 
does not hold at the stages in S(x; k; i), and, therefore, ®(2x) is the only set of A that 
contains the number d0(x; i). If at some stage s3 + 1 2 S(x; k; i) the number d0(x; i) 
became inactive then at this stage step 9 holds, i.e., Procedure D(x; i) is performed. 
The number d0(x; i) remains inactive also at the further stages. At stages s > s3 + 1, 
the number d0(x; i) can be enumerated into all the sets ®(z) with z =2 f2x; 2x + 1g by 
Procedure L(x; i) only. As was shown above, every execution of Procedure L(x; i) will 
be ended by carrying out step 6. Therefore, the number d0(x; i) is not contained in any 
set ®(z) with z =2 f2x; 2x + 1g. 

We will show now that ®(2x) = ¼k(l(x)). By Lemma 3, ®(2x) 6= ®(z) for all 
z =2 f2x; 2x + 1g. If, for some i and a stage s0, the number d0(x; i) is active at all stages 
s ¸ s0 then d0(x; i) 2 ¼k(l(x)) \ ®(2x), and d0(x; i) is not contained in any set ®(z) 
with z 6= 2x. Hence, ®(2x) = ¼k(l(x)). 

On the other hand, if every number d0(x; i); i 2 !; is declared active then it means 
that Procedure D(x; i) is performed for all i. Then 
fd0(x; i); d1(x; i) : i 2 !g μ ®(2x) \ ®(2x + 1) and every number d0(x; i) is not 
contained in any set ®(z) with z =2 f2x; 2x + 1g. Furthermore, for every such z, and 
each y 2 ®(z), 
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 y 2 ®(2x) () y 2 ®(2x + 1): 

Hence, ®(2x) = ®(2x + 1) = ¼k(l(x)). 

The equality ®(2x + 1) = ¼k(r(x)) is proved similarly. Lemma 3.4 is proved. 

Let 

 

Lk = fl(x) : hxi0 = kg; Rk = fr(x) : hxi0 = k & hl(x); r(x)i 2 "hxi1g;

Ok = fo(x; k; i) : (x; k; i) 2 dom(o) & hxi0 6= kg; ¦k = Lk [ Rk [ Ok: 

Lemma 3.5 If ¼k is a numbering of the family A then ¦k is a c.e. set that contains 
exactly one ¼k‐index for each set of f®(2hk; mi); ®(2hk; mi + 1) : m 2 !g and all ¼k‐
indices of the other sets. 

Proof. The set ¦k is c.e., since the functions l; r; o are partial computable, and "m 
is a c.e. relation for every m. The other statements of lemma follow from Lemmas 3.2–
3.4. Lemma 3.5 is proved. 

We now proceed to complete the proof of the theorem. By Lemma 3.1, the 
numbering ® is §¡1

a ‐computable. By using the criterion of Theorem 3.1, we show that 
the family A = ®(!) has no §¡1

a ‐computable minimal numbering. 

Let º be an arbitrary §¡1
a ‐computable numbering of the family A. Then º = ¼k 

for some k. Theorem 3.1 can be reformulated in a more convenient form as follows. 

Theorem 3.3 A numbering ¼k of the family A is not minimal if and only if there 
is a c.e. set W  such that ¼k(W ) = A and, for every m, 

9u9v((u; v) 2 "m & ¼k(u) 6= ¼k(v));                                 (a) 

or 

9u8w 2 W ((u; w) =2 "m)                                                   (b) 

We take the set ¦k as W . By Lemma 3.5, ¼k(¦k) = A. Let "m be an arbitrary c.e. 
equivalence. Denote hk;mi by x. By Lemma 3.4, the values l(x), r(x) are defined. 
Consider the following two cases. 

Case 1. hr(x); l(x)i 2 "m. 

Then hr(x); l(x)i 2 "s+1
m  for all stages s + 1 2 S(x; k; i); i 2 !; beginning with 

some stage s0 + 1. Hence, at these stages, step 9 of the construction does not hold, and, 
therefore, Procedure D(x; i) is performed only for finitely many numbers i. By 
Lemmas 3.3, 3.4, ¼k(r(x)) 6= ¼(l(x)). Hence, condition (a) of Theorem 3.3 holds with 
u = r(x) and v = l(x). 

Case 2. hr(x); l(x)i =2 "m. 

We will show that in this case Procedure D(x; i) is performed for every i. 

Let i > 0 be a number such that, at some stage s1 + 1 2 S(x; k; i ¡ 1), the 
numbers d0(x; i + 1), d1(x; i + 1) are declared semi‐active. Then Procedure 
D(x; i ¡ 1) is performed at stage s1 + 1, and, in accordance with it, 

 f¼(k; l(x); d0(x; i); s1 + 1) = 1; f¼(k; r(x); d1(x; i); s1 + 1) = 1; 
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and the numbers d0(x; i), d1(x; i) are declared active. 

Let us show that, at some later stage of S(x; k; i), Procedure D(x; i) will be 
performed. As was shown in the proof of Lemma 3.4, if at some stage of S(x; k; i) step 
5 (step 7) holds then at some later stage of S(x; k; i) step 6 (step 8) is carried out. 
Therefore, for some s2 + 1 2 S(x; k; i) 

 
f¼(k; l(x); d0(x; i); s + 1) = 1; f¼(k; r(x); d1(x; i); s + 1) = 1;

f (2x; d1(x; i); s) = 0; f (2x + 1; d0(x; i); s) = 0;
 

for all s + 1 2 S(x; k; i) with s ¸ s2. By lemma 3.4, ®(2x) = ¼k(l(x)), 
®(2x + 1) = ¼k(r(x)), and as long as the numbers d0(x; i + 1), d1(x; i + 1) remain 
semi‐active, they cannot be enumerated into the sets that are distinct from respectively 
®(2x) and ®(2x + 1). Therefore, for some s3 ¸ s2 

 f¼(k; l(x); d0(x; i + 1); s + 1) = 1; f¼(k; r(x); d1(x; i + 1); s + 1) = 1 

for all s + 1 2 S(x; k; i) after stage s3, as long as the numbers d0(x; i + 1), 
d1(x; i + 1) remains semi‐active. Hence, at the least stage s4 + 1 ¸ s3 of S(x; k; i), 
step 9 is performed. Then at this stage Procedure D(x; i) is carried out. 

Thus, hr(x); l(x)i =2 "m, and Procedure D(x; i) is carried out for every i. Then 
r(x) =2 ¦k, and by Lemmas 3,4, ¼k(r(x)) = ¼(l(x)). If hr(x); wi =2 "m for all w 2 ¦k, 
different from l(x), then for u = r(x) and all w 2 ¦k, condition (b) of Theorem 3.3 
holds. On the other hand, if hu; wi =2 "m for some w 2 ¦k different from l(x), then 
condition (a) of Theorem 3.3 holds for u = r(x) and v = w by Lemma 3.5. 

Thus, in both cases, at least one of the conditions (a) or (b) of Theorem 3.3 holds. 
Therefore, the numbering ¼k is not minimal. The proof of Theorem 3.2 is completed. 
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CONCLUSION 
 

The study of computable numberings of families of sets in the Ershov hierarchy 
revealed new phenomena compared to computable numberings of families of c.e. sets. 
For example, in [9] such a family consisting of two sets, one of which is included in 
the other, was constructed, that its Rogers semilattice consists of just one element. In 
[10], it was observed that a complete analogue of Khutoretskii’s classical theorem does 
not hold in the Ershov hierarchy. All these results were obtained for d.c.e. sets, i.e. sets 
lying in the §¡1

2  class of the Ershov hierarchy. 
Along with the new phenomenon of computable numberings in the Ershov 

Hierarchy, it is natural to raise questions about which properties of computable 
numberings that hold in the classical case, are also valid for computable numberings in 
the Ershov hierarchy. In this regard, an interesting problem is a question of whether or 
not there exist families of sets without universal computable numberings. In [30], the 
family which consists of two disjoint sets and has no universal computable numbering 
was constructed. And the other interesting problem is whether or not there exist 
families of sets without minimal computable numberings (see [4], Question 11). The 
main result of this thesis is the following theorem, in [31], on the existence of such 
families in each level, whether finite or infinite, of the Ershov hierarchy.
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