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Abstract

This thesis analyzes the structure of the Medvedev lattice of non-empty Π0
1 classes

in 2ω from the viewpoint of branching and non-branching degrees. This lattice is a

countable distributive lattice with least and greatest element, which describes the relative

information content of certain subsets of 2ω.

Chapter 1 is an introduction, providing background history, notation, and an

overview of necessary concepts.

Chapter 2 is essentially my paper “Non-Branching Degrees in the Medvedev Lat-

tice of Π0
1 classes.”[1]. The chapter adds an additional theorem which strengthens the

theorem on inseparable and not hyperinseparable classes. The chapter is also slightly

more verbose.

We begin by taking an existing condition, homogeneous, which implies non-branching

and define two successively weaker conditions, hyperinseparable and inseparable. We

then demonstrate that inseparable is equivalent to non-branching and is invariant under

Medvedev equivalence. Finally, we prove separation theorems, namely the existence of

an inseparable and not hyperinseparable degree and the existence of a hyperinseparable

and not homogeneous degree.

Chapter 3 defines a combinatorial method for constructing Π0
1 classes by priority

arguments. This section does not contain any difficult proofs but abstracts many of

the common elements of such constructions. The definitions and results are used in

Chapter 4.

Chapter 4 follows a program similar to Chapter 2. Specifically, we take an existing
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condition which we call totally separable, show that this implies branching, and then

define two successively weaker conditions, hyperseparable and separable. Separable is

the converse of inseparable and thus equivalent to branching and also invariant under

Medvedev equivalence. We then prove the separation of separable and hypersepara-

ble and some structural results on separable and not hyperseparable degrees. In the

last portion, we prove the separation of hyperseparable and totally separable, i.e., the

existence of a hyperseparable and not totally separable degree.
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Chapter 1

Introduction

1.1 Introduction

A Π0
1 class has many equivalent definitions. For the purposes of this thesis we will view

a Π0
1 class as the set of infinite paths through a computable tree. A good introduction

and background on Π0
1 classes can be found in Cenzer and Jockusch [4]. These classes

appear frequently in computable mathematics. A survey of their uses can be found in

Cenzer and Remmel [5]. See also Jockusch and Soare [6].

We will be concerned primarily with the Medvedev lattice of non-empty Π0
1 subsets

of 2ω. In this context we say that a Π0
1 class P is Medvedev below Q, written P ≤M Q,

if there is a computably continuous functional from Q into P , i.e., if it is possible to

uniformly compute an element of P given an element ofQ. A common intuition is to view

a class as the solution set to some mathematical problem and P ≤M Q as stating that

solving Q is sufficient to solve P . The Medvedev reduction forms a distributive lattice.1

We will denote this lattice by LM . This lattice has recently been studied by Simpson [9],

Binns [2], and Cenzer and Hinman [3]. In particular, Binns [2] demonstrates a dense

splitting theorem, thus showing that there are no non-trivial non-splitting degrees. The

main purpose of this thesis is to investigate the dual, branching and non-branching

1This lattice is also referred to in the literature as the strong lattice of Π0
1 classes.
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degrees.

It is an elementary exercise to show that the bottom degree of LM does not branch.

In [3], Cenzer and Hinman further demonstrated that the homogeneous degrees—those

of splitting classes of computably enumerable (c.e.) sets—do not branch.

As a convention we say that a degree has some property if a member has that

property. A clopen set C is good for a Π0
1 class P if P ∩ C and P ∩ Cc are non-empty,

i.e., if C splits P into two proper clopen subclasses.

We call a class P inseparable if, for every C good for P , P ∩ C ≤M P ∩ Cc or

P ∩ Cc ≤M P ∩ C. Thus inseparability states that there is no splitting of P into

incomparable clopen subclasses. We will show that inseparability is an invariant of an

LM -degree, and that inseparability is equivalent to being non-branching.

A natural strengthening of inseparability is to change the “or” to an “and”. We call

a class P hyperinseparable if, for every C good for P , P ∩C ≡M P ∩Cc. As P ∩C ≥M P

for all C, it is equivalent to require P ∩C ≡M P . Thus hyperinseparability states that all

nonempty clopen subclasses of P are equivalent to P . It is clear that hyperinseparability

implies inseparability and thus being non-branching.

A result of Cenzer and Hinman [3] shows that homogeneity implies hyperinsepara-

bility. We will show:

Homogeneous ⇒ Hyperinseparable ⇒ Inseparable ⇔ Non-Branching.

We will also show that no additional implications hold, i.e., that these are distinct classes

of non-branching degrees. Along the way we will show downward density: below any

degree and above 0M there is a non-zero degree which is inseparable and not hyperin-

separable.
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Conversely, a class P is separable if, there exists a clopen set C good for P , such

that P ∩ C ⊥M P ∩ Cc. Separability is likewise an invariant of a LM -degree, and

equivalent to being branching.

We then strengthen separability. We call a class P hyperseparable if, for every C

good for P , P ∩ C ⊥M P ∩ Cc. It is clear that hyperseparability implies separability

and thus being branching.

Similar to homogeneous and hyperinseparable, there is a preexisting notion stronger

than hyperseparable. It does not have a name in the literature. Call a class P totally

separable if, for all X, Y ∈ P , X ⊥T Y . In [7], Jockusch and Soare show the existence of

a totally separable class. It is immediate that totally separable implies hyperseparable.

We will show:

Totally separable ⇒ Hyperseparable ⇒ Separable ⇔ Branching.

We will also show that no additional implications hold, i.e, that these are distinct class

of branching degrees. We will also show some results about the occurrence of separable

and not hyperseparable degrees.

The remainder of this chapter will provide definitions, conventions, and some basic

results. Chapter 2 will describe and provide results on non-branching degrees. Chapter 3

will present some basic combinatorial definitions and results that are generally useful for

constructing Π0
1 class with priority arguments. Chapter 4 describe and provide results

on branching degrees.
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1.2 Definitions, Conventions, and Basic Theory

The notation used in this thesis generally conforms to that found in Cenzer and Hinman

[3]. For an overview of the concepts and the theory of computability theory, see Rogers

[8] or Soare [12].

Given a string σ ∈ 2<ω, we denote the length of σ by |σ|. The initial substring

relation is denoted by ≺. Concatenation of two strings is written as σ a τ . The empty

string is denoted by ∅, the string of a single 1 by 1, and of a single 0 by 0. Truncation

to the first n coordinates is denoted by σ �n. For X ∈ 2ω we say σ ≺ X if σ is an initial

segment of X.

A tree, T, is a subset of 2<ω closed downward under ≺. The set of infinite paths

through T is denoted by [T] and the set of extendible members, those which are initial

substrings of members of [T], is denoted by Ext(T). For σ ∈ 2<ω, define σ a T = {σ a τ :

τ ∈ T}.

A Π0
1 class P is a non-empty subset of 2ω such that there exists a computable tree P

with P = [P].2 We denote the tree of initial substrings of members by TP . Note that

[TP ] = P , TP is uniquely determined by P , and TP is the set of extendible members of

any computable tree generating P . Similar to the above, define σ a P = [σ a TP ].

Define I(σ) = {X ∈ 2ω : σ ≺ X}. In 2ω, any clopen subset will be a finite union of

such cones. A clopen set C will be good for a class P if P ∩ C 6= ∅ 6= P ∩ Cc. By abuse

of notation we say that σ ∈ C if it is an initial substring of some X ∈ C. Similarly, if T

is a tree, then T ∩ C = {σ ∈ T : σ ∈ C}.

A central concept in the study of the Medvedev lattice is that of a computably

2This definition is for the purposes of this thesis. In full generality, a Π0
1 class is a (possibly empty)

subset of ωω. There are also several equivalent alternatives to the computable tree definition. See [4].
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continuous functional. Consider the following definition.3

Definition 1.2.1. A partial computable function φ : 2<ω → 2<ω is a tree map if it

satisfies the following two properties:

∀σ, τ ∈ dom(φ)
(
σ � τ ⇒ φ(σ) � φ(τ)

)
, (1.1)

∀X ∈ [dom(φ)]∀n∃m
(
|φ(X �m)| > n

)
. (1.2)

A computably continuous functional is a function Φ: 2ω → 2ω such that there exists a

tree map φ with Φ(X) =
⋃
n φ(X �n).

The following lemma states that we can assume Φ, and thus φ, to be total. For a

proof, see [3].

Lemma 1.2.2. Let P and Q be Π0
1 classes such that P ≤M Q. Then there exists a total

computable functional Φ : 2ω → 2ω such that Φ(Q) ⊆ P .

Thus when we say Φ: Q → P we mean that there is a total tree map φ with

φ(TQ) ⊆ TP .

For Π0
1 classes P and Q say that Q is Medvedev above P , denoted P ≤M Q, if there

exists a computably continuous functional Φ: Q→ P .

By applying ≤M to the non-empty Π0
1 classes in 2ω we obtain a degree structure

which we denote by LM . We denote the bottom degree by 0 and the top degree by 1. It

is useful to observe that 0 is the degree containing exactly all classes with a computable

member. An example of the top degree is the separating class of {e : φe(e) ↓= 0} and

{e : φe(e) ↓= 1}. The symbols a, b, and c will denote degrees in LM . For a Π0
1 class P ,

3There are alternative, equivalent, definitions. A common one is to define strings as partial com-
putable functions and Φ(X)(n) = φX(n).
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the degree of P (under ≤M) will be denoted by deg(P ). Note that 2ω is a Π0
1 class in 0.

For clarity we will denote 2ω by 0M when using it as a canonical member of 0.

For Π0
1 classes P and Q say that Q is Muchnik above P , denoted P ≤w Q, if for

every X ∈ Q there exists a computable Φ such that Φ(X) ∈ P . In a similar manner to

the above, we obtain a degree structure of Muchnik degrees, which we denote by Lm.

The Muchnik lattice is only briefly mentioned in this thesis, so will will not develop a

full notation for it. For more information on the Muchnik lattice of Π0
1 classes see [11].

An immediate but much used lemma is the following.

Lemma 1.2.3. Let Q and P be Π0
1 classes with Q ⊆ P . Then Q ≥M P .

Proof. The identity function serves as a witness.

The following result from the theory of Π0
1 classes will be important.

Lemma 1.2.4. If P is a co-c.e. tree, then there exists a computable tree Q, such that

[P] = [Q]. Furthermore, we can effectively find Q from P.

Proof Sketch. Let {As}s∈ω be an enumeration of 2<ω \ P and Q = {σ : ∀τ � σ(τ 6∈

A|σ|)}.

Definition 1.2.5. Define Pe to be [Te] where Te is the eth co-c.e. tree.
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Chapter 2

Non-Branching Degrees

Most of the content of this chapter appears in [1]. This chapter is slightly more verbose

and adds Theorem 2.4.4.

2.1 Inseparable degrees

Before we define inseparability consider the following tree characterization of meets.

Definition 2.1.1. Given trees S and T define the tree meet by

S∧T = (0 a S) ∪ (1 a T).

Lemma 2.1.2. If P ∈ a and Q ∈ b, then [TP ∧TQ] ∈ a∧ b.

See [3] for a proof and related results. For Π0
1 classes P and Q we define P ∧Q =

[TP ∧TQ].

With this in hand we see that meets result in incomparable trees connected together

into a single tree. Under Medvedev equivalence the actual connection might drift but

we can hope it is preserved in some form. Thus to avoid being a proper meet we avoid

having incomparable subtrees.

Definition 2.1.3. A Π0
1 class P is inseparable if for all clopen sets C good for P , either

P ∩ C ≤M P ∩ Cc or P ∩ C ≥M P ∩ Cc.
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To show a degree is non-branching we strive to show that all of its members are

inseparable, i.e., do not resemble tree meets. Throughout this thesis we will repeatedly

be attempting to show properties of every member of a degree. The general technique

will be to show that some property of a single member ensures a (possibly weaker)

property of every member. In the case of inseparability we have the strongest possible

result, namely:

Theorem 2.1.4. Let Q be an inseparable Π0
1 class and P ≡M Q. Then P is inseparable.

Proof. Fix Φ : P → Q and Ψ : Q → P as computable functionals witnessing P ≡M Q.

Fix C, a clopen set good for P , and let D = Ψ−1(C). As Ψ is continuous, D is clopen.

Let i be the identity functional. If Q ∩ D = ∅, then Ψ(Q) ⊆ P ∩ Cc and P ∩ C i→

P Φ→ Q Ψ→ P ∩ Cc witnesses P ∩ Cc ≤M P ∩ C. Symmetrically, if Q ∩ Dc = ∅, then

P ∩C ≤M P ∩Cc. If D is good for Q, then, without loss of generality, Q∩D ≤M Q∩Dc.

Let Ω: Q ∩ Dc → Q ∩ D witness this reduction. Note that the predicate X ∈ D is

computable. We can define the computable functional as illustrated in Figure 1 and

Figure 2, namely

Θ(X) =


Ψ

(
Ω

(
Φ(X)

))
if Φ(X) ∈ Dc,

Ψ
(
Φ(X)

)
if Φ(X) ∈ D.

(2.1)

witnessing P ∩ C ≤M P ∩ Cc. Thus P is inseparable.

Corollary 2.1.5. A degree a ∈ LM is inseparable iff a is non-branching.

Proof. We prove the contrapositive for both directions. Assume a is branching and let

b, c ∈ LM be such that b ⊥ c and a = b∧ c. Fix Q ∈ b and R ∈ c. Then Q∧R ∈ a

and I(0) witnesses that Q∧R is not inseparable. By Theorem 2.1.4, no member of a is
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P Q
Φ
Ψ

P ∩ C Q ∩D

X Φ(X) Ω(Φ(X))Θ(X)

Figure 1: Theorem 2.1.4: Φ(X) ∈ Dc

P Q
Φ
Ψ

P ∩ C Q ∩D

X Φ(X)Θ(X)

Figure 2: Theorem 2.1.4: Φ(X) ∈ D
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inseparable, so a is not inseparable. For the converse assume a ∈ LM is not inseparable

and fix P ∈ a and a clopen set C good for P such that P ∩C ⊥M P ∩Cc. Let R = P ∩C

and Q = P ∩ Cc and note that R and Q are Π0
1 classes. By Lemma 1.2.3, R ≥M P

and Q ≥M P . If R ≤M P , say by Φ, then Φ �Q witnesses R ≤M Q, a contradiction.

Thus R >M P and similarly Q >M P . Let S = R∧Q and observe S ≥M P . Define the

computable functional

Ψ(X) =


0 aX if X ∈ C,

1 aX if X ∈ Cc.

(2.2)

Observe Ψ witnesses S ≤M P and thus S ≡M P . It follows that a = deg(R)∧ deg(Q)

and deg(R) ⊥ deg(Q). Thus a is branching.

2.2 Hyperinseparable degrees

We strengthen inseparability by requiring reductions in both directions.

Definition 2.2.1. A Π0
1 class P is hyperinseparable if for any clopen set C good for P ,

P ∩ C ≡M P ∩ Cc.

Observe that replacing P ∩C ≡M P ∩Cc with P ∩C ≡M P results in an equivalent

definition. Hyperinseparability claims that any clopen subclass “looks” the same as the

whole class.

We might hope that, like inseparability, hyperinseparability is an invariant of a de-

gree. This is not the case.

Lemma 2.2.2. Let a ∈ LM . If a < 1, then a has a non-hyperinseparable member.
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Proof. Fix P ∈ a and Q >M P . Then P ∧Q ∈ a and I(0) witnesses that P ∧Q is not

hyperinseparable as (P ∧Q) ∩ I(0) ≡M P <M Q ≡M (P ∧Q) ∩ I(1).

There is, however, a weaker property of all members of a hyperinseparable degree.

Theorem 2.2.3. Let Q be a hyperinseparable Π0
1 class and P ≡M Q. Then there exists

a Π0
1 class R ⊆ P such that R ≡M P and R is hyperinseparable.

Proof. Let Φ: P → Q and Ψ: Q → P witness P ≡M Q. Let R = Ψ(Q) and note

that R is a Π0
1 subclass of P . By Lemma 1.2.3, R ≥M P , and the map Ψ(Φ(·)) witnesses

R ≤M P , thus R ≡M P . Fix a clopen set C good for R and let D = Ψ−1(C). As Ψ

is onto R, D is good for Q. By hyperinseparability there exists Ω: Q ∩ D → Q ∩ Dc.

Define

Θ(X) =


Ψ

(
Φ(X)

)
if Φ(X) ∈ Q ∩Dc,

Ψ
(
Ω(Φ(X))

)
if Φ(X) ∈ Q ∩D.

(2.3)

Thus R ∩Cc ≤M R ∩C. A symmetric argument replacing Ω with Ω′ : Q∩Dc → Q∩D

shows R ∩ Cc ≥M R ∩ C. As C was arbitrary, R is hyperinseparable.

This result is strengthened by the following lemma which states that such a class, one

with an equivalent hyperinseparable subclass, essentially behaves as a hyperinseparable

class.

Lemma 2.2.4. Let P be a Π0
1 class and R ⊆ P with R ≡M P . If C is a clopen set

which is good for both P and R such that R ∩ C ≡M R ∩ Cc, then P ∩ C ≡M P ∩ Cc.

Proof. Let Ω: P → R witness R ≤M P . Let Φ: R∩C → R∩Cc and Ψ: R∩Cc → R∩C
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witness R ∩ C ≡M R ∩ Cc. Define

Θ(X) =


Φ

(
Ω(X)

)
if Ω(X) ∈ R ∩ C,

Ω(X) if Ω(X) ∈ R ∩ Cc.

(2.4)

Observe that Θ witnesses P ∩ Cc ≤M P ∩ C. A symmetric argument with Ψ in place

of Φ demonstrates that P ∩ C ≤M P ∩ Cc. Thus P ∩ C ≡M P ∩ Cc.

A way to think of this Lemma is as follows. If P is a member of a hyperinseparable

degree, then it has some hyperinseparable core R. Any clopen set good for P which does

not ignore R (either by avoiding it or absorbing it) splits P into two equivalent pieces.

2.3 Homogeneous degrees

So far we have not proved the existence of any non-trivial non-branching degrees. It is

an easy exercise to show that the bottom degree, 0, is non-branching. The top degree, 1,

is trivially non-branching. Both 0 and 1 are examples of homogeneous classes. In [3]

Cenzer and Hinman show that all homogeneous degrees are non-branching.

Definition 2.3.1. [3, Def. 8] A tree P is homogeneous if

∀σ, τ ∈ P ∀i ∈ 2
[
|σ| = |τ | ⇒ (σ a i⇔ τ a i)

]
.

A class P is homogeneous if TP is.

This definition is very closely tied to separating classes. If A and B are subsets of ω,

then we define the separating class S(A,B) = {C : A ⊆ C ⊆ ω \B}. In the case that A

and B are c.e., S(A,B) is a Π0
1 class [3].
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Lemma 2.3.2. [3, Prop. 9] For any Π0
1 class P ,

P is homogeneous ⇔ P is a c.e. separating class.

Note that 0 is the degree of the separating class of ∅ and ω and 1 is the degree of

the separating class of {n : {n}(n) ↓= 0} and {n : {n}(n) ↓= 1} [10].

Homogeneous classes have the property of being closed under string splice operations.

Definition 2.3.3. Given σ, τ ∈ 2<ω define τ splice σ, denoted by τ /σ, as

(τ /σ)(i) =



σ(i) if i < |σ|,

τ(i) if |σ| ≤ i < |τ |,

undefined otherwise.

Lemma 2.3.4. For σ ∈ 2<ω the function τ 7→ τ /σ is a computable tree map.

Proof. Let φ(τ) = τ /σ. That φ is computable is immediate. Fix τ, τ ′ ∈ 2<ω with τ � τ ′.

By definition φ(τ)� |σ| = φ(τ ′)� |σ|. For |σ| ≤ i < |τ ′|, φ(τ ′)(i) = τ ′(i) = τ(i) = φ(τ)(i).

Thus φ(τ) � φ(τ ′). Now fix X ∈ 2ω and n. Let m > n, then |φ(X �m)| = |X �m| =

m > n.

Lemma 2.3.5. If P is a homogeneous Π0
1 class, then for all σ, τ ∈ TP , τ /σ ∈ TP .

Proof. Fix σ and induct on |τ |. By assumption σ ∈ TP , thus for |τ | ≤ |σ| the conclusion

holds. Now fix τ with n = |τ | > |σ| and assume the result holds for τ ′ with |τ ′| < n.

Then τ �(n−1) /σ ∈ TP . If τ = τ �(n−1) a 0, then, by homogeneity, (τ �(n−1) /σ) a 0 is

in TP but this is just τ /σ. Similarly if τ = τ �(n−1) a 1, then τ /σ = (τ �(n−1) /σ) a 1

is in TP .

Homogeneous classes fit into our context by the following lemma.
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Lemma 2.3.6. [3, Lemma 6, rephrased] If P is a homogeneous Π0
1 class, then P is

hyperinseparable.

The following proof is essentially equivalent to that of [3] but phrased in terms of

Lemma 2.3.5.

Proof. Fix a clopen set C good for P . Fix σ ∈ TP such that I(σ) ⊆ C. Then, by Lemma

2.3.5, τ 7→ τ /σ witnesses P ∩ I(σ) ≤M P and thus P ∩ C ≤M P . By Lemma 1.2.3

P ∩ C ≥M P , thus P ∩ C ≡M P and P is hyperinseparable.

2.4 An inseparable and not hyperinseparable degree

In this section we will demonstrate the existence of degrees which are inseparable (and

thus non-branching) and not hyperinseparable. We need to construct a degree which has

an inseparable member and every member is not hyperinseparable. This construction

can be done with a single Π0
1 class.

Lemma 2.4.1. Let P be a Π0
1 class. If for any clopen set C good for P , P∩C <M P∩Cc

or P ∩ C >M P ∩ Cc, then deg(P ) is inseparable and not hyperinseparable.

Proof. That deg(P ) is inseparable is immediate. Assume deg(P ) is hyperinseparable. By

Theorem 2.2.3 there exists Q ⊆ P such that Q ≡M P and Q is hyperinseparable. Fix a

clopen set C good for Q and observe that C is also good for P . As Q is hyperinseparable,

Q ∩C ≡M Q ∩Cc and thus, by Lemma 2.2.4, P ∩C ≡M P ∩Cc, a contradiction. Thus

deg(P ) cannot be hyperinseparable.

Our goal is to construct a class for which every clopen splitting reduces in exactly

one direction. In essence we will embed a uniform descending chain into the class and
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show that if a clopen subclass contains the tail, then it reduces from but not to the

remainder of the class.

Using a density theorem such as that of Binns [2] and paying close attention to

effectiveness we arrive at the following result.

Lemma 2.4.2. Given indices for Π0
1 classes Q and P with Q >M P and an index for

Φ : Q→ P witnessing Q ≥M P , we can effectively find an index for a total computable

function f such that

Q >M Pf(0) >M Pf(1) > . . . >M P. (2.5)

Proof. Observe that the proof in [2] is effective.

We now turn to the construction of our class.

Theorem 2.4.3. Given b ∈ LM there exists a ∈ LM such that 0 <M a <M b and a is

inseparable and not hyperinseparable.

Proof. Fix Q ∈ b. By Lemma 2.4.2 there exists a computable function f such that

Q >M Pf(0) >M Pf(1) >M . . . >M 0M . Let Pf(i) be a tree such that Pf(i) = [Pf(i)] and

similarly for Q. Fix X, a c.e. set >T ∅. We will build a tree R, a set Y , and strings

{βi}i∈ω,{δi}i∈ω with the following structure:

lim
i
βi = Y, (2.6a)

δi � βi−1 for i > 0, (2.6b)

X ≡T Y, (2.6c)

R = [R] = {Y } ∪
(⋃
i∈ω

βi
a Pf(i)

)
∪

(⋃
i∈ω

δi
a Pf(i)

)
. (2.6d)
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Furthermore, (2.6d) will be a disjoint union. We will show that a = deg(R) satisfies our

theorem.

For each i we have a strategy with two possible states, wait and stop. Our construc-

tion proceeds in stages. At each stage some finite number of strategies will be active.

Strategies start in state wait and may move to state stop at some later stage. Once in

state stop a strategy will remain in that state unless injured. When a strategy i moves

from state wait to state stop it will injure all strategies j with j > i. Our argument

thus proceeds in typical finite injury fashion; for any given strategy there will be a finite

stage after which the strategy is never again injured.

Let Rs, βi,s, and δi,s denote R, βi, and δi at the end of stage s, respectively. To ensure

that R is computable we construct an increasing total computable function, l(s), such

that σ ∈ Rs \ Rs−1 iff l(s− 1) < |σ| ≤ l(s). We will define m(s) such that strategy i is

active at stage s iff i ≤ m(s). Fix an enumeration {Xs}s∈ω ofX such that |Xs\Xs−1| = 1.

Each strategy i will have two strings βi and δi and above each it will build a copy

of Pf(i). So long as i 6∈ X the construction for strategies j > i continues above βi. If i

enters X, then the work above βi will be abandoned, βi and δi will swap roles, and

construction continues above the new βi. In this manner we encode X in Y = limi βi.

Strategy i is in state wait while it is waiting for i to enter X. Once i enters X it will

change to state stop.

To begin our construction let l(−1) = 0, m(−1) = −1, and R−1 = ∅.

Assume we have run our construction to stage s. Thus βi,t, δi,t, l(t), m(t), and Rt

are defined for all t < s. Let x ∈ Xs \ Xs−1 (recall that such exists and is unique). If

x ≤ m(s− 1), then strategy x needs to change state and injure all higher strategies. In

such a case let βi,s = δi,s−1, δi,s = βi,s−1, and j = x+ 1. Here j denotes next strategy to
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activate. If x > m(s− 1), then simply let j = m(s− 1) + 1.

Having dealt with any possible injury we are ready to expand our tree. We want to

activate strategy j and then let all active strategies grow. Fix σ and τ minimal such

that l(s−1) < |βj−1,s−1|+ |σ| < |βj−1,s−1|+ |τ | and σ and τ are leaves of βj−1,s−1
a Pf(j).

Such σ,τ exist as [Pf(j)] >M 0M and, furthermore, can be found computably from j and

βj−1,s−1. If j 6∈ X, then let βj,s = σ and δj,s = τ . If j ∈ X, then let βj,s = τ and δj,s = σ.

Let m(s) = j and l(s) = max{|δj,s|, |βj,s|}. For all i < j, let βi,s = βi,s−1, δi,s = δi,s−1.

Let

Rs = Rs−1∪

{σ : σ � βj,s and l(s− 1) < |σ|}∪ (2.7a)

{σ : σ � δj,s and l(s− 1) < |σ|}∪ (2.7b)

{βi,s a σ : i ≤ j, σ ∈ Pf(i), and l(s− 1) < |σ|+ |βi,s| ≤ l(s)}∪ (2.7c)

{δi,s a σ : i ≤ j, σ ∈ Pf(i), and l(s− 1) < |σ|+ |δi,s| ≤ l(s)}. (2.7d)

Claim. For each i there exists s such that strategy i is not injured after stage s.

Proof. Each strategy i only injures strategies j with j > i. Thus strategy 0 is never

injured. Assume the claim holds for all strategies h < i and fix r such that no strategy

h < i is injured after stage r. If any strategy g < h changed state it would injure

strategy h, thus no strategy g < h can change state after stage r. Strategy h will change

state at most once after stage r. Fix stage s > r such that h does not change state after

stage s. So no strategy h < i will change state after stage s and thus strategy i will not

be injured after stage s. The results follows by induction.

For any strategy i we can fix s as above and fix s′ ≥ s such that Xs′(i) = X(i).
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Observe that strategy i will not be injured or change state after stage s′.

Claim. limsm(s) = ∞ and lims l(s) = ∞.

Proof. Observe that l(s) is strictly increasing. Thus lims l(s) = ∞. The function m(s)

only decreases when a strategy i changes state at which point it decreases to i+1. If no

strategy changes state, then m(s) increases by 1. For any n, fix s such that strategy n is

not injured after stage s. Then no strategy j < n will need to change state after stage s.

If m(s) < n, then no strategy changes state and m(s + 1) = m(s) + 1. This continues

until a stage t with m(t) > n. No strategy below n will need to change state at a later

stage so for all r > t, m(r) ≥ n.

As a corollary, R is infinite and thus R = [R] is a non-empty Π0
1 class.

Claim. For all i, βi = lims βi,s and δi = lims δi,s exist.

Proof. Fix s such that strategy i is not injured and does not change state after stage s.

Then βi,t = βi,s for all t > s and similarly for δi,t.

Claim. βi−1 ≺ βi and βi−1 ≺ δi.

Proof. Fix i and observe that βi−1 will only change value when strategy i− 1 is injured

or changes state. In both cases strategy i will be injured and any value of βi destroyed.

Thus βi will settle down only after βi−1 does. As βi is chosen to extend βi−1 the first

result holds. A symmetric argument shows the second result.

As a corollary, Y = limi βi exists.

Claim. X ≡T Y .
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Proof. Assume we have an oracle X and wish to compute whether x ∈ Y . Run the

computation until a stage s such that there exists i with βi,s defined, |βi,s| > x, and

X � i = X. We can compute such a stage knowing X. As no h ≤ i will enter X,

strategy i will not be injured or change state after stage s. Thus Y (x) = βi,s(x) and

Y ≤T X. For the converse assume we have an oracle for Y and wish to compute x ∈ X.

Run the computation until a stage s such that βx,s ≺ Y . Then X(x) = Xs(x) and

X ≤T Y . So X ≡T Y .

Claim. R = {Y } ∪
(⋃

i∈ω βi
a Pi

)
∪

(⋃
i∈ω δi

a Pi
)

and this union is disjoint.

Proof. As notation define T�n = {σ ∈ T : |σ| ≤ n}. Define

Ts = {σ : σ � βm(s),s} ∪
⋃

i≤m(s)

βi,s
a Pf(i) � l(s) ∪

⋃
i≤m(s)

δi,s
a Pf(i) � l(s). (2.8)

We will show that for all s, Ts ⊆ Rs, and that for all σ ∈ Rs+1 \ Rs, σ extends some

path in Ts. Thus Ext(R) = lims Ts and the claim follows.

Equation (2.8) is trivially true for T−1. Assume (2.8) holds for all Tt with t < s. If

there is a strategy i, i ≤ m(s− 1), which needs to change state at stage s, then we drop

m(s) down to i+ 1, and swap βi and δi. As both βi,s−1 and δi,s−1 are in Ts−1 so are βi,s

and δi,s. If no strategy needs to change states, then m(s) = m(s− 1)+1. In either case,

m(s) is one more than the largest active (uninjured) strategy. Strategy m(s) chooses σ

and τ which are leaves of Rm(s) and are longer than l(s − 1). By assumption all initial

substrings of σ and τ up to length l(s− 1) are in Ts−1 and by (2.7a) and (2.7b) we will

have all initial substrings of σ and τ in Rs. The strings βm(s),s and δm(s),s are chosen

from σ and τ . Finally, (2.7c) and (2.7d) fill in our trees up to length l(s). Strategies

only add strings longer than l(s − 1) at stage s. Thus anytime a string in Ts−1 is not
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extended at stage s it will never be extended and thus is not in Ext(R). Conversely,

only strings in Ts−1 are extended at stage s, so any member of Ext(R) must be in every

Ts.

To see that the union is disjoint observe that βi and δi are chosen from the leaves

of Pf(i−1). Thus Pf(i−1) will not provide any ancestors of βi or δi. The result follows by

induction.

We now prove that R and a have the desired properties.

Recall that Q ⊆ R⇒ Q ≥M R and σ aQ ≡M Q.

Claim. For any clopen set C good for R, R ∩ C <M R ∩ Cc or R ∩ C >M R ∩ Cc.

Proof. Fix a clopen set C good for R. Without loss of generality we can assume Y ∈

P ∩ Cc. Let G =
⋃
i∈ω{βi, δi}. Let A = {i : (γ a Pf(i)) ∩ (R ∩ C) 6= ∅ for some γ ∈ G}

and B = {γ ∈ G : ∃i(γ a Pf(i))∩ (R∩C) 6= ∅}. As Y ∈ R∩Cc, both A and B are finite

and co-infinite. In addition, every string in R ∩ C is either a prefix of some γ ∈ B or of

the form γ a ε for some γ ∈ B, ε ∈ Pf(i), and i ∈ A. Fix n > supA, and, for all i ∈ A,

let Θi be a computably continuous functional with Θi : Pf(i) → Pf(n). Fix σ ∈ G such

that σ a Pf(n) ⊆ R.

We can now define Φ: R ∩ C → R ∩ Cc as follows. Fix U ∈ R ∩ C. Let γ ∈ G, i,

and V ∈ Pf(i) be such that U = γ a V . Let Φ(U) = σ a Θi(V ). Observe that Φ only

used A, B, Θi for i ∈ A, and σ. This is a finite amount of information, so Φ is a

computable functional. Thus R ∩ C ≥M R ∩ Cc.

Let m = supA and observe that R∩C ≡M

∧
i∈A(Pf(i)∩C) ≥M

∧
i∈A Pf(i) ≡M Pf(m).

If R ∩ Cc ≥M R ∩ C, then Pf(n) ≥M R ∩ Cc ≥M R ∩ C ≡M Pf(m). But n > m so

Pf(n) <M Pf(m), a contradiction. Thus R ∩ Cc 6≥M R ∩ C. So R ∩ C >M R ∩ Cc.
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By Lemma 2.4.1, a is inseparable and not hyperinseparable.

Claim. 0 < a < b.

Proof. That 0 < a is immediate as 0 is homogeneous and thus hyperinseparable and a

is not. Let C = I(δ0) and note Y ∈ R ∩Cc so R ≤M R ∩Cc <M P ∩C ≡M Pf(0) <M Q

and a < b.

This concludes the proof of the theorem.

The following is a strengthening of the Theorem.

Theorem 2.4.4. Given Q and R with Q >M R there exists P such that deg(P ) is

inseparable and not hyperinseparable and Q >M P ≥w R.

Proof. We modify the construction used in Theorem 2.4.3. Using Lemma 2.4.2 we can

have Pf(i) >M R for all i. The rest of the construction proceeds unmodified. Then, any

path in Y ∈ P will be of the form Y = σ aX where X ∈ Pf(i) for some i. Unfortunately,

we cannot, given Y ∈ P , uniformly compute σ aX = Y . But, as Pf(i) >M R, for any

particular Y , the map Y 7→ X 7→ R is computable. Thus P ≥w R.

2.5 A hyperinseparable and not homogeneous de-

gree

In this section we will construct a degree which is hyperinseparable and not homoge-

neous. We first explore a condition which guarantees hyperinseparability and is easy
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to work into a construction. With that in hand we explore certain properties of ho-

mogeneous degrees and find a specific, if technical, property which can be diagonalized

against. We then build such a class via a finite injury construction.

Consider the following generalization of homogeneity.

Definition 2.5.1. For a tree T, n is a duplication level if

∀σ, τ ∈ T
[
(|σ| = n and |τ | ≥ n) ⇒ (τ /σ ∈ T)

]
.

Homogeneity is equivalent to every level being a duplication level.

Lemma 2.5.2. If P is a Π0
1 class and TP has an infinite number of duplication levels,

then P is hyperinseparable.

Proof. Fix a clopen set C good for P and fix m, n, and αi such that C =
⋃
i<m I(αi)

with |αi| = n. Let n′ ≥ n be a duplication level of P and choose a σ such that σ � αi

for some i and |σ| = n′. Then τ 7→ τ /σ witnesses P ∩ I(σ) ≤M P ∩ C and thus

P ∩ Cc ≤M P ∩ C. A symmetric argument shows P ∩ C ≤M P ∩ Cc.

We now turn to properties of homogeneous degrees relating to effectiveness. Consider

the following example, illustrated in Figure 3. Fix a homogeneous class Q and P ≡M Q

with Φ: P → Q and Ψ: Q→ P . For any σ ∈ TP we define

θσ(τ) = ψ
(
φ(τ) /φ(σ)

)
.

As φ and ψ are computable and by Lemma 2.3.4, θσ is a computable tree map. Note that

an index for θσ can be computed from σ. For C = I(ψ(φ(σ))) we have Θσ : P ∩ Cc →

P ∩ C. In this manner, in homogeneous degrees, we can effectively convert members of

TP into witnesses of inseparability. In this simple form we have very little control over
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P Q
Φ
Ψ

σ

τ

φ(σ)

φ(τ)φ(τ)/φ(σ)

ψ(φ(σ))

ψ(φ(τ)/φ(σ))

Figure 3: Effectiveness in homogeneous degrees

what clopen subclasses we are reducing between but it serves as an initial example of

the technique.

The purpose behind the following definitions and lemmas is to do something similar

to the above except that we constrain σ and C. Specifically, for a given level n, we want

C ⊆ I(σ �n), i.e., C and σ in a single cone generated at level n.

Rather than diagonalize against possible classes Q, we will diagonalize against pairs

of functions witnessing the equivalence. In all that follows, φ and ψ should be thought

of as possible witnesses Φ: P → Q and Ψ: Q→ P .
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Definition 2.5.3. For a Π0
1 class P , and functions φ, ψ : 2<ω → 2<ω define

fφ,ψ(n) = µσ[σ ∈ TP and |σ| > n and (2.9)

∃i(|σ| ≥ i > 0 and |(ψφ)i(σ)| > n and (ψφ)i(σ)�n = σ �n)],

indφ,ψ(n) = µi[(ψφ)i(fφ,ψ(n))�n = fφ,ψ(n)�n], (2.10)

f̂φ,ψ(n) = (ψφ)indφ,ψ(n)(fφ,ψ(n)), (2.11)

θφ,ψ(n, σ, τ) = ψ
(
φ(τ) /φ((ψφ)indφ,ψ(n)−1(σ))

)
. (2.12)

We write fφ,ψ(n) ↓ when a valid σ exists and fφ,ψ(n) ↑ otherwise, and similarly for the

other functions.

In our context, σ = fφ,ψ(n) is the element of TP which we use to generate a function,

θφ,ψ(n, σ, ·), mapping into I(f̂φ,ψ(n)). Note that when φ and ψ are total computable

functions fφ,ψ, indφ,ψ, and f̂φ,ψ are all computable, and Θφ,ψ is computably continuous.

Lemma 2.5.4. If P and Q are Π0
1 classes with Φ: P → Q and Ψ: Q → P computable

functionals, then fφ,ψ(n) ↓ for all n. Furthermore, if Q is homogeneous, then

∀n
[
θφ,ψ(n, fφ,ψ(n), ∅)�n = fφ,ψ(n)�n and

Θφ,ψ(n, fφ,ψ(n), ·) : P → P
]
.

(2.13)

Proof. Let condition (?) be

σ ∈ TP and |σ| > n and

|σ| ≥ i > 0 and |(ψφ)i(σ)| > n and (ψφ)i(σ)�n = σ �n. (2.14)

To prove the first claim it suffices to show that for all n there exists σ and i satisfying

(?). Fix n and any X ∈ P . Observe that (ψφ)a is a tree map for all a. Let A =
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{(ΨΦ)a(X) : a ∈ ω} and note A ⊆ P . If A is finite, then there exist a, b with a < b

and (ΨΦ)a(X) = (ΨΦ)b(X). If A is infinite, then, by compactness and the Pigeonhole

Principle, there exist a, b with a < b and (ΨΦ)a(X) � n = (ΨΦ)b(X) � n. In either

case let s be large enough so that |(ψφ)a(X � s)| > n and |(ψφ)b(X � s)| > n. Then

σ = (ψφ)a(X �s) and i = b− a satisfies (?).

If Q is homogeneous, then, by Lemma 2.3.5, θ is a map from TP to TP . As

θφ,ψ(n, fφ,ψ(n), ∅) = ψ(φ(∅) /φ((ψφ)i−1(fφ,ψ(n)))) =

ψ(φ((ψφ)i−1(fφ,ψ(n)))) = (ψφ)i(fφ,ψ(n)),

(2.15)

we find that θφ,ψ(n, fφ,ψ(n), ∅)�n = fφ,ψ(n)�n.

We can now diagonalize against pairs of partial computable functions 〈φ, ψ〉 while

ensuring that our witnesses share a cone above level n. To ensure that n is a duplication

level we copy that cone across level n.

Theorem 2.5.5. There exists a degree a ∈ LM which is hyperinseparable and not ho-

mogeneous.

Proof. We will construct a computable tree, P, via a finite injury construction. The

description begins with a listing of structures and related variables used in the construc-

tion. This is followed by a list of invariants which will be preserved at every stage. The

class P = [P] will be such that deg(P ) is hyperinseparable and not homogeneous. We

identify the pair 〈φ, ψ〉 with a code e and, for simplicity, write fe and θe for fφ,ψ and

θφ,ψ respectively.
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We work to satisfy the following requirements:

Re : ∃n
[
fe(n) ↓⇒

(
∃τ ∈ TP θe(n, fe(n), τ) 6∈ TP (2.16)

or ∃X ∈ P ∃m ∀σ ≺ X|θe(n, fe(n), σ)| < m
)]
,

P : ∃∞n [n is a duplication level for P ]. (2.17)

Requirement Re should understood to say that if θe appears to induce a Medvedev

equivalence, then it is with a non-homogeneous class, i.e., if fe(n) converges, and θe

behaves like a functional, then its range is not P .

Requirement Re is of higher priority than Rd iff e < d.

The actual objects constructed are as follows.

• P is the tree defining the Π0
1 class. Elements are enumerated into P. Ps denotes

the elements in P at the end of stage s.

• l(s) is a total computable function defined such that all elements of length l(s) or

less have been added to P by the end of stage s.

The function l(s) will ensure that P is a computable tree.

The following objects are used internally to construct the above.

• L is the set of live strings. Ls denotes the elements of L at the end of stage s. At

stage s, the only paths eligible for extension are those in Ls−1 of length l(s − 1).

We will prove that Ext(P) = L.

In addition, for each requirement Re we have the following.

• ne corresponds to the n in the definition of Re, (2.16). ne,s denotes the value of

ne at the end of stage s. In the absence of injury ne is constant once defined.
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• te is the “protection level” of requirement Re. It will also be a duplication level.

te,s denotes the value of te at the end of stage s.

The following object is not required by the construction but will be tracked for use

in the proofs of correctness.

• τe corresponds to the τ in the definition of Re, (2.16). τe,s will denote the value

of τe at the end of stage s. In the absence of injury τe is constant once defined.

Finally, the following are not objects but rather subsets or notation for various values.

These are not modified directly but rather reflect any changes of the objects they are

based on.

• Lls =
{
ρ : ρ ∈ Ls and |ρ| = l(s)

}
, i.e., the set of live leaves of Ps.

• Ltes =
{
ρ : ρ ∈ Ls and |ρ| = te,s

}
, i.e., the set of live nodes at level te,s,

• Lte = lims L
te
s .

The following invariants are maintained at all stages s and are used in the proof of

correctness. We need P to be computable and L co-c.e. For every s,

l(s− 1) ≤ l(s), (2.18)

σ ∈ Ps \ Ps−1 ⇒ l(s− 1) < |σ| ≤ l(s), (2.19)

σ ∈ Ls \ Ls−1 ⇒ l(s− 1) < |σ| ≤ l(s). (2.20)

We want L to have no dead ends and describe live nodes. For every s,

σ ∈ Ls a leaf ⇒ |σ| = l(s), (2.21)

σ ∈ Ps \ Ps−1 ⇒ ∃ρ ∈ Ls−1[σ � ρ]. (2.22)
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The interaction of requirements is controlled by the te’s. The te’s form an increasing

sequence and will be the duplication levels. In addition, each te defines the scope of

protection of Re. Lower priority requirements are not allowed to kill any nodes below

te. Our witnesses will be chosen above the previous protection level and below ours. For

every e and s,

d < e and td,s defined and te,s defined ⇒ td,s < te,s, (2.23)

Re not active at stage s⇒ Ltes = Ltes−1, (2.24)

∀σ ∈ L∀ρ ∈ Ltes [σ / ρ ∈ L], (2.25)

te,s ≥ ne,s > te−1,s if ne,s defined, and (2.26)

te,s ≥ |τe,s| > ne,s if τe,s defined. (2.27)

We treat all objects from Definition 2.5.3 as using L for TP . This treatment is justified

by our proof that TP = Ext(P) = L. For example, fe(ne,s)[s] uses Ls for TP . Note that

this guarantees that fe(ne,s)[s] ∈ Ls.

Each strategy acts in three states, uninitialized, wait1, wait2, and then stops in

the state stop. Whenever a strategy acts it will injure all lower priority strategies. In

uninitialized the strategy splits all paths at the previous protection level and chooses

an ne. This technique of splitting is used repeatedly. The strategy will guarantee that

at most one of the two splits are killed, thus preserving the common ancestors in L. In

wait1 the strategy waits for fe(ne) to converge. If it does, then the strategy ensures a

split above fe(ne) and raises the protection level to |fe(ne)|. In wait2 the strategy waits

for a τ to appear. If τ appears the strategy kills the corresponding θ and raises the

protection level to |τ |. See Figure 4 for a possible execution of a strategy.

At the beginning P = L = ∅, all other variables are undefined, and all strategies
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te−1

te = l(s)
l(s− 1)

After Uninitialized

te−1

te = l(s)
l(s− 1)

ne

f

After Wait1

te−1

ne

f

te
l(s)

τ
θ×

After Wait2

Figure 4: Theorem 2.5.5: Strategy for Re

are in the state uninitialized. At each stage s the highest priority requirement Re with

e ≤ s that requires attention acts. For all other requirements d that are not in the state

uninitialized, nd,s = nd,s−1, τd,s = τd,s−1, and td,s = td,s−1. The strategy for Re is injured

when a higher priority strategy for Rd (d < e) changes td. When Re is injured it is

reset : it returns to the state uninitialized and nd,s, τd,s, and td,s become undefined. The

strategy is described by state below.

Uninitialized : Re always requires attention. Our goal in this state is to choose ne

and split all paths of Lte−1
s to keep them alive. Let

Ls = Ls−1 ∪ {ρ a 0, ρ a 1 : ρ ∈ Lls−1}, (2.28)

Ps = Ps−1 ∪ Ls, (2.29)

te,s = ne,s = l(s) = l(s− 1) + 1. (2.30)
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In defining te we reset all lower priority requirements. Note that we preserve all invari-

ants. We enter the state wait1.

Wait1 : Re requires attention if fe(ne,s−1)[s− 1] ↓. We need to preserve fe. To do so

we need to raise our protection level and split fe so that we can preserve its life if it is

later necessary to kill a child of it. We do this in a manner identical to the above. Let

Ls = Ls−1 ∪ {σ a 0, σ a 1 : σ ∈ Lls−1}, (2.31)

Ps = Ps−1 ∪ Ls, (2.32)

te,s = l(s) = l(s− 1) + 1, (2.33)

ne,s = ne,s−1. (2.34)

As before, the definition of te causes all lower priority strategies to reset. Note that we

preserve all invariants. We enter the state wait2.

Wait2 : Re requires attention if

∃τ ∈ Ls−1

[
|τ | > ne,s−1 and (2.35)

θe(ne,s−1, fe(ne,s−1)[s], τ)[s− 1] ∈ Ls−1 and (2.36)

τ � te−1,s−1 = fe(ne,s−1)[s− 1]� te−1,s−1 and (2.37)

τ �ne,s−1 6= fe(ne,s−1)[s− 1]�ne,s−1 and (2.38)

|θe(ne,s−1, fe(ne,s−1)[s− 1], τ)[s− 1]| > te,s−1

]
. (2.39)

We want τ to witness Re [(2.35) and (2.36)]. Also, τ should be in the same cone above

te−1 [(2.37)] but in a different subcone than θe(ne, fe(ne), τ) [(2.38)] so that τ can stay

alive when we kill θe(ne, fe(ne), τ) � fe(ne). Finally, we want θe(ne, fe(ne), τ) to be above

our split over fe(ne) so that killing it does not kill fe(ne) [(2.39)]. If such a τ exists,

then we kill the resulting θe(ne, fe(ne), τ) and duplicate the kill across all members of
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L
te−1

s−1 . To ensure that Ls has no dead ends we need to remove a several strings from it,

namely, to kill a path σ we need to remove σ and all ancestors of σ up to the nearest

split. Define the kill set of σ by

ks(σ) = {ε ∈ Ls−1 : ∀δ ∈ Ls−1[δ � ε⇒ δ � σ]}.

For simplicity of notation let σ = θe
(
ne,s−1, fe(ne,s−1)[s], τ

)
[s]. Let

τe,s = τ, (2.40)

Ls = Ls−1 \
⋃

γ∈Lte−1
s−1

ks(σ / γ), (2.41)

Ps = Ps−1, (2.42)

l(s) = l(s− 1), (2.43)

te,s = max{te,s−1, |τ |}, (2.44)

ne,s = ne,s−1. (2.45)

We reset all lower priority requirements and enter state stop. Observe that all in-

variants are preserved.

Stop: Re never requires attention.

Claim. Every requirement acts a finite number of times.

Proof. In the absence of injury each requirement acts at most three times, once each in

the states uninitialized, wait1, and wait2. Thus, in typical finite injury fashion, every

requirement acts a finite number of times.

Claim. For all s, Ls 6= ∅.



32

Proof. At stage 0, R0 is in state uninitialized and requires attention. It sets L0 = {0, 1}

and t0,0 = 1. As there are no higher priority strategies R0 will never be injured and thus

t0,0 will never be undefined. At all later stages 0 and 1 will be protected by t0,s and thus

{0, 1} ⊆ Ls.

Claim. lims l(s) = ∞ and lims Ls = Ext(P).

Proof. By the previous Lemma, for all s, Ts ⊇ Ls 6= ∅. As each requirement acts a finite

number of times every requirement acts at least once in the state uninitialized. During

this action l(s) is increased by 1. Thus lims l(s) = ∞. As paths leave L at most once,

lims Ls is well defined. If τ ∈ Ls for all s, then as Ls has no leaves shorter than l(s), for

any n we can find s such that l(s) > n and thus τ has a child of length n. As any elements

added to L are added to P we have τ ∈ Ext(P). Conversely, if τ ∈ Ext(P), then it must

have children of all lengths. Let s be such that τ ∈ Ls\Ls−1. If τ ever left L after stage s,

then by the invariants it could have no more children enter P. But τ has infinitely many

children, a contradiction. Thus Ext(P) ⊆ lims Ls. So Ext(P) = lims Ls.

Claim. Every requirement Re is satisfied.

Proof. Assume otherwise. As Re acts a finite number of times, let s be such that Re

acts last at stage s. We now have three cases, depending on which state Re acted in at

stage s.

Case 1: If Re acted in state uninitialized, then fe(ne,s−1) ↑, otherwise there would

be some t such that fe(ne,s−1)[t] ↓ and Re would have acted later. So ne is defined and

fe(ne) ↑ so Re is satisfied.

Case 2: If Re acted in state wait1, then fe(ne,s)[s] ↓. Observe that ne = ne,s,

fe(ne) = fe(ne,s)[s], and, by definition, |fe(ne)| > ne,s and thus, by invariants, |fe(ne)| >
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te−1,s = te−1. Let γ = fe(ne) � te−1. Let s′ be the last stage that Re acted in state

uninitialized, and note that in state we put γ a 0 and γ a 1 into Ls′ and raised the

protection level, te,s′ , to |γ a 0|. As Re was not injured after stage s′ both γ a 0 and γ a 1

are in L and, as a result, have children of arbitrary length. Without loss of generality

we can assume that fe(ne) � γ a 0. Fix X ∈ P � γ a 1, such exists as fe(ne) ∈ Lte .

If |θe(ne, fe(n − e), σ)| < m for some m and all σ ∈ P , then Re is satisfied. Assume

otherwise and assume that Re is not satisfied. Then ∀τ ∈ TP [θe(ne, fe(ne), τ) ∈ TP ].

There is some child τ of γ a 1 which is long enough to satisfy the attention requirements

of state wait2. But then Re would have acted in wait2, a contradiction. Thus Re must

be satisfied.

Case 3: If Re acted in state wait2, then it has killed τe. Thus ne and τe witness

the satisfaction of Re. All we need to do is show that fe(ne) and τe are alive. By the

invariants, no requirements of lower priority can kill them, and as Re is uninjured after

stage s no higher priority requirements killed fe(ne,s) or τe,s. Both are in the same cone

above γ ∈ Lte−1 so we only need to worry that the killing of γ = θe(ne, fe(ne), τe) killed

either. Killing γ cannot kill τe, as by the conditions of state wait2 they are incomparable.

Those conditions also require σ to be above the split above fe(ne) so killing γ will kill

at most one of fe(ne)
a 0 and fe(ne)

a 1. Thus all witnesses are preserved and Re is

satisfied.

Claim. The requirement P is satisfied.

Proof. For any n, by the invariants, there exists e such that te > n. Fix such an e and

let s be large enough that Re never acts after stage s. Then te,s is a duplication level as

Lte will not change and all actions after stage s will preserve the invariant that Lte is a
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duplication level.

So P = [P] satisfies the requirements. By Lemma 2.5.2, P is hyperinseparable. If P

is in a homogeneous degree, then there exist φ, ψ as in Lemma 2.5.4. But then Rφ,ψ

guarantees that nf,g and τf,g witness a contradiction. Thus P is not a homogeneous

degree so deg(P ) is a hyperinseparable and not homogeneous degree.
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Chapter 3

Tree Lifes

There are many ways to construct Π0
1 classes via a priority argument. This chapter

formalizes a method in which a tree is enumerated along with a total computable function

which tightly bounds the length of paths added at each stage. The combination of

enumeration and length function ensures that the tree is in fact computable and thus

produces a Π0
1 class. This technique is seen in Chapter 2 and in the literature, e.g.,

in [3]. The formalization described below will be used in the next chapter to prove

Theorem 4.5.2.

3.1 Basic Definitions and Results

Definition 3.1.1. A finite tree L ⊆ 2<ω is a strict tree if all dead ends are of the same

length (necessarily maximal). The length of L, denoted l(L), is the length of the dead

ends. The set of dead ends is denoted D(L).

Definition 3.1.2. For strict trees L and M , M is a growth of L if l(M) ≥ l(L) and

∀σ ∈M \ L∃τ ∈ D(L)[σ � τ ]. (3.1)

Call a leaf of maximal length a living leaf. Then a growth can be characterized by

two conditions: (1) the length can not decrease, i.e., at least one living leaf must survive,
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and (2) any additional nodes must extend living leaves. Thus, a valid growth may consist

of extending living leaves, pruning part of the tree, or a combination of both.

Definition 3.1.3. A tree life is a sequence of strict trees {Ls : s ∈ ω} such that for all

s > 0, Ls is a growth of Ls−1 and lims l(Ls) = ∞. A tree life is computable if there

exists a total computable function f such that f(s) = Ls.

To simplify notation we will hereafter omit “: s ∈ ω”, i.e., we will simply write {Ls}.

Lemma 3.1.4. For any tree life {Ls}, any s, and any σ ∈ Ls+1 \ Ls, l(Ls) < |σ| ≤

l(Ls+1).

Proof. Fix σ ∈ Ls+1\Ls. Then, as Ls+1 is a growth of Ls, there must be some τ ∈ D(Ls)

with τ ≺ σ. Thus |σ| > |τ | = l(Ls). That |σ| ≤ l(Ls+1) is immediate.

Corollary 3.1.5. For any tree life {Ls}, any s, and any σ ∈ Ls, if σ 6∈ Ls+1, then for

all t > s, σ 6∈ Lt.

Observe that this corollary implies that lims Ls is well defined; it is a d.c.e. set.

Lemma 3.1.6. For a tree life {Ls}, lims Ls = [
⋃
s Ls].

Proof. The inclusion ⊆ is immediate. For ⊇, fix X ∈ lims Ls. Fix n and let σ = X �n

and s be such that σ ∈ Ls. As σ has descendants of arbitrary length, σ must be in every

Lt for t > s. As n was arbitrary, X ∈ [
⋃
s Ls].

Lemma 3.1.7. For a computable tree life {Ls},
⋃
s Ls is computable and lims Ls is

co-c.e.

Proof. Observe that l(s) is a computable function.
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Fix σ ∈
⋃
s Ls and t such that l(t) ≥ |σ|. Then σ ∈

⋃
s Ls if and only if σ ∈ Lt. Thus⋃

s Ls is computable. As lims Ls is the difference of a computable set (
⋃
s Ls) and a c.e.

set (the nodes that leave), it is co-c.e.

Corollary 3.1.8. For a computable tree life {Ls}, lims Ls is a Π0
1 class.

Proof. By Lemma 3.1.7,
⋃
s Ls is a computable tree. By Lemma 3.1.6, lims Ls = [

⋃
s Ls]

and thus, is a Π0
1 class.

3.2 Growths

Having defined the basic construction and shown that it results in computable trees we

now define some growth operations which are effective.

Definition 3.2.1. For a a non-empty strict tree L, the single extension of L, denoted

L̂, is defined by

L̂ = L ∪ {σ a i : σ ∈ D(L), i ∈ 2}. (3.2)

Define ∅̂ = {∅, 0, 1}.

Note that l(L̂) = l(L) + 1.

Definition 3.2.2. For a strict tree L and σ ∈ L, the trim of L by σ, denoted trim(L, σ)

is defined by

trim(L, σ) = {τ ∈ L : ∃ν � τ [ν ⊥ σ]}. (3.3)

Note that trim(L, σ) is L with σ and all descendants removed. We also remove

ancestors of σ which do not lead to other, non-σ, descendants to ensure that trim(L, σ)

is a strict tree. Note that l(trim(L, σ)) ≤ l(L).
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Lemma 3.2.3. For a strict tree L, L̂ is a strict tree and a growth of L.

Proof. Fix τ ∈ D(L̂). By definition, τ = σ a i for σ ∈ D(L) and i ∈ 2. Then |σ| = l(L),

|τ | = l(L) + 1. As τ was arbitrary, L̂ is a strict tree.

Fix τ ∈ L̂ \ L. Then τ = σ a i for σ ∈ D(L) and i ∈ 2, and σ witnesses that L̂ is a

growth.

Lemma 3.2.4. For a strict tree L and σ ∈ L, trim(L, σ) is a strict tree and either

empty or a growth of L.

Proof. Let M = trim(L, σ) and assume M has a dead end α with |α| < l(L). As

|α| < l(L) there is an immediate successor of α, β ∈ L. As β 6∈ M , β is comparable

with σ but α is not, a contradiction. Thus M is a strict tree.

As trim only removes paths, if M is not empty, then it contains a path of length

l(L). Thus M is a growth of L.
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Chapter 4

Branching Degrees

We now turn to branching degrees and a parallel hierarchy to that developed in Chap-

ter 2.

4.1 Separable Degrees

We define separability as the inverse of inseparability. Separable degrees are those whose

members can be split into incomparable clopen subclasses.

Definition 4.1.1. A Π0
1 class P is separable if there exists a clopen set C good for P

such that P ∩ C ⊥M P ∩ Cc.

The primary results move over directly.

Theorem 4.1.2. Separability is an invariant of a Medvedev degree, i.e., if P ≡M Q

and P is separable, then Q is separable.

Proof. This theorem is the contrapositive of Theorem 2.1.4.

Corollary 4.1.3. A degree a is separable iff a is branching, i.e., there exists b > a,

c > a with a = b∧ c.

Proof. This is the contrapositive of Corollary 2.1.5.
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4.2 Hyperseparable Degrees

Definition 4.2.1. A Π0
1 class P is hyperseparable if for all clopen sets C good for P ,

P ∩ C ⊥M P ∩ Cc.

Observe that hyperseparable implies separable.

As in the case of to hyperinseparability, it is too much to hope that this would be

invariant.

Theorem 4.2.2. For any Π0
1 class P , there exists a class Q, with Q ≡M P and Q not

hyperseparable.

Proof. Take Q = P ∧P and observe that C = I(0) contradicts hyperseparability.

Additional results about hyperseparable degrees, in the context of non-separability,

can be found in Section 4.4.

4.3 Totally Separable Degrees

As with homogeneous in the non-branching case, there is a preexisting condition which

is stronger than hyperseparable. I was unable to find a name for it in the literature, so

I refer to it as totally separable.

Definition 4.3.1. A Π0
1 class P is totally separable if for all X, Y ∈ P , X ⊥T Y .

Note that totally separable implies hyperseparable.

Jockusch and Soare proved the existence of a totally separable class.

Theorem 4.3.2. [7] There exists a totally separable class.
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P
Φ
Ψ

X0 X1 Y = Φ(X0) = Φ(X1)Ψ(Y )

R = Φ(P )

Figure 5: Theorem 4.3.3: Φ : P → R injective.

Totally separable is a very strong condition which enforces a great deal of structure

on the other members of the degree. The following is very similar to Theorem 2.2.3, i.e.,

it shows that members of a totally separable degree contain a totally separable core.

Theorem 4.3.3. Let P be a totally separable Π0
1 class and Q a Π0

1 class with Q ≡M P .

Then there exists a Π0
1 class R ⊆ Q such that R ≡M Q and R is totally separable.

Furthermore, if Φ : P → Q and Ψ : Q → P witness Q ≡M P , then Φ : P → R and

Ψ : R→ P are bijections.

Proof. Let R = Φ(P ). By Lemma 1.2.3, R ≥M Q. The functionX 7→ Ψ(X) 7→ Φ(Ψ(X))

witnesses Q ≥M R. Thus R ≡M Q.

By definition Φ : P → R is surjective. Assume Φ is not injective and fix X0, X1 in P

with Φ(X0) = Φ(X1) = Y . Assume Ψ(Y ) 6= X0 (it must differ from one of X0 and X1).

But Ψ(Y ) ≤T X0 as X0 7→ Y 7→ Ψ(Y ), a contradiction of P being totally separable.
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P
Φ
Ψ

X Φ(X)Ψ(Φ(X))

R = Φ(P )

Figure 6: Theorem 4.3.3: Ψ : R→ P surjective

P
Φ
Ψ

X0 X1

R = Φ(P )

Y0 Y1Z

Figure 7: Theorem 4.3.3: Ψ : R→ P injective
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P
Φ
Ψ R = Φ(P )

≤TY0 Y1Φ−1(Y1)Ψ(Y0)

Figure 8: Theorem 4.3.3: R totally separable.

Thus Φ : P → R is injective and thus bijective. See Figure 5.

Assume Ψ : R→ P is not surjective. Fix X ∈ P \Ψ(R). Then Ψ(Φ(X)) ∈ Ψ(R) and

thus not equal to X, but is Turing reducible from X, a contradiction. Thus Ψ : R→ P

is surjective. See Figure 6.

Assume Ψ : R→ P is not injective. Fix Y0 and Y1 in R such that Ψ(Y0) = Ψ(Y1) = Z.

As Φ is bijective there exist X0, X1 in P with X0 6= X1, Y0 = Φ(X0), and Y1 = Φ(X1).

Assume Z 6= X0 (the other case is symmetric). Then Z ≤T X0 as X0 7→ Y0 7→ Z, a

contradiction. Thus Ψ is injective and thus bijective. See Figure 7.

Assume R is not totally separable and fix Y0 and Y1 in R with Y0 6= Y1 and Y0 ≤T Y1.

Let X0 = Ψ(X0) and X1 = Φ−1(Y1). Then X0 ≤T X1 via X1 7→ Y1 7→ Y0 7→ X0, a

contradiction. See Figure 8. Thus R is totally separable.

Corollary 4.3.4. If P and Q are totally separable with P ≡M Q, then P is computably
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Φ
Ψ

Q RP

C CΨ(C)
X Ω(Φ(X))Θ(X) Φ(X)

S

Figure 9: Theorem 4.4.1: Φ(X) ∈ Cc

isomorphic to Q.

Proof. Repeat the proof of Theorem 4.3.3 with P in place of R.

The following Lemma shows that in the situation of Theorem 4.3.3, P retracts onto

its totally separable core.

Lemma 4.3.5. If Q and R are such that R ⊆ Q, R is totally separable, and Φ : Q→ R

is a computably continuous functional, then Φ(X) = X for all X ∈ R, i.e., Φ is a

retraction.

Proof. If Φ(X) = Y 6= X for some X in R, then Y ≤T X, a contradiction.



45

Φ
Ψ

Q RP

C CΨ(C)
XΘ(X) Φ(X)

S

Figure 10: Theorem 4.4.1: Φ(X) ∈ C

4.4 Separable and Not Hyperseparable

Theorem 4.4.1. If Q and R are hyperinseparable with Q ⊥M R, then deg(Q∧R) is

separable and not hyperseparable.

Proof. Let S = Q∧R and a = deg(S). Then S is separable. Consider any CQ ⊂ I(0)

good for 0 aQ and CR ⊂ I(1) good for 1 aR. By hyperinseparability there is a reduction

from 0 aQ ∩ CQ to 0 aQ ∩ Cc
Q and similarly for CR. Thus there is a reduction to

C = CQ ∪ CR from Cc witnessing that S is not hyperseparable.

Let P be any class with P ≡M S. Let Φ : P → S and Ψ : S → P witness P ≡M S.

Let CQ and CR be clopen sets satisfying: CQ ⊂ I(0), CR ⊂ I(1) aR, CQ good for 0 aQ,

CR good for 1 aR, and Ψ(CR ∪ CQ) good for P . The last requirement can be achieved

by choosing CR and CQ small enough: fix σ ∈ TR long enough such that there exists

τ ∈ TS with φ(σ) ⊥ τ and let CR = I(σ); similarly for CQ.
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Let CS = Ψ(C). Fix Ω : S ∩ Cc → S ∩ C. Define Θ by

Θ(X) =


Ψ(Φ(X)) if Φ(X) ∈ C,

Ψ(Ω(Φ(X))) if Φ(X) ∈ Cc.

(4.1)

See Figures 9 and 10. Then Θ witnesses S ∩Cc ≥M S ∩C. So P is not hyperseparable.

As P was arbitrary, deg(Q∧R) is not hyperseparable.

The previous theorem provides a method for constructing separable and not hyper-

separable degrees from hyperinseparable degrees. The following theorem of Binns can be

used to construct homogeneous (and thus hyperinseparable degrees and thus separable

and not hyperseparable) with various structure.

Lemma 4.4.2. [2] Let A be a c.e. set and P a Π0
1 class with P > 0. Then there exist

c.e. sets A0, A1 such that

A0 ∩ A1 = ∅, (4.2)

A0 ∪ A1 = A, (4.3)

∀i ∈ {0, 1}∀f ∈ P [Ai 6≥T f ]. (4.4)

The idea is to construct a pair of hyperinseparable (actually homogeneous) degrees

whose meet, by Theorem 4.4.1, is separable and not hyperseparable, but whose join is

as high as we want it. We are also able to avoid a cone.

Corollary 4.4.3. For any b, c > 0 with b homogeneous there exists b0, b1, and a such
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b

b0b1

a

c

Figure 11: Theorem 4.4.3

that

a = b0 ∧ b1, (4.5)

a is separable and not hyperseparable, (4.6)

b0, b1,a 6≥ c, (4.7)

b0 ∨ b1 ≥ b. (4.8)

Proof. Fix S = S(A,B) ∈ b with A and B c.e. Fix P ∈ c. Let A0 and A1 be as in

Lemma 4.4.2. Let S0 = S(A0, B) and S1 = S(A1, B). Let Q = S0 ∧S1. Note that

homogeneity implies hyperinseparability. By Theorem 4.4.1, Q is separable and not

hyperseparable. By the conditions on A0 and A1, S0 6≥M P and S1 6≥ P , thus Q 6≥M P .
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Finally, for X ⊕ Y ∈ S0 ∨S1 define

Z(n) =


0 if X(n) = 0 or Y (n) = 0,

1 else.

(4.9)

Then Z ∈ S, thus S0 ∨S1 ≥M S. Letting b0 = deg(S0), b1 = deg(S1), and a = deg(Q)

we arrive at the result. This result is partially illustrated by Figure 11; note that b0 ∨b1

may or may not be in the cone above c.

Corollary 4.4.4. There exists a degree a such that a is separable and not hyperseparable.

4.5 Hyperseparable and Not Totally Separable

Finally, we work to separate the notions of hyperseparable and not totally separable.

The task is twofold: we must build a hyperseparable degree and avoid being totally

separable.

The first task is complicated by the fact that, previously, the only known construction

of a hyperseparable degree was to build a totally separable degree. We will use Theorem

4.3.3 to show that it is sufficient to build a class which is hyperseparable and not totally

separable. We then use the methods of Chapter 3 to build such a class.

Theorem 4.5.1. If P is hyperseparable and not totally separable, then deg(P ) is hyper-

separable and not totally separable.

Proof. That deg(P ) is hyperseparable is immediate. Assume deg(P ) is totally separable.

Then, by Theorem 4.3.3, there exists R ⊆ P , R ≡M P , and R totally separable. As P

is not totally separable, R 6= P . Let C be a clopen set such that R ⊆ P ∩ C ⊂ P .
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Using Lemma 1.2.3 twice, P ∩ C ≤M R ≡M P ≤M P ∩ Cc, contradicting that P is

hyperseparable. Thus, deg(P ) is not totally separable.

Theorem 4.5.2. There exists a degree which is hyperseparable and not totally separable.

Proof. We will build a computable tree life {Ls}. By Corollary 3.1.8, P = lims Ls will

be a Π0
1 class. We will build P to be hyperseparable and not totally separable. By

Theorem 4.5.1, deg(P ) will be hyperseparable and not totally separable.

Let 〈C, φ〉 be an enumeration of all pairs of clopen subclasses of 2ω and partial

computable functions. For convenience we often refer to such pairs by their index, e, in

the enumeration. We also start the enumeration at e = 1. We will blur the distinction

between e and 〈C, φ〉. For each 〈C, φ〉 we work to satisfy the requirement:

RC,φ : C good for P ⇒ ∃X ∈ P ∩ C[Φ(X) 6∈ P ∩ Cc]. (4.10)

To ensure that P is not totally separable we will use a very simple reduction and

ensure that paths Turing equivalent through that reduction exist. Namely,

S : ∃X, Y ∈ P∃Z ∈ 2ω[X = 0 a Z and Y = 1 a Z]. (4.11)

We have a strategy acting on behalf of each Re which will be careful to ensure that

S is satisfied. Strategies are ordered in priority in the order of the enumeration with

earlier strategies having higher priority. Each node has a protection level. The function

rs : 2<ω → ω∪{ω} indicates the protection level, i.e., the protection level of σ at stage s

is rs(σ). Lower numbers indicate higher protection levels. A strategy may protect a

node with its own priority. Each strategy has two states: wait and stop. Strategies

begin in state wait and may at some point act and enter state stop. Once in state stop,

a strategy will not act unless injured. When a state acts, it injures all lower priority
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strategies resetting them to state wait. The construction thus progresses in typical finite

injury fashion. Denote the state of strategy e at stage s by states(e).

In order for all strategies to be able to find witnesses to kill, they must obey a simple

rule regarding protection levels. For a node σ protected at level d, strategy e (e > d)

may only kill τ � σ if |τ | ≥ |σ|+ 2(e− d). As we shall see in the claims below, this will

ensure that every strategy is able to kill a witness if needed.

Let

Ss = {σ : 0 a σ ∈ D(Ls) and 1 a σ ∈ D(Ls)}. (4.12)

To ensure S is satisfied we require all strategies to preserve Ss 6= ∅ and only trim the

tree at even stages, growing it with single extensions an odd stages. This will ensure

that Ss is never empty and every requirement can act if necessary.

Begin with L0 = {∅, 0, 1}, r0(σ) = ∞ for all σ, and state0(e) = wait for all e.

Assume we have run the construction up to stage s. Thus Ls−1, rs−1, and states−1

are all defined. A strategy e = 〈C, φ〉 is eligible to act if states−1(e) = wait and

∃σ ∈ Ls−1 ∩ C[φ(σ) ∈ Ls−1 ∩ Cc (4.13)

and ∀τ � φ(σ)[rs−1(τ) > e or |φ(σ)| ≥ |τ |+ 2(e− rs−1(τ))]

and ∃ν ∈ Ss−1[0
a ν 6� φ(σ) and 1 a ν 6� φ(σ)]].

If s is odd or if no such e exists, then let Ls = L̂s−1, rs = rs−1 and states = states−1.

Otherwise let e be the highest priority (least index) strategy eligible to act. Let σ′ ∈
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D(Ls) be a child of σ (possibly equal to σ). Let

Ls = ̂trim(Ls−1, φ(σ)), (4.14)

rs(τ) =



e τ = σ′,

rs−1(τ) rs−1(τ) < e,

ω else,

(4.15)

states(n) =



stop n = e,

wait n > e,

states−1(n) else.

(4.16)

Equation (4.14) describes the evolution of the tree life. Equations (4.15) and (4.16) serve

to protect σ, stop strategy e, and injure (reset) all lower priority strategies. Observe

that Ss 6= ∅ as 0 a ν and 1 a ν were not killed for ν as in (4.13).

This completes the construction. We now prove that the result has the desired

properties.

Claim. Fix any d and e with d < e. If strategy d is not injured after stage t, then

strategy e will be injured less than or equal to 2e−d−1 times after stage t.

Proof. Fix d and t and let I(e) denote the maximum number of times e could be injured

after stage t. We will show by induction that I(e) ≤ 2e−d−1.

Consider e = d+ 1. Then d will be injured if d acts after stage t. As d is not injured

after stage t it will act at most once and thus I(e) = 1 ≤ 2e−d−1 = 2d+1−d−1 = 20 = 1.

Assume I(e′) ≤ 2e−d−1 for all d < e′ < e. Any time a strategy below e − 1 is

injured, e − 1 is also injured. Thus I(e − 1) is an accurate count of the number of
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times e might be injured by strategies < e− 1. Each time e− 1 is injured, e is injured.

In addition, e − 1 may act once before being injured again, injuring e as well. Thus

I(e) = 2I(e− 1) = 2(2e−1−d−1) = 2e−1−d−1+1 = 2e−d−1.

Claim. Fix any d and e with d < e. If strategy d is not injured after stage t, then

strategy e will act less than 2e−d times after stage t.

Proof. Strategy e can only act once before being injured again. Thus the total number

of times it can act is equal to the number of times it is injured plus one. By the previous

claim this is less than or equal to 2e−d−1 + 1 which is less than 2e−d.

Claim. For all σ and s such that rs(σ) = e < ω and strategy e is not injured at or after

stage s, σ ∈ lims Ls.

Proof. As strategy e is not injured, no strategy of higher priority will kill any ancestor

of σ, so our only worry is that lower priority strategies will kill all the children of σ.

When σ was protected, it was a leaf node. Thus any strategy which kills ancestors of σ

must obey the protection. Namely, for d > e, d can only kill τ � σ if |τ | ≥ |σ|+2(d−e).

Let µ be the standard measure on 2ω, i.e., µ(I(τ)) = 2−|τ |. For a finite Ls, define

µ(I(σ) ∩ Ls) to be µ(I(σ) ∩
⋃
τ∈D(Ls)

I(τ)), that is, we presume that Ls will have all

possible children. We will show that, for all t > s, µ(I(σ) ∩ Lt) > 0 and, thus, σ ∈ Lt.

Fix a stage t and let d be the lowest priority (highest index) strategy to act so far.

For each e < f ≤ d let Nf be the number of children of σ strategy f has killed and

{τi,f} be the set of these children. Strategy f can kill only a single child when it acts,

so by the previous claim, Nf < 2f−e. The requirement on the length of τ requires that
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I(τi,f ) ≤ 2−(|σ|+2(d−e)).

µ(I(σ) ∩ Lt) = µ(I(σ))−
∑
e<f≤d

∑
i<Nf

µ(I(τi,f )) (4.17)

≥ 2−|σ| −
∑
e<f≤d

Nf2
−(|σ|+2(f−e)) (4.18)

> 2−|σ| −
∑
e<f≤d

2f−e2−(|σ|+2(f−e)) (4.19)

= 2−|σ| −
d−e∑
i=1

2i2−(|σ|+2i) (4.20)

= 2−|σ| −
d−e∑
i=1

2−|σ|−i (4.21)

= 2−|σ|
(
1−

d−e∑
i=1

2−i
)

(4.22)

> 0. (4.23)

Claim. {Ls} is a computable tree life.

Proof. The previous claim shows that, at all stages, Ls is nonempty. By Lemmas 3.2.3

and 3.2.4, each Ls is a growth of Ls−1. As single extensions and trims are computable,

it is a computable tree life.

Thus, by Corollary 3.1.8, P = [lims Ls] is a non-empty Π0
1 class.

Claim. ∀n∃s∀t > s[|St| > n].

Proof. Define a clump in St to be a proper subset U ⊂ St maximal with respect to

U = {σ a τ : τ ∈ 2i} for some σ and i. Let ct be the size of the smallest clump in St.
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First we show that ct+1 ≥ ct for all t. At each stage something may be killed and

then every living leaf is extended, i.e., each stage is a composition of (possibly) a trim

and a single extension. If ct = 0, then the result follows immediately so assume ct > 0.

There are four possibilities:

1. Nothing in St is killed. Then the clump doubles and ct+1 = 2ct.

2. The smallest clump is killed. As it was not everything there is another clump of

at least equal size. That clump will double, but it could now be everything in

which case it is not a clump but rather two clumps of size equal to the original.

So ct+1 ≥ ct.

3. Everything but the smallest clump is killed. Then the smallest clump will double

but as it is now everything it is now two clumps rather than one. So ct+1 = ct.

4. Part of a clump is killed. At worst it will kill half the smallest clump. The other

half will then double and ct+1 = ct.

At odd stages, case (1) occurs, so ct+1 > ct for t odd. Thus ct is unbounded in t and

St is unbounded in t.

Observe that while clumps of arbitrary finite size exist during the construction they

may move around. The final Π0
1 class may be very non-clumpy.

Claim. For all e, Re is satisfied.

Proof. By a previous claim, let s be sufficiently large such that strategy e is not injured

at or after stage s. Let e = 〈C, φ〉. If C is not good for P , then we are done. Assume C

is good for P .
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Assume there exists X ∈ P ∩ C such that Φ(X) ∈ P ∩ Cc. For stages t > s, the set

of nodes protected by strategies d < e will stay fixed. Thus there is a stage t and an n

such that σ = X �n ∈ Lt, |φ(σ)| ≥ |τ |+ 2(e− rt−1(τ)) for all τ � φ(σ) with rt−1(τ) < e.

Strategy e may still not be able to act because of the requirement to preserve St. As

higher priority strategies will not act again the strategy will continue to be otherwise

eligible to act at later stages. Let Y be such that X = i a Y for some i ∈ 2. If we never

act that means that at each stage t, St = {Y � l(t)}, contradicting the previous claim

that |St| is unbounded.

Claim. S is satisfied.

Proof. By the definition of Ss and that Ls is a tree life, if a string σ leaves Ss, i.e.,

σ ∈ Ss \ Ss+1, then no child of it can ever enter Ss later. Thus, using Claim 4.5, lims Ss

exists and is non-empty. Then, for any Z in lims Ss, X = 0 a Z and Y = 1 a Z serve as

witnesses that S is satisfied.

Thus P is hyperseparable as for any C good for P and any Φ, R〈φ,C〉 shows that Φ

is not a witness of P ∩C ≥M P ∩Cc. As S is satisfied, P contains a pair of comparable

paths, namely 0 aX and 1 aX for some X.
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